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Abstract

Rootkit infections have plagued IT systems for several decades now. As non-trivial threats often employed by so-
phisticated adversaries, rootkits have received a large amount of attention, from both the industrial and academic
communities. Consequently, rootkit detection has a rich literature, but most papers focus on only detecting the fact that
an infection happened. They rarely offer mitigation, let alone identifying the piece of malware. We aim to solve this by
not only detecting rootkit infections but by finding the malware as well. Our paper has three main goals: extend the
state of the art of cross-view-based detection of Loadable Kernel Modules (the de-facto delivery method of Linux kernel
rootkits), provide a memory forensics tool that implements our detection method and enables further investigation of
loaded modules, and publish the dataset we used to evaluate our solution. We implemented our tool in the form of a
Volatility plugin and compared it to the already existing module detection capability of Volatility. We tested them on
55 rootkit-infected memory dumps, covering 27 different versions of the Linux kernel. We also provide compatibility
analysis with different kernel versions, ranging from the initial release to the latest (6.13, at the time of writing).
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1. Introduction

Malware infection is a longstanding problem that af-
fects almost every facet of today’s interconnected, global
IT infrastructure. The first computer viruses were experi-
ments and pranks, but they quickly grew destructive, and
in time, criminals found a way to monetize on malware-
infected machines (Liao et al. (2016)).

Apart from a few notable exceptions, like ransomware
infections, it is in the best interest of malware to re-
main hidden, and thus operational as long as possible.
To avoid detection, many malware samples employ sim-
ple tricks, like using packers or renaming processes (Cozzi
et al. (2018)). There is a type of malware, however, that
takes hiding to another level and tries to achieve total in-
visibility: this subgroup of malware is called rootkits, and
they often put a considerable amount of effort into hid-
ing. They usually hide different resources associated with
malware components, like running processes, files, or open
network connections.

As rootkits evolved, so did the tools that aimed to de-
tect them. The challenge was twofold: any detection so-
lution must not only outsmart its target but must be able
to protect itself from the rootkits it is hunting for. The
complexity of these challenges comes from the advanced
techniques, that rootkits apply, often in the deep layers of
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the operating system, and the total control they have over
the infected machine.

Many rootkit detection solutions published in the past
decades suffer from the same deficiency: they identify
rootkit infections, typically by detecting traces of some
technique applied by rootkits. However, they cannot take
actions to mitigate the issue or identify the rootkits them-
selves. This limits their usefulness as parts of antivirus
solutions, and even more so in the field of digital foren-
sics. During an investigation, if the suspicion of rootkit
infection arises, the rootkit should be found and analyzed,
before the case can be closed.

This paper addresses this issue by providing forensics
experts with a tool that is capable of finding hidden ker-
nel modules in memory dumps of Linux machines. Kernel
modules are the most popular and convenient way to im-
plement rootkit functionality (Li et al. (2015)). Our1 so-
lution falls into the category of cross-view-based (Nadim
et al. (2023)) detection, where information is collected
from different data sources, and these sources are cross-
referenced with each other, to find hidden resources by
identifying inconsistencies. We also address a shortcom-
ing of cross-view-based detection: when a rootkit does not
try to hide its module, cross-view-based methods will not
flag it as suspicious. For this, we offer a tool that can be
used to identify suspicious modules among the benign ones

1Throughout this paper, first person plural was used, as it is cus-
tomary in the field of computer science, despite of the paper having
a sole author. The author worked alone on the paper, all colleagues
who helped with proofreading the manuscript are listed in the Ac-
knowledgement Section.
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and conduct a deeper investigation, to determine their ma-
liciousness.

The main contributions of our paper are the following:

• We extend the capabilities of cross-view-based de-
tection, regarding Loadable Kernel Modules. The
method we propose works across a wide range of Linux
kernel versions and surpasses the hiding capabilities
of any LKM rootkit we encountered so far. It was
tested against a large number of rootkits (both open-
source and found in the wild), and it proved to be
robust against all the techniques that rootkits apply
to hide modules. We give a detailed description of
this method in Section 3.

• We address a major shortcoming of cross-view-based
rootkit detection: if a certain resource is not hidden,
despite being able to find it, cross-view-based detec-
tion cannot flag it as suspicious. To overcome this
issue, our Volatility plugin also reports a wide variety
of information about the modules it finds and facili-
tates their deeper investigation. To demonstrate this,
in Section 4, we present a case study about finding
the THOR open-source rootkit.

• To test our Volatility plugin and compare its effective-
ness against other, already existing solutions, we col-
lected and compiled many rootkits and infected Linux
machines with them, to acquire memory dumps. Our
dataset consists of 35 memory dumps infected with
open-source rootkits, and another 20 infected by root-
kits we acquired from VirusTotal. We make this
dataset publicly available (both the memory dumps
and their corresponding symbol tables), because we
believe it might be useful for the community to eval-
uate rootkit detection solutions.

The rest of this paper is organized the following way:
in Section 2, we provide some background on rootkits, the
different approaches of rootkit detection, and position our
solution compared to other cross-view-based solutions that
detect hidden modules. In Section 3, we give a detailed de-
scription of our approach and the data sources it uses. In
Section 4 we present a case study about identifying and
analyzing modules, that cross-view-based detection does
not flag as suspicious. Section 5 details how we evaluated
our detection method. In Section 6, we discuss the limita-
tions of our solution and provide a compatibility analysis
between our method and different versions of the Linux
kernel, and finally, in Section 7, we conclude our paper.

2. Background and Related Works

2.1. Rootkits

Rootkits come in two flavors depending on where they
operate in the software stack.

User-space rootkits, as the name suggests, stay in the
user space; they often patch existing system administra-
tion tools, hook library functions, or abuse certain features
of the operating system. They can hide certain resources
from the users or system administrators, but not from a
forensics expert, inspecting a memory dump of the infected
system.

Kernel-space rootkits attack different layers of the ker-
nel to hide certain resources and apply a wide range of
techniques. The feasibility of detection depends on the
applied techniques, but generally speaking, the deeper the
rootkit goes into the layers of the kernel, the harder it is
to detect its traces.

In this paper, we only focus on kernel-space rootkits,
developed to the Linux kernel. Similar techniques might
be applicable to other operating systems as well, but these
are out of the scope of our research.

2.2. Rootkit Attack Vectors

First, we must discuss how kernel-space rootkits can be
implemented on Linux. To be able to implement such
functionality, an attacker must be able to execute code in
the context of the kernel, or the kernel’s memory must be
modified (Sd and Devik (2001)).

Reading and writing the kernel memory is possible
through the file /dev/kmem, but since no legitimate ap-
plication uses it, only attackers, it is often disabled on
modern versions of popular Linux distributions. Another
similar file is /dev/mem, which provides access to the physi-
cal memory, but due to frequent abuse, it is locked as well2.
Only certain parts of the physical memory are accessible
this way, thus rootkits can no longer modify the kernel
memory using these files.

Yet, executing code in kernel space is still possible: if,
for example, the attacker finds a memory corruption vul-
nerability, it might be possible to divert the execution and
use Return-Oriented Programming (ROP) to implement
arbitrary functionality (Roemer et al. (2012)).

A much more convenient way is to use Loadable Kernel
Modules (LKMs). These can be loaded into or unloaded
from the running kernel at any time. Many drivers are
implemented in this way, which allows the kernel to be
built into a smaller binary file, and not loading unneces-
sary drivers also reduces its attack surface. This is by far
the most popular and convenient way to implement ker-
nel rootkit functionality, and as an act of self-preservation,
many rootkits attempt to hide the loaded module in which
they are implemented.

Another possibility is abusing the extended Berkeley
Packet Filter (eBPF). This is a relatively new trend among
kernel rootkits. Using eBPF, it is possible to inject byte-
code into the kernel memory, which will be executed when
triggered by any tracing subsystem of the kernel. This al-
lows the implementation of rootkit-like functionality simi-

2https://lwn.net/Articles/267427/ (Last visited: 2024.10.10)
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larly to earlier, hooking-based solutions, but without using
a kernel module.

Once a rootkit is capable of performing modifications
in the memory of the kernel, it may begin its operation.
Many techniques exist to hide certain resources, but most
of them can be divided into two categories:

Function hooking happens when a rootkit can modify
the kernel in such a way, that instead of the original func-
tion, the attackers implementation will be executed. For
example, the read system call can be hooked, so when
it is called on a specific file, certain lines can be omitted
(e.g. by doing this with the file /proc/modules, certain
modules can be made invisible).

Direct Kernel Object Manipulation (DKOM)3 is a tech-
nique where data structures are modified in the kernel
memory to achieve a certain goal. For example, if a list is
used to store information about a set of resources, remov-
ing an element from the list will effectively hide a certain
instance of said resource from all parties that rely on that
specific list. An example could be the list of modules, that
is used to generate the content of the file /proc/modules;
removing a module from this list is a simple and widely
used technique to hide modules.

2.3. Rootkit Detection

Since rootkits are not a new problem, and their detec-
tion has a considerable literature, naturally, multiple ap-
proaches were explored.

Signature-based rootkit detection works just like de-
tecting any other malware using signatures: signatures
or fingerprints are extracted from known samples and a
database is constructed from them. This can later be used
to detect known threats (e.g Yamauchi and Akao (2017)).

Behavior-based detection looks for abnormal behavior
or other anomalies, that might be caused by a rootkit in-
fection. Such anomalies can include timing discrepancies,
unusual memory access patterns, and many more. This
approach relies on a priori measurements and might not
be accurate enough outside a controlled environment (e.g
Li et al. (2019)).

Integrity-based detection can be a powerful approach
against rootkits that modify static sections of memory, but
it typically requires a priori knowledge about the protected
system (e.g. Deyannis et al. (2020)).

Cross-view-based solutions work by collecting informa-
tion about the same set of objects, from different sources.
These different sources are cross-referenced to identify in-
consistencies, most likely caused by a rootkit infection. It
can detect DKOM attacks effectively, but it has limita-
tions: it cannot detect resources, that are associated with
the rootkit, but were not hidden. Also, if a certain resource
is removed from all possible data sources, that the detec-
tor scans, it will not be able to detect the rootkit. This

3In this case, the term “kernel object” refers to any C struct in the
kernel memory, not just kobjects, which we will detail in Section 3.2.

approach was taken by Wang et al. (2005), Jones et al.
(2008), Xu and Jiang (2011) and our solution belongs in
this category as well.

2.4. State of the Art

Cross-view-based detection is a well-established method
to detect rootkits, however, applying it to find kernel mod-
ules is less common, as most solutions focus on other re-
sources, like hidden processes and files.

The kernel communicates information to the user space
about modules in two ways: through a file, named
/proc/modules, whose content is populated by iterating a
list inside kernel memory (commonly referred to as “mod-
ule list”), and via a directory named /sys/modules. In
this directory, every module has its own subdirectory, and
these are created by traversing a list called module kset.
We will give detailed descriptions of these data struc-
tures and Section 3, but knowing about them is nec-
essary in order to compare the already proposed solu-
tions. The lsmod utility, which we use to list loaded mod-
ules, processes the content of /proc/modules, and con-
sults /sys/modules for additional information (i.e. mod-
ules missing from /proc/modules will not be present in
the output of lsmod).

The weakest among cross-view-based module detectors
are solutions that compare data from the same source
but on different architectural levels. rkhunter (Boelen,
Michael (2003)), for example, compares the output of
lsmod to the content of /proc/modules, making it capa-
ble of detecting attacks in the user space only. Quynh and
Takefuji (2007) apply a similar approach: their solution
was implemented by the Xen hypervisor, and it compares
the output of lsmod and the content of the module list in
the kernel memory. This means that it can detect mod-
ules hidden by hooking certain kernel functions, but not
the ones that remove their modules from the module list.

Other solutions rely on artificial data sources: Rhee et al.
(2010) track allocation and de-allocation events inside the
kernel to maintain a shadow copy of the module list, which
they can periodically compare to the real module list, while
Lu et al. (2023) use Kprobe4 technology, a built-in way of
tracing inside the Linux kernel to monitor lists in the mem-
ory. They also watch certain system calls, like the ones
responsible for initializing and removing kernel modules,
and raise an alarm, if a module was removed from the list
of modules without the invocation of the delete module

syscall. These approaches might be robust against root-
kits if implemented properly, but they must be deployed
proactively, making them unsuitable for detecting rootkits
in a typical memory forensics scenario.

Of course, not only artificially crafted data sources
can be used for cross-view-based detection: modreveal

(Lihi, Jafar (2023)), for example, compares the output
of lsmod to the list of modules in the kset, which it

4https://lwn.net/Articles/132196/ (Last visited: 2025.01.22)
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acquires through a kernel-space component. This tech-
nique is closely related to the one implemented by Volatil-
ity (Volatility Foundation), where the content of the
kset is compared to the content of the module list,
both directly parsed from the kernel memory. Both
versions of Volatility implement this functionality, in
plugins called linux check modules at version 2, and
linux.check modules at version 3. This approach can
detect if a module is removed from the module list only,
but as Appendix A shows, many rootkits can evade this
check by tampering with the kset as well.

Two solutions that stand out in terms of detection
capability, are tracee (Aqua Security (2020)) and Sig-
Graph (Xu and Jiang (2011)). tracee is an open-source
project, that utilizes eBPF to monitor various security-
related events throughout the Linux kernel. It is capable
of capturing module load and unload events, and dump-
ing the module to the disk, while it also claims to be able
to detect hidden modules. The documentation about this
feature is limited: it is a “self-triggered hook”, that “peri-
odically checks for a hidden module”. Based on the source
code, it collects modules from the module list, the kset

and another source called the module layout tree. Like
many solutions on this list, this one is not applicable di-
rectly to memory images either, but the concept it imple-
ments can be ported. It is a subset of what our Volatility
plugin implements.

SigGraph, on the other hand, generates graphs of the
data structures inside the memory, that are linked together
by pointers. It works on both live machines and memory
dumps and it is capable of finding hidden processes and
modules. It was only tested on a narrow range of kernel
versions (2.6.12-6 – 2.6.34-2), but based on its description,
if it is compatible with later versions of the Linux kernel,
it should be capable of finding modules via the module
layout tree as well. On the other hand, it would not be
able to find modules, if they are not directly accessible
from any global variable.

Compared to the above-mentioned solutions, ours uses
different data sources, not just different views of one data
source. It only uses sources that appear in the kernel mem-
ory naturally, no artificial ones are used. It cross-references
7 different sources in total, containing ones, where mod-
ules are not directly accessible from global variables (i.e.
ones the SigGraph would not be able to find). In the
next section, we give a detailed overview of all these data
sources, how they work, and how we can extract module
information from them.

3. Detection Approach

Our solution collects kernel modules from 7 different
sources throughout the memory of the Linux kernel. The
modules are collected into one list per source. When
traversing all these sources is done, the modules from all
these sources are collected into one unified list. We iterate
through this unified list, and for each element, our tool

reports, in which sources could it be found. Thus hidden
modules can be identified, as they are not present in ev-
ery sources’ list. For example, many rootkits remove their
module from the module list (Section 3.1), but not from
every other source we will present in this section.

In this section, we give a detailed description of the
sources we used to enumerate the loaded kernel modules:
what they are used for, how they work, how modules can
be accessed through them, and their evolution across the
different versions of the Linux kernel.

3.1. The List of Modules

When a module is loaded into the Linux kernel, memory
is allocated for an object of type struct module, to store
all relevant information about the freshly loaded module.
All these module structures are placed in a doubly linked
list for accounting purposes, which is accessible through
the global variable modules.

As it is customary in the kernel, modules contain a
list head called list. These list heads are used to
implement the doubly linked list and the location of the
next module in the memory can be computed from the
list head’s next pointer. Figure 1 illustrates, how the
modules are organized into a doubly linked list.

Figure 1: The doubly linked list of modules

This list is used to populate the file /proc/modules,
which in turn is used by lsmod, the utility designed to
obtain information about currently loaded modules.

This list was already present in the kernel at version
2.6.12-rc2, the first version that GitHub tracks. During
our search for open-source rootkits to test our detection
method, all rootkits that used DKOM to hide their mod-
ules tampered with this list. It is also commonly used by
cross-view-based detectors.

3.2. The kset of Modules

Whenever reference counting is necessary for some-
thing in the kernel memory, kernel objects (kobjects)
are used. These are embedded into other structures,
and kernel objects of the same type can be organized
into kernel sets (ksets). modules contain a structure of
type module kobject, and each of these has an embedded
kobject. All kobjects, that are embedded into modules,
are collected into a kset, called module kset.

By iterating through the doubly linked list of kobjects
associated with module kset, we can enumerate modules.
By knowing the base address of a kobject, we can com-
pute the location of the module kobject, and thus the
location of the module as well. Figure 2 shows how the
different structures are embedded in each other and how
the kobjects form a doubly linked list.
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Figure 2: The modules and their embedded kernel objects

The list of kobjects in module kset is used to popu-
late the directory /sys/modules, through which the kernel
offers additional information about the loaded modules.

This data structure first appeared in kernel version
2.6.25-rc1, and rootkits often remove their modules from
the module kset, since many rootkit detection solutions
cross-reference the content of this kset with the module
list.

3.3. The Module Layout Tree

Besides the module structure, other areas of memory
are also associated with modules, for example, to store
the code and data loaded from the module’s file. In the
earlier days of the Linux kernel, to find out which mod-
ule a memory address belongs to, the module list was
traversed and certain members of the module structure
were checked. To make this lookup faster, the module
layout tree was created: the description of the allocated
memory was moved to the structure module layout, and
the module layouts are organized into a latched red-black
(basically, two red-black trees side-by-side, to avoid the
need for locking). This tree can be traversed from the
global variable mod tree, and through the nodes of the
latched red-black tree, we can access the module they are
associated with. Figure 3 details how the tree nodes are
embedded into the module layout, and how the module

can be accessed by traversing the tree.

Figure 3: The relationship of the different structures related to the
module layout tree.

This data structure was added to the Linux ker-
nel at version 4.2-rc1. Later, at version 6.4-rc1, the
module layout structure was replaced by module memory,

but the tree remains, and the technique is still applicable.
We did not find any rootkit, that tried to hide its pres-
ence from the module layout tree; on the other hand, we
know about one solution (tracee), that utilizes this data
structure for detection.

3.4. Virtual Memory Areas (VMAs)

There are two memory allocators available in the Linux
kernel: kmalloc and vmalloc. The former is used when
the allocated memory must be continuous both in the vir-
tual and physical address space, while vmalloc can allo-
cate continuous virtual memory that is mapped to arbi-
trary physical memory pages.

All memory associated with modules gets allocated by
vmalloc, and these memory areas are also accounted for.
vmap area structures are used to describe them, and de-
spite the lack of direct connection to modules, through
memory scanning, they can be identified.
vmap areas are placed in a doubly linked list, accessi-

ble from the global variable vmap area list. This list is
used to populate the file /proc/vmallocinfo, which can
be used to obtain information about the memory alloca-
tions.
vmap areas are also organized into a red-black tree, ac-

cessible from vmap area root. This allows faster lookup
if one wants to determine, which memory area an address
belongs to.

The module structures themselves are stored in such
memory areas, thus by scanning the memory ranges
pointed by a vmap areas, we can find them. For ker-
nels pre-4.2, it is possible to match the module init and
module core members of the module. The first one is a
NULL pointer, if the module finished initialization, while
the second one is the same as the start address of the
vmap area. For kernels between 4.2 and 6.4, where the
module layout structure exists, the head of this structure
can be matched: its first member is the same as the start
address of the vmap area, while the second one is its size.
After 6.4, the same can be done with module memory struc-
tures. Figure 4 illustrates, how vmap area structures are
related to modules.
We collect vmap area structures from both the list and

tree and for every memory area, we attempt to locate a
module structure inside.

The vmap area list and vmap area root first ap-
peared in the version 2.6.28-rc1 of the Linux kernel. They
remained for many years until they were removed in ver-
sion 6.9-rc1. Since then, vmap area structures are accessi-
ble from an array-like data structure called vmap nodes.
This contains vmap node structures, that contain both
list heads and red-black tree roots, so all vmap area

structures are accessible from these as well, just like they
were from vmap area list and vmap area root.
There are a small number of rootkits, that attempt to

hide their corresponding memory areas. However, as far
as we know, these structures were never used for detection
before.
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Figure 4: The relationship of vmap areas and modules

3.5. The Bug List

The Linux kernel code uses macros like BUG and BUG ON

to signal errors that the kernel is unable to recover from.
These macros usually expand into an undefined instruc-
tion, and if execution reaches this instruction, the stack
trace is dumped into the kernel log, and the process, in
which this happened, is terminated.

In order to help debugging, each module has a bug ta-
ble, containing information about the BUGs used by the
module. To help identify, which module was responsible,
if a BUG happens, the modules are chained together into a
list, called module bug list. This list contains all mod-
ules, even if their bug table is empty, thus by traversing
this list, one can collect all loaded kernel modules.

The bug list works the exact same way as the list of
modules, except that the list head where it starts is called
module bug list instead of modules, and the list head

embedded into modules is named bug list.
This list was added to the kernel at version 2.6.12-rc2,

but it was available only for the PowerPC architectures
(both 32 and 64-bit). In version 2.6.20, its definition was
moved to another source file, enabling its use for other
architectures as well. It was not removed since. As far as
we know, this data structure was never tampered with, to
hide a kernel module, and no detection solution has ever
used it either, explicitly. SigGraph, however, might have
been able to find it, since the bug list appeared in a kernel
version that is part of the interval, where SigGraph was
tested.

3.6. Ftrace

Ftrace stands for Function Tracer, and it is an internal
tracing utility of the kernel, designed to help debug and
analyze performance issues in the kernel. Rootkits, on
the other hand, often use it as a universal utility to hook
arbitrary functions in the kernel.

At version 4.15, the functionality of ftrace was extended,
and a data structure called ftrace mod maps appeared in
the kernel. This maps ftrace hooks to kernel modules, to
help keep track of them. This is essentially a doubly linked
list of ftrace mod map structures, that contain pointers to
both their corresponding function hooks, and the module

that implements them as well. Figure 5 illustrates this
relationship.

Unlike any other data source we described in this sec-
tion, this list only contains elements for modules that uti-
lize ftrace, not all loaded modules. Rootkits, however,
often use ftrace to hook arbitrary functions in the kernel,
meaning that many of them can be found by traversing
this list.

Figure 5: The relationship of ftrace mod maps and modules

Although ftrace is part of the kernel since 2.6.27, the
module mapping feature only appeared at 4.15-rc1.

As far as we know, no rootkit ever attempted to hide its
ftrace hooks and we do not know of any rootkit detection
solution either, that tried to use ftrace mod maps to find
hidden modules.

4. A Case Study: THOR

In this section, we demonstrate the analysis capabilities
of our Volatility plugin through a case study, where we
analyze a memory dump from a Linux machine that was
infected with an open-source rootkit named THOR5. It
was chosen to be the subject of this case study because
it attempts to hide its module, but it uses function hooks
instead of DKOM, thus it does not cause any inconsistency
among the data structures we analyze, so it is not trivial
to spot it.

The first time, we execute our plugin, it gives us a list
of loaded modules. For each of them, it is printed whether
they can be found in any of the available data sources.
Since the machine whose memory dump we analyze was
running on a kernel of version 3.16.0–6, the following data
sources are available: the module list, the kset of the
modules, and the bug list. With a separate flag, it is pos-
sible to trigger the analysis of the vmap area list and
vmap area tree structures as well (these are disabled by
default due to performance reasons), but they do not show
any inconsistency either.

The system had 63 loaded modules in total. A possible
way to discard less interesting ones could be by looking
at the signatures and taints associated with each module.
Since 3.16 is a relatively old version of the kernel, none
of the loaded modules were signed, but taints are more
informative in this case. Taints represent a set of events

5https://github.com/W4RH4WK/THOR (Last visited: 2025.01.24)
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that might be relevant for investigating problems regarding
the kernel. The kernel has a bit vector to store if any of
these events occurred, but each module has its own taints
as well. For modules, a bit is only set if the module was
responsible for a specific event. In this case, 4 modules
have taints: their names are thor, vboxguest, vboxsf and
vboxvideo. All of them have the taint value of 0x1000,
which means they were built externally or out-of-tree (i.e.
they were compiled separately from the kernel).

The plugin also displays how many other modules de-
pend on a certain module and how many other modules
a certain one depends on. These values tell us that the
vbox* modules partake in such dependency relationships,
while thor does not. While it is not a requirement or
consequence of maliciousness, rootkits typically do not de-
pend on other modules and they are not dependencies of
other modules either. On the other hand, by querying
the dependency trees of the 4 tainted modules, we can see
that vboxsf depends on vboxguest and vboxvideo de-
pends on some DRM-related modules. This information
improves the credibility of the vbox* modules, so a logical
next step would be the deeper analysis of thor
Our plugin is also capable of listing all the symbols de-

fined by a certain module. The C code of kernel mod-
ules is compiled to an ELF file, which the kernel can
load, and symbols (function and variable names) are not
stripped during the compilation (in fact, the kernel re-
fuses to load stripped module files). Moreover, the ker-
nel keeps these symbols when it loads a module, thus we
can query them. Rootkit developers often use descrip-
tive names while writing code; in this case, this specific
module contains symbols like replace tcp seq show and
replace udp seq show (these most likely hook well-known
function pointers to hide open network connections),
pidhider init and pidhider cleanup (these most likely
implement hiding certain processes) and my hide module

(which most likely hides the kernel module that imple-
ments the rootkit). At this point, the maliciousness of the
thor module is fairly certain.

To achieve absolute certainty, the actual code of the
rootkit must be examined. To support this, our plugin
is capable of partially reconstructing the ko file that im-
plemented the module. We achieve this by dumping all
sections of the module into a file, the symbol table we
already parsed in the previous paragraph, and auxiliary
information to create a valid ELF file, that can be ana-
lyzed by any reverse engineering framework, like Ghidra
or Radare2.

Unfortunately, some parts of the original file are dis-
carded once a module is fully loaded, so only partial re-
construction is possible this way. Thus we recommend
recovering the module file from the file system cache, if
possible, but if it is not an option, our plugin can still
reconstruct much of the original module file.

Also, if the rootkit can be identified, and the source code
is available, for example, on GitHub, it might be possible
to find the exact version the attacker used. Modules typi-

cally include a so-called srcversion hash, which is a 24-byte
long hexadecimal value. During compilation, this is com-
puted from the source files, the module was built from.
Our tool also reports this hash for each module, if avail-
able, so by compiling different versions of a rootkit, and
comparing their srcversion hash to the found one, an an-
alyst might be able to determine which version was used
by the attacker.

5. Evaluation

In this section, we describe the datasets we used to eval-
uate our solution and the environment we used for infect-
ing machines with different rootkits. We also discuss the
results of these experiments, which we detail even further
in Appendix A.

To test our detection method against the rootkits we
collected, we had to infect a running system and create a
memory dump from it. To do so, we used a virtual envi-
ronment, specifically Vagrant6 with VirtualBox7. Memory
acquisition was done by the debugvm command and the
dumpvmcore8 subcommand of VirtualBox. It can save the
entire physical memory of the virtual machine to an ELF
file, which we could later analyze with Volatility.

We evaluated our solution on two sets of rootkits: one
set of open-source rootkits, collected from GitHub, and
another set of rootkits we collected from VirusTotal. In
the case of GitHub, we had to compile the rootkits, while
from VirusTotal, we downloaded binaries only. Based on
the analysis of these wild rootkits, probably there is some
overlap between the two sets. We didn’t remove these
overlapping samples for two reasons: they were compiled
for different kernel versions, so they might function slightly
differently, and it is also possible that an attacker used an
open-source rootkit as a base and extended it with new
functionality.

5.1. Open-Source Rootkits

This set of test rootkits consists of 35 open-source root-
kits we found on GitHub. To collect test rootkits, we man-
ually reviewed the source code of many rootkit projects.
First, we discarded rootkits that were implemented in the
user space, and then we removed the ones that did not use
any technique to hide their kernel module. The remain-
ing kernel-space rootkits used one or more of the following
techniques to hide their modules: removing it from the
module list, removing it from the module kset, remov-
ing their vmap area structures from both the list and the
tree, and hooking functions in upper layers, e.g., to stay
invisible, when someone reads the /proc/modules file. For
35 of these rootkit projects, we could successfully compile

6https://www.vagrantup.com/ (Last visited: 2025.01.20)
7https://www.virtualbox.org/ (Last visited: 2025.01.20)
8https://www.virtualbox.org/manual/topics/vboxmanage.

html#vboxmanage-debugvm (Last visited: 2025.01.20)

7

https://www.vagrantup.com/
https://www.virtualbox.org/
https://www.virtualbox.org/manual/topics/vboxmanage.html#vboxmanage-debugvm
https://www.virtualbox.org/manual/topics/vboxmanage.html#vboxmanage-debugvm


the malware, infect a Linux machine with it, and create
a memory dump we could analyze. Rootkits hiding by
function hooking do not show inconsistencies among the
different data sources, but they are present in the list that
our plugin shows. Appendix A details the rootkits we
used, the kernel versions, where we could compile them,
and how each rootkit in our dataset attempted to hide its
module.

5.2. Wild Rootkits

This set of rootkits comes from VirusTotal. We col-
lected and analyzed kernel object files that were consid-
ered to be malicious by at least 5 anti-virus vendors, and
discarded those that did not attempt to hide their mod-
ule. These files contain a section called .modinfo, from
which we were able to determine, what kind of kernel were
they compiled to. For 20 of these samples, we were able to
prepare an environment, that we could infect and analyze.
These rootkits only used the module list and the kset of
modules to hide. We also provide their MD5 hashes and
links to their VirusTotal reports.

5.3. Results

Among the 35 open-source rootkits, only 4 of them tried
to hide via function hooking, the rest tried to use DKOM.
All that used DKOM removed their module from the mod-
ule list, and modifying the kset is common as well. Tam-
pering with the virtual memory is rare, but 3 rootkits im-
plemented this functionality. None of them tried to hide
from the module layout tree, the bug list, or the ftrace
module mappings; however only 4 used ftrace among those
that we could compile for kernels, where it is supported.
13 of the open-source rootkits could be detected by Volatil-
ity’s linux.check modules plugin, while our plugin could
detect all 35.

Some of them were unstable and crashed during loading,
but due to our external memory acquisition process, we
could still examine the kernel memory. 3 of these crashed
before the rootkit could hide its module, and another 4
rootkits crashed after hiding. In 2 cases, we could not
determine if the crash happened before or after hiding,
since these rootkits tried to hide themselves by hooking
functions in upper layers, thus they did not show inconsis-
tencies among our data sources.

All of the 20 wild rootkits attempted to hide by using
DKOM: 10 of them used only the module list, while the
other 10 tampered with the module list and the kset as
well. None of them touched any of the other 5 data sources,
however, only 4 of them used ftrace. For this dataset,
Volatility’s linux.check modules could detect those 10,
that modified only the module list. Our solution, on the
other hand, could successfully detect all 20 of them.

Appendix A details the results of our experiments: for
each rootkit, we show how it attempted to hide its mod-
ule, which kernel version could be used to test it, whether
it could be detected by Volatility’s linux.check modules

plugin, and whether it was detected by ours. We also pro-
vide links to their GitHub repositories or their VirusTotal
reports, for the sake of transparency and reproducibility.
We also share the code of our plugin9, so anyone can test
and use it, and the memory dumps as well10.

6. Discussion

In this section, we discuss some of the limitations of
our solution, its relation to eBPF, a recent trend in kernel
rootkit development, and we provide compatibility analy-
sis with different versions of the Linux kernel.

6.1. Limitations
Of course, as any solution, ours is not perfect either.

Data acquisition is arguably the most important part of
any memory forensics project, as it directly influences the
capabilities of every tool that is later used to extract infor-
mation from the memory dump. This affects our Volatil-
ity plugin as well: in incomplete or inconsistent data, we
might not be able to identify hidden kernel modules.

This, however, is a limitation of the implementation,
not the technique: the same cross-view-based detection
method could be implemented to defend live systems, as
long as it can be protected from rootkits, e.g. by using a
Virtual Machine Manager (e.g. Rhee et al. (2010)) or a
Trusted Execution Environment (e.g. Nagy et al. (2021)).

Unfortunately, cross-view-based solutions also suffer
from weaknesses of their own. One of these is the case,
when the rootkit is hiding in plain sight, i.e. when the
module is not hidden. To mitigate this issue, our plugin
reports a wide range of information about each found mod-
ule; these can help to identify suspicious ones, as it was
shown in Section 4.

Another edge-case, where cross-view-based solutions are
helpless is when something is hidden thoroughly: if a mod-
ule cannot be found in any of the data sources our plugin
examines, it cannot be detected this way.

6.2. eBPF
Since eBPF does not rely on kernel modules, our solu-

tion cannot detect eBPF-based rootkits. On the other
hand, compared to kernel modules, the capabilities of
eBPF programs are limited. They cannot, for example,
read arbitrary memory addresses. If, however, an attacker
would need such functionality, it must be implemented in
the form of a loadable kernel module. In this case, it is
again in the attacker’s best interest to hide this module.
If this would be implemented using eBPF, it would hap-
pen through hooking functions, that provide information
about modules to the upper layers of the kernel, and even-
tually to the user space. In such a case, our tool would be
able to find the hidden kernel module; although it would
not mark it as suspicious, since all the used data sources
would be consistent.

9https://github.com/CrySyS/ModXRef
10https://www.crysys.hu/~rnagy/datasets/rootkit.html
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6.3. Compatibility Analysis

The detection capability of our solution also depends
on the kernel version of the analyzed machine: between
2.6.12 and 2.6.20, only the module list can be checked.
From 2.6.20 to 2.6.25, only the module list and the bug
list are available. The kset appears at 2.6.25, and later,
at 2.6.28, the structures related to the virtual memory ap-
pear as well. From 4.2 upward, we can detect by using the
module layout tree as well. At version 4.15, ftrace map-
pings appear in the kernel. At 6.4, module layouts are
replaced with module memory structures, but this does not
affect our detection capability. At 6.9, the vmap area list

and vmap area root global variables are removed, but an
array-like data structure called vmap nodes is introduced
instead. From this, vmap area structures are still acces-
sible, so this, again, does not impact our tools detection
capability.

Figure 6 depicts when these data structures were intro-
duced to or removed from the kernel.

Figure 6: The evolution of the different data structures through the
different versions of the Linux kernel. Spacing between the kernel
versions is not proportional to the time elapsed between the versions.

7. Conclusion

In this paper, we presented a new, cross-view-based
rootkit detection solution for Linux systems to find hid-
den kernel modules. It does not require modification of
the kernel and it does not rely on any a priori information
or measurement. It is implemented as a Volatility plu-
gin, but the method itself could be ported to defend live
systems as well. Additionally, we implemented a toolkit
for analysts to address a major shortcoming of cross-view-
based detection, when a rootkit is hiding in plain sight.

To collect modules from as many sources as possible,
our plugin re-implements well known techniques (module
list, kset, mod tree), and implements 4 more, that were
never used in detection before (vmap list & tree, bug list,
ftrace mappings).

We tested our solution against a large number of root-
kits, on a wide variety of Linux kernels, and it proved to be
robust enough even against the most modern rootkits: all
55 of the tested rootkits were successfully detected, outper-
forming Volatility’s current module detection mechanism.
We also investigated our tool’s compatibility with different
versions of the Linux kernel, and it proved to be effective

on some of the oldest kernel versions as well, while sup-
porting the most recent ones too. Additionally, we publish
both the plugin we developed, and the dataset we used for
evaluation.
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Levente Buttyán.

Last but not least, we are thankful to VirusTotal for the
academic license provided for research purposes.

References

Aqua Security. modreveal. https://github.com/aquasecurity/

tracee, 2020.
Boelen, Michael. rkhunter, 2003. URL https://rkhunter.

sourceforge.net.
Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide

Balzarotti. Understanding Linux Malware. In 2018 IEEE Sym-
posium on Security and Privacy (SP), pages 161–175, 2018. doi:
10.1109/SP.2018.00054.

Dimitris Deyannis, Dimitris Karnikis, Giorgos Vasiliadis, and Sotiris
Ioannidis. An enclave assisted snapshot-based kernel integrity
monitor. In Proceedings of the Third ACM International Work-
shop on Edge Systems, Analytics and Networking, pages 19–24,
2020.

Stephen T Jones, Andrea C Arpaci-Dusseau, and Remzi H Arpaci-
Dusseau. VMM-based hidden process detection and identifica-
tion using lycosid. In Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution
environments, pages 91–100, 2008.

Richard Li, Min Du, David Johnson, Robert Ricci, Jacobus Van der
Merwe, and Eric Eide. Fluorescence: Detecting Kernel-Resident
Malware in Clouds. In 22nd International Symposium on Re-
search in Attacks, Intrusions and Defenses (RAID 2019), pages
367–382, 2019.

Xiang Yu Li, Yi Zhang, and Yong Tang. Kernel Malware Core Im-
plementation: A Survey. In 2015 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery,
pages 9–15, 2015. doi: 10.1109/CyberC.2015.26.

Kevin Liao, Ziming Zhao, Adam Doupé, and Gail-Joon Ahn. Be-
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Appendix A. Test results on open-source and wild rootkits

Name
Hiding technique

ftrace Kernel version check mod
Detected
by us

Notes GitHub Repository/VirusTotal Report
Mod. list kset

Vmaps
Hooks

List Tree

brokepkg ✓ ✓ 6.2.0-39-generic ✓ ✓ R3tr074/brokepkg

bds lkm ✓ ✓ ✓ ✓ ✓ 5.15.0-116-generic ✗ ✓ bluedragonsecurity/bds lkm

bds lkm ftrace ✓ ✓ ✓ ✓ ✓ 5.15.0-116-generic ✗ ✓ bluedragonsecurity/bds lkm ftrace

j-rootkit ✓ ✗ 5.15.0-116-generic ✓ ✓ JakeGinesin/j-rootkit

LKM-Rootkit ✓ ✗ 5.15.0-116-generic ✓ ✓ MatthiasCr/LKM-Rootkit

reveng rtkit ✓ ✓ ✗ 5.15.0-116-generic ✓ ✓ 1 reveng007/reveng rtkit

wkit ✓ ✗ 5.15.0-116-generic ✓ ✓ ngn13/wkit

Zhang1933/linux-rootkit ✓ ✓ 5.15.0-116-generic ✓ ✓ Zhang1933/linux-rootkit

Diamorphine ✓ ✗ 5.4.0-155-generic ✓ ✓ m0nad/Diamorphine

dorosch/rootkit ✓ ✓ ✗ 5.4.0-155-generic ✗ ✓ dorosch/rootkit

LilyOfTheValley ✓ ✓ ✗ 5.4.0-155-generic ✗ ✓ ▼ En14c/LilyOfTheValley

lkm-hidden ✓ ✓ ✓ ✓ ✗ 5.4.0-155-generic ✗ ✓ sysprog21/lkm-hidden

AFkit ✓ ✓ ✗ 4.15.0-206-generic ✗ ✓ t0t3m/AFkit

dmliscinsky/lkm-rootkit ✓ ✗ 4.15.0-206-generic ✓ ✓ ▼ dmliscinsky/lkm-rootkit

Nuk3Gh0stBeta ✓ ✗ 4.15.0-206-generic ✓ ✓ juanschallibaum/Nuk3Gh0stBeta

puszek ✓ ✗ 4.15.0-206-generic ✗ ✓ ♦ Eterna1/puszek-rootkit

rickrolly ✓ ✓ ✗ 4.15.0-206-generic ✗ ✓ ▼ miagilepner/rickrolly

rootfoo/rootkit ✓ ✓ ✗ 4.15.0-206-generic ✗ ✓ rootfoo/rootkit

suterusu ✓ ✓ ✗ 4.15.0-206-generic ✗ ✓ ▼ mncoppola/suterusu

Reptile ✓ — 4.9.0-13-amd64 ✓ ✓ f0rb1dd3n/Reptile

ah450/rootkit ✓ — 4.4.0-210-generic ✗ ✓ ♦ ah450/rootkit

liinux ✓ ✓ — 4.4.0-210-generic ✗ ✓ a7vinx/liinux

m0hamed/lkm-rootkit ✓ ✓ — 4.4.0-210-generic ✗ ✓ m0hamed/lkm-rootkit

nurupo/rootkit ✓ — 4.4.0-210-generic ✓ ✓ nurupo/rootkit

soad003/rootkit ✓ — 4.4.0-210-generic ✓ ✓ soad003/rootkit

swiss army rootkit ✓ ✓ — 3.16.0-6-amd64 ✓ ✓ 2 nnedkov/swiss army rootkit

THOR ✓ — 3.16.0-6-amd64 ✗ ✓ W4RH4WK/THOR

wukong ✓ ✓ — 3.16.0-6-amd64 ✗ ✓ hanj4096/wukong

maK-it ✓ ✓ — 2.6.32-754.35.1.el6 ✗ ✓ maK-/maK it-Linux-Rootkit

adore-ng ✓ ✓ — 2.6.32-5-amd64 ✗ ✓ yaoyumeng/adore-ng

brootus ✓ ✓ — 2.6.32-5-amd64 ✗ ✓ ▲ dsmatter/brootus

ivyl/rootkit ✓ ✓ — 2.6.32-5-amd64 ✗ ✓ ivyl/rootkit

kevinkoo001/rootkit ✓ ✓ — 2.6.32-5-amd64 ✗ ✓ ▲ kevinkoo001/rootkit

moo rootkit ✓ ✓ — 2.6.32-5-amd64 ✗ ✓ ▲ matteomattia/moo rootkit

the colonel ✓ ✓ — 2.6.32-5-amd64 ✗ ✓ bones-codes/the colonel

brokepkg ✓ ✓ 6.10.9-amd64 ✓ ✓ 5f549aa8ac43363599e1ed0d7f6ddbaf

dropper ✓ ✓ 6.8.0-31-generic ✓ ✓ f9a678e518d50d844694288fa8e3d4b2

r8152 helper ✓ ✗ 6.2.0-1012-aws ✓ ✓ 8502513518aa626b4bcb2f3a7dc8bdbe

graphic card ✓ ✗ 6.2.0-26-generic ✓ ✓ ba9d6a6bbde602fd414cea09fcbd1aa0

iptable reject ✓ ✗ 6.2.0-26-generic ✓ ✓ edc8916a4593cc8598bf9d9990cc3111

clientking ✓ ✓ 5.15.0-88-generic ✓ ✓ 80b7038ce7f5b82c8f41d8c35ea393b8

template ✓ ✓ ✗ 5.4.0-137-generic ✗ ✓ 57d851cfdd653bce225743c279058673

ghoul ✓ ✓ 5.4.0-122-generic ✓ ✓ ba9b483a3005e13e35839a3ed4d7080e

panix ✓ ✗ 4.19.0-27-amd64 ✓ ✓ 000a0065b6c33c373f929c6163e9a410

netlink ✓ ✓ ✗ 4.18.0-147.el8 ✗ ✓ b2eade99d74995c22f7773a0dda9cf58

Diamorphine ✓ — 4.9.0-9-amd64 ✓ ✓ ace0ff660bf42028a862d84989f59f67

123 ✓ — 3.10.0-1160.119.1.el7 ✓ ✓ eeb89a61e09d24c400fd4983d3b497e6

vmi ✓ ✓ — 3.10.0-1160.114.2.el7 ✗ ✓ 14095c657097409db4cd5a0b5406fccd

rr ✓ ✓ — 3.10.0-1127.el7 ✗ ✓ 45a74c7b4242c704c3562db0a07327ca

cryptov2 ✓ ✓ — 3.10.0-123.9.3.el7 ✗ ✓ 2ee204622154a0f969ed72f2812ba2f0

iproute ✓ ✓ — 3.10.0-123.9.3.el7 ✗ ✓ a36460ead268ce98095fb03aa5e1a9ca

suterusu ✓ ✓ — 2.6.32-754.17.1.el6 ✗ ✓ 9d337c95034db706070045b7d3444f6a

inl ✓ ✓ — 2.6.32-754.11.1.el6 ✗ ✓ 81b8ff1710160289956de28ffcdec8e8

tmp spVMqi ✓ ✓ — 2.6.32-696.el6 ✗ ✓ 5c37a233316d32b83c4e6a185abf54ea

504 ✓ ✓ — 2.6.32-504.el6 ✗ ✓ de169851aca0998b01ccb585f26b8dc8

Table A.1: This table details the open-source (first part of the table) and wild (second part of the table) rootkits that we used to test
our solution, detailing how they hide their modules, against which kernel version were they tested, and wether they could be detected by
Volatility’s linux.check modules plugin, and ours. For open-source rootkits, we provide the GitHub user and repository name, and for wild
rootkits, their MD5 hash. Notations used in the notes column:
▲: During loading, the rootkit crashed, before it could hide its module.
▼: During loading, the rootkit crashed, but the module is already hidden.
♦: During loading, the rootkit crashed, but we cannot determine, wether it happened before or after hiding the module.
1: The rootkit contains code to hide from the kset, but it’s not used.
2: A collection of rootkits written as part of a university course. Assignment 5 was used for testing, but all rookits that implement module
hiding use the same code. It implements hiding from the kset, yet, for some unknown reason, our plugin can detect it there.

The Volatility plugin is available at https://github.com/CrySyS/ModXRef
The dataset is available at https://www.crysys.hu/~rnagy/datasets/rootkit.html
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