
Controlled Private Function Evaluation from
Functional Encryption?

(Technical Report)

Máté Horváth and Levente Buttyán

2018

Laboratory of Cryptography and Systems Security (CrySyS)
Department of Networked Systems and Services

Budapest University of Technology and Economics
{mhorvath,buttyan}@crysys.hu

This report is superseded by a revised and significantly improved version, published as:
Máté Horváth, Levente Buttyán, Gábor Székely and Dóra Neubrandt. There Is Always an Exception:
Controlling Partial Information Leakage in Secure Computation. J. H. Seo (Ed.): Information Security
and Cryptology – ICISC 2019, LNCS 11975, pp. 1-17, 2020.
For the full version, see https://eprint.iacr.org/2019/1302

Abstract. Two-party Private Function Evaluation (PFE) enables the
participants to jointly execute a computation for which one of them pro-
vides the function and the other one the input to the function. According
to the traditional security requirements, a PFE protocol should not leak
more information, neither about the function nor the input, than what
is revealed by the output of the computation. We observe that the func-
tion privacy requirement, in fact, makes input privacy meaningless as it
allows for the unnoticeable evaluation of the identity function, disclosing
the input entirely.
In this work, we ask the question whether it is possible to achieve a rea-
sonable level of input and function privacy simultaneously in PFE. We
propose the notion of Controlled Private Function Evaluation (CPFE)
and answer the question affirmatively by showing a simple, generic re-
alisation of CPFE based on Functional Encryption. To demonstrate the
applicability of our approach, we show a concrete instantiation of our
protocol for inner product computation that enables secure statistical
analysis (and more) under the standard Decisional Diffie-Hellman as-
sumption in the random oracle model.

Keywords: Cryptographic Protocols · Private Function Evaluation ·
Functional Encryption · Oblivious Transfer · Data Markets

1 Introduction

Eliminating the need for trust when two parties are willing to execute some
computation jointly is one of the most studied areas of cryptography since the

? This work was partially performed in the frames of the FIEK 16-1-2016-0007 project
and the project no. 2017-1.3.1-VKE-2017-00042, implemented with the support pro-
vided from the National Research, Development and Innovation Fund of Hungary,
financed under the FIEK 16 and the 2017-1.3. funding schemes, and it was also
partially supported by the National Research, Development and Innovation Office
NKFIH, under grant contract no. 116675 (K).

seminal work of Yao [34] from the 1980s. Secure function evaluation (SFE) or
secure two-party computation (2PC) protocols enable two parties, Alice and Bob,
to compute a function of their private inputs without disclosing their secrets to
each other and without needing the help of a trusted third party (see Fig. 1a). In
real life, however, the participants not necessarily have interchangeable roles. It
is often the case that only one of them, say, Alice contributes to the computation
with input and Bob chooses the function to be computed. Due to various reasons,
such as intellectual property protection, this function is often should remain
hidden from the other party, which we call the function privacy requirement.
Primitives that satisfy this need are called private function evaluation (PFE)
protocols that can be derived from SFE with the help of universal functions
[33]. A universal function is a “programmable function” that can implement any
computation up to a given complexity. It takes two inputs, the description of
the function to be computed and the input to it. Evaluating a public universal
function using SFE allows Bob to evaluate his confidential function on the private
input of Alice enabling the privacy-preserving solution of various problems like
data classification or remote diagnostics.

As using universal functions, all feasibility results extend from SFE to PFE;
one could think that the only remaining challenge in the field of PFE is to
improve efficiency. Indeed, universal functions cause a significant–for complex
computations even prohibitive–overhead, and the elimination of this limitation
was the primary focus of PFE research [21, 19]. At the same time, a possible
vulnerability, rooted in the nature of PFE, received no attention to the best of
our knowledge. As PFE guarantees Bob that his function is hidden from Alice, he
can exploit this property to find out the input of Alice by computing the identity
function. Note that this opportunity is left open by PFE, so it does not harm
any rules of the protocols but still, clearly contradicts the security guarantees
that Alice wishes to obtain. One could interpose that such behaviour can be
easily detected and thus the protocol can be aborted by Alice whenever she can
have access to the result of the computation. Of course, identity is not the only
function that leaks its input but every invertible function has this property and
invertibility of an unknown function cannot be ruled out based on a single input-
output pair. This observation shows that function privacy prevents guaranteed
input privacy even though formally both can be achieved. This contradictory
situation is caused by a common misinterpretation of security arguments of PFE
protocols. These do not claim that the protocol hides the function from Alice
and the input from Bob, but only prove that PFE hides the function from Alice
and does not reveal more about the input to Bob then that is revealed by the secret
function chosen by himself. This interpretation is fair in the sense that it does
not provide a false sense of security to Alice but highlights her defencelessness
against an untrusted party. We are not aware of any works that emphasise this
interpretation, so the primary goal of our work is to raise attention and initiate
the study of the following question.

Is there a meaningful compromise between the input and function privacy that
leads to a PFE notion that indeed guarantees security for both parties?

Alice Bob

TTP

f,
x f, y

f(
x,
y)

f(x, y)

(a) SFE or 2PC

Alice Bob

TTP

x f

f(x)

(b) PFE

Alice Bob

TTP

x,
FF

or
bi
dd

en

f

f(x)

iff
f
/∈ F

Forbidden

(c) CPFE

Fig. 1: Comparison of the goals of different concepts for secure function evalua-
tion, realised with the help of a trusted third party (TTP). The key difference
lies in which information Alice and Bob can or cannot have access to.

We give a positive answer to the above question by proposing a concept that
we call Controlled Private Function Evaluation (CPFE). The idea is to give Al-
ice control over the functions, computable on her data, while still maintaining
a reasonable extent of function privacy. See Fig. 1c for an ideal target for fu-
ture CPFE constructions that do not have access to trusted third parties. In
this work, we put forward a relaxed notion, which we call 1 out of n CPFE (or
CPFEn1 for short). In a CPFEn1 protocol, Bob has to send n function descriptions
for verification to Alice that, among dummy ones, contain the one he wishes to
compute. If Alice finds that the received functions are acceptable to her, she
enables Bob to evaluate one of the functions on her data without revealing it.
To make the concept meaningful, it is crucial that the truly computed function
must be irreversibly chosen by Bob in the first step; and that this choice must re-
main hidden from Alice. Towards realising CPFEn1 , our main tools are oblivious
transfer (OT) and functional encryption (FE). The latter one is a generalisation
of traditional encryption schemes that integrates decryption with the evaluation
of a function [6] so that decryption does not reveal the encrypted value, but a
specific function of it.

1.1 Our Contributions

In more details, our contributions can be summarised as follows.

– We initiate the study of the relation between data and function privacy in
the context of private function evaluation.

– To take the first step, we formally define 1 out of n controlled private function
evaluation and its indistinguishability-based (IND) security.

– Then we show a conceptually simple, generic realisation for CPFEn1 build-
ing on functional encryption and prove its security. Besides providing the
above-described transparent security guarantees for both parties, our solu-
tion enjoys the desirable reusability property as well. The computation of
the same function of multiple, say j inputs (or k different functions of the
same input) can be optimised so that the overhead is not j (or k) times more

but scales with O(j+n|f |) (or O(1+kn|f |)), where |f | denotes function size.
Finally, it entirely hides the result of the computation from Alice.

– Besides the generic construction, we examine a concrete instantiation of the
generic scheme that enables statistical analysis via the controlled but private
evaluation of inner products. The resulting scheme is proven secure under the
standard Decisional Diffie-Hellman assumption in the random oracle model.

1.2 An Application: Secure IoT Data Markets

While transparent security guarantees are necessary for all applications of PFE,
we highlight one, where our CPFE is especially useful.

An emerging idea is to monetise IoT data through data markets [22, 15]. In
these markets, data brokers bridge the gap between owners of data, generated
by smart devices, and so-called value-added service providers (VASP). The goal
of VASPs is to provide useful insights and help optimisation, e.g. via statisti-
cal analysis or through building machine learning models. These require a vast
amount of sensor data that can be bought through a data market more easily,
than via the troublesome recruitment of data owners for participation. Probably
the main reason why such markets are still not flourishing is the issue of security.

Let us imagine the following motivating scenario. In a transportation com-
pany, various information is collected from the trucks to monitor and optimise
the logistics operation. The recorded data might reveal different habits of drivers
or policies inside the company. Nonetheless, this is not a problem as long as data
are collected and processed solely inside the firm. However, extra profit can mo-
tivate the selling of such data. Moreover, a transportation company may have
limited competence in handling and processing all these information so it can also
be advantageous to outsource these tasks leading to the data market ecosystem,
depicted in Fig. 2. Considering this latter scenario, the company can operate
a data broker that is trusted by the devices collecting the data and which can
trade with VASPs. In their interaction, it is reasonable to assume semi-honest
(i.e. honest but curious) behaviour from these parties as the broker (representing
the company) is curious about the methods of the VASPs and also about the
computation results, while the interest of VASPs is to obtain as much data as

Fig. 2: System model for data markets

possible. These goals together with the nature of the involved data and its usage
require a protocol that

– allows the broker to control both the scope of accessible inputs and the sets
of computable functions for a given price, enabling fine-grained pricing like
“pay as you compute”,

– gives the VASPs opportunity to preserve the intellectual property of their
methods (e.g. parameter choices in statistics or machine learning models,
etc.),

– enables efficient computation of the same function (e.g. statistics) on varying
inputs.

These requirements are all fulfilled by CPFE, and specifically for certain statis-
tical applications by our 1 out of n controlled private inner product evaluation
protocol.

1.3 Related Work

Two-party PFE was first considered in [1]. The reduction of PFE to SFE [35, 23]
via utilising universal functions [31] faces serious efficiency issues due to the over-
head, caused by the usage of universal circuits (UC) [33]. To make the concept
applicable, several works dealt with making UCs more practical [29, 21, 30, 19,
14]. An alternative approach for realising PFE without UCs uses homomorphic
encryption [16, 24, 25] but regardless of the methods, all the mentioned works
aim to achieve the same goal represented in Fig. 1b.

At the same time, some PFE variants are closer to the concept our CPFE
then plain PFE. The idea of semi-private function evaluation (semi-PFE) [27,
18] can be viewed as a possible tool for our goals, because semi-PFE relaxes the
function privacy requirement of PFE and reveals the function class but not the
concrete function that is evaluated. More precisely, in this concept, a function
can be viewed as a composition of “privately programmable blocks” disclosing
the topology but not the content of the blocks. While this relaxation provides
a useful trade-off between function privacy and efficiency, unfortunately, the
available extra information about the function does not necessarily allow Alice
to rule out the evaluation of functions that are against her interest. To see this,
observe that even the identity function can be constructed so that its topology
becomes complex and unrecognisable.

Selective private function evaluation (SPFE) [7] deals with a problem that
is orthogonal to the one considered in this paper. Namely, SPFE also aims to
conceal information that is leaked in PFE. But instead of protecting Alice (the
data owner), it intends to increase the security of Bob by hiding from Alice the
location of the function’s input in her database via using private information
retrieval (PIR).

Leaving the field of PFE and comparing our work to related problems in
secure computation, we find that hiding the computed function raises similar
issues in other contexts. [4] put forth the notion of verifiable obfuscation that

is motivated by the natural fear for executing unknown programs. The goal
here is similar than in our setting: some assurance is required that the hidden
functionality cannot be arbitrary. However, the fundamental difference between
our CPFE and the verifiable obfuscation and verifiable FE of [4] is that while the
latter ones enforce correctness when an obfuscator or authority may be dishonest,
CPFE protects against parties that honestly follow the protocol but exploit its
limitations.

Our CPFE is built upon functional encryption (FE) in a black-box manner.
This generalisation of traditional encryption was first formalised by [6] which
work also showed impossibility results for realising simulation secure FE, that
were further extended later [8]. Several, in some sense, restricted variants of FE
were realised under standard assumptions (e.g. [13, 2, 5]) but general purpose FE
candidates [10, 11] currently rely on untested assumptions like the existence of
indistinguishability obfuscation or multilinear maps. The possible functionalities
that our CPFE can support are necessarily tied to the state of the art of FE.
Nevertheless, the rapid development of this field is promising for our application
as well. In the context of FE, [26] raised the question of controllability of function
evaluation. The essential difference, compared to our goals, is that they want
to limit repeated evaluations of the same function1 that they solve with the
involvement of a third party.

Finally, we sum up the state of the art of private inner product evaluation.
The provably secure solutions are built on partially homomorphic encryption
schemes [12, 9] and public-key inner product FE [2] is also capable of the same
task. At the same time, several ad-hoc protocols achieve better performance in
exchange for some information leakage (see e.g. [36] and the references therein),
but these constructions lack any formal security argument.

1.4 Organisation

The rest of the paper is organised as follows. After introducing the assumptions
and the necessary background in Section 2, we formally define Controlled-SFE
and its security in Section 3. We describe our generic 1 out of n Controlled
PFE protocol in Section 4 and prove its security. Section 5 is dedicated to an
instantiation of our solution and to a brief analysis of it. Finally, we conclude
our work in Section 6.

2 Preliminaries

In this section, we briefly summarise the relevant background for the rest of the
paper.

1 In FE schemes, the control over the computable functions is in the hand of the
master secret key holder so this is not an issue unlike in PFE.

2.1 Assumptions

Let G be a multiplicative group of prime order p, generated by g ∈ G. In this
paper we are going to consider three hardness assumption in G. The first is the
discrete logarithm (Dlog) assumption which asserts that it is hard to find x ∈ Z∗p
given only gx. A stronger assumption, the Computational Diffie-Hellman (CDH)
assumption, states that given gx, gy ∈ G, for randomly chosen x, y ∈ Z∗p, it is
hard to compute gxy. Finally a widely accepted and used assumption states that
not only the computation of gxy is hard, but also its recognition.

Assumption 1 (DDH) Let g ∈ G be a generator element of the group and
x, y ∈ Z∗p are uniformly random values. We say that the Decisional Diffie-
Hellman (DDH) assumption holds in G if given (g, gx, gy, gr), no probabilistic
polynomial time (PPT) algorithm can decide, with higher than 1

2 + negl(p) prob-
ability, whether r = xy or r is also a uniformly random value from Z∗p.

Note that the DDH assumption implies all the previous ones.
In our second security analysis, we are going to use the random oracle model

(ROM) [20]. This model assumes that truly random values, provided by a so-
called “random oracle”, can be securely substituted with the outputs of a con-
crete hash function.

2.2 Commitment Schemes

A commitment scheme is the digital analogue of a locked box in which someone
can place a value or choice that he or she is committed to, and which can be
revealed by opening the box. A commitment scheme consists three algorithms.
Upon a security parameter λ, C.Setup outputs the public commitment key ck.
C.Commit(ck,m) transforms m into a pair (c, d), a commitment and an open-
ing value respectively and finally, C.Open(ck, c, d) reveals m. The correctness
requirement of a commitment scheme is that C.Open(ck,C.Commit(ck,m)) = m
must hold. In terms of security the following – informally stated – requirements
have to be fulfilled.

Hiding. The commitment value c should not reveal information about the un-
derlying value m i.e., cm0

and cm1
must be indistinguishable.

Binding. No commitment value c can have multiple ways to open it i.e., it
must be computationally infeasible to find two pairs (c, d), (c, d′) such that
C.Open(ck, c, d) = m,C.Open(ck, c, d′) = m′ and m 6= m′, d 6= d′.

In our protocol for inner product computation, we are going to use Pedersen
commitments [28] the security of which is based on the discrete logarithm prob-
lem.

2.3 Oblivious Transfer

1 out of n oblivious transfer (OTn1) enables transferring data between two
parties, the sender (S) and the receiver (R, a.k.a. chooser), in a way that protects

both of them. The sender can be sure that the receiver does not obtain more than
one piece of information while the receiver is assured that the sender does not
know which of the n pieces of information it received (chose). OTn1 is comprised
of four algorithms. OT.Setup is either run by the sender or a trusted third party
(TTP) to generate system parameters, OT.Commit is run by the receiver to
choose the piece of information that it wants to retrieve, OT.Trans is executed
by the sender to produce the transferred values from its n messages and finally,
the chosen message is retrieved by the receiver using OT.Retr.

As we are going to use the OTn1 scheme of [32] against a malicious receiver, for
completeness we recall the requirements of security as stated there (the following
enumeration is taken verbatim from [32]).

Correctness. The protocol achieves its goal if both R and S follow the protocol
step by step, R gets mα after executing the protocol with S, where α is the
choice of R.

Receiver’s privacy (indistinguishability). The transcripts corresponding to
R’s different choices α and α′, α 6= α′, are computationally indistinguish-
able to S. If the transcripts are identically distributed, the choice of R is
unconditionally secure.

Sender’s privacy (compared with ideal model). In the ideal model, a TTP
acts as an intermediary agent who receives S’s secrets m1,m2, . . . ,mn and
R’s choice α and gives mα to R. Since R has no way of getting information
other than mα, this model is considered the most secure way to implement
OT. Therefore, we say that the sender’s privacy is guaranteed if, for every
possible malicious R which interacts with S, there is a PPT simulator R′

which interacts with the TTP such that the output of R′ is computationally
indistinguishable from the output of R.

2.4 Functional Encryption

As we already introduced, FE is a generalised encryption scheme that enables
certain computations on hidden data for authorised parties. Both public- and
secret-key variants are known, but here we limit ourselves to the secret-key
setting that suffices for our purposes. An sk-FE scheme consists of the following
four algorithms.

FE.Setup(λ)→ (mskFE, ppFE) The setup algorithm takes in a security parameter
λ and produces the public system parameters ppFE and a master secret key
mskFE.

FE.Enc(mskFE, x)→ ct The encryption algorithm takes the master secret key
mskFE and a message x and outputs a ciphertext ct.

FE.KeyGen(mskFE, f)→ fskf The key generation algorithm can be used to gen-
erate a functional secret key fskf for a function f with the help of the mskFE.

FE.Dec(ct, fskf)→ y Having a functional secret key fskf (for function f) and a
ciphertext ct (corresponding to x), the decryption algorithm outputs the
value y.

The correctness of FE requires that if fskf and ct were indeed generated with
the corresponding algorithms using inputs f and x respectively, then y = f(x)
must hold. Regarding security, in this work we are going to use the subsequent
indistinguishability-based definition following [6].

Definition 1 (s-IND-CPA security for FE). The security of FE is defined
via the following game between a challenger C and a probabilistic polynomial time
(PPT) adversary A.

– Initialise: A sends a challenge message pair (x0, x1) to C who computes
mskFE←$FE.Setup(λ).

– Query: A adaptively submits queries to obtain fskf that is generated by C
using FE.KeyGen(f,mskFE) as long as f(x0) = f(x1) holds.

– Challenge: Once A decides to finish the query phase, C chooses a random bit
b ∈ {0, 1} and computes FE.Enc(mskFE, xb) = ctb and sends the result to A,
that has to output a guess b′ for the bit b.

We say that an FE scheme achieves selective security against chosen plaintext
attacks (s-IND-CPA) if Pr(b′ = b) < 1

2 + negl(λ).

3 Algorithms and Security of 1 out of n Controlled PFE

In this part, we introduce the algorithms of a CPFEn1 scheme and provide a
formal security model for it.

3.1 Formal Specification

1 out of n Controlled Private Function Evaluation is an interactive protocol
between a data and the function providers, say Alice and Bob (or between the
data broker and a VASP in the IoT data market context). The run of the protocol
can be split into sessions such that, within the same session, each requested (and
accepted) functions can be evaluated on any of the values, received upon a data
request. The sessions do not have to follow each other sequentially, but different
ones can be run in parallel by using different session parameters skA, pp obtained
from the SessionSetup algorithm. This reusability property leads to performance
improvements in use-cases, where either the same data or function is used more
than once. The randomised algorithms of CPFEn1 are as follows, while a session
of the protocol (with a single data and function query) is depicted in Fig. 3.

SessionSetup(λ)→ (skA, pp) Based on the security parameter λ it outputs secret
key skA and public parameters pp for the session.

GenRepD(pp,D,PD, skA, d)→ {Drep,⊥} Upon receiving a data request with meta-
data d, it checks whether the data is accessible according to the access control
policy PD of the session2 and outputs ⊥ if not. Otherwise (x, d) is obtained
from the database D and using pp, skA and x the reply Drep is prepared.

2 Note that in practice, PD might depend on PF that controls the allowed function
requests in the session.

GenReqF(pp, f, n)→ (Freq, skB) A function request Freq is generated together
with a key skB, that will enable the extraction of the result. To do so, the
algorithm takes in the session parameters pp, a function f and an integer n
determining the number of dummy functions that conceals f .

GenRepF(pp,PF , skA,Freq)→ {Frep,⊥} To generate reply for a function request
Freq, this algorithm first checks whether the function descriptions contained
by Freq are allowed to compute according to the policy PF . If none of them
is allowed, it outputs ⊥, otherwise prepares Frep using the allowed function
descriptions, the session parameters pp and the session key skA.

Extr(Drep,Frep, skB)→ {y,⊥} On inputs Drep,Frep and skB the extraction al-
gorithm outputs ⊥ if f is forbidden to compute according to the policy PF
and y otherwise.

Correctness. We say that a CPFEn1 protocol is correct if y = f(x) whenever
its algorithms are computed honestly by both parties.

1 out of n Controlled Private Function Evaluation Protocol

Alice Bob

Stores plaintext data: Wishes to compute:

(x, d) ∈ D f(x) for x with metadata d

(skA, pp)←$SessionSetup(λ) pp

data request d

{Drep,⊥} ←$GenRepD(pp,D,PD, skA, d) Drep

function request Freq (Freq, skB)←$GenReqF(pp, f, n)

{Frep,⊥} ←$GenRepF(pp,PF , skA,Freq) Frep

f(x) = Extr(Drep,Frep, skB)

Fig. 3: One session of the CPFEn1 protocol, where it is possible to issue more
data or function requests and any of the resulting Drep and Frep, from the same
session, can be combined to execute the corresponding computation. We assume
that the parties are using an authenticated channel for communication. For a
summary of the appearing parameters and their meaning, see the Appendix.

3.2 Security Model

Next, we formally define the security of CPFEn1 , considering semi-honest partici-
pants. While formulating the relaxed function privacy requirement is straightfor-
ward, the indistinguishability approach for data privacy turns out to be trickier.

Intuitively, the goal is that the protocol should not reveal more information
about the stored data than that is explicitly leaked by the result of an allowed
function’s evaluation, on an allowed input. The traditional way of arguing such
security is to allow the adversary (Bob or a VASP in our case) to only access
functions that result in the same output on a certain distinct input pair, called
the challenge. If obeying this restriction, the adversary cannot tell apart which
of the two inputs were used for the generation of Drep, we say that the scheme
is semantically secure. Observe that if any function is accessible to Bob that
separates the challenge input pair, then it is trivial to distinguish between the
two cases. Consequently, it is crucial to ensure that the adversary obeys this re-
striction, however, this becomes challenging when the messages of the adversary
only reveal its functions with probability 1/n. Practically this means that the
probability of correctly deciding whether someone managed to break the scheme
or simply cheated in the challenge is 1/n. We resolve this paradoxical situation
by requiring the adversary to prove its honestness together with submitting its
guess for the underlying input.

Definition 2 (IND Security of CPFEn
1). We say that a CPFEn1 protocol

CPFE1n(SessionSetup,GenRepD,GenReqF,GenRepF,Extr) achieves selective seman-
tic security against semi-honest adversaries if it fulfils the following requirements:

Data privacy. Running the protocol, an adversarial function provider (A) should
not be able to achieve non-negligible advantage in the following game, where
the challenger C plays the role3 of the input provider (Alice or the data bro-
ker).

– Initialize: First, A chooses two challenge databases D0,D1 that differ
only in one data value (i.e., (x0, dchal) ∈ D0 and (x1, dchal) ∈ D1 such
that the metadata dchal is identical) and sends them to the challenger. C
computes (skA, pp)←$ SessionSetup, flips a random coin b ∈ {0, 1} and
answers the subsequent queries using Db.

– Query: A adaptively submits data and function requests Dreq and Freq
which are answered by C.

– Challenge: Once A decides to finish the query phase, it has to output
a guess b′ for the bit b and provide a valid proof π that can be checked
efficiently by a PPT challenger and confirms that all of its Freq requests
in the query phase were prepared for functions f that respect the f(x0) =
f(x1) constraint.

We say that the advantage of A in the above security game is Pr(b′ = b)− 1
2

if the proof π is valid and zero otherwise.

Function Privacy. The protocol should not enable the input provider (Alice or
the data broker) to guess the computation logic of the Bob with probability
greater than 1/n (where n is determined by Bob before a function request).

3 The enforceability of the access control policies is not investigated here, as it is a
trivial task, so C considers each query to be valid.

4 A Generic Realisation of CPFEn
1

We are ready to present our simple, generic construction for CPFEn1 . We start
by describing the intuition behind our protocol.

From a straw-man proposal to our strategy. A naive first attempt to realise
CPFEn1 is to execute the computation on the server side by Alice. Upon receiv-
ing a n function descriptions (containing the one, Bob wishes to compute and
n− 1 dummy ones) and the metadata of the intended input, she verifies the re-
quest and computes the allowed ones. The results then can be shared with Bob
using an OTn1 scheme achieving both data and function privacy. Unfortunately,
this method is not viable due to scalability issues caused by the n function eval-
uations. The subsequent natural idea is to shift the task of function evaluation
to Bob, to eliminate the unnecessary computations and entirely hide the out-
put from Alice. First, extensively studied tools as homomorphic encryption [3]
or garbled circuits [35, 23] come to mind to enable computation on hidden data.
However, none of these are suitable for our purposes. In case of the previous, one
needs access to the secret key to obtain the output but this would also reveal the
input as well. Moreover, the executed function would be under the full control of
Bob, instead of Alice. Garbled circuits are more promising but still do not allow
us to achieve our efficiency objectives. The reason is their one-time-use nature
that necessitates the preparation of j · n garbled circuits to evaluate the same
function on j inputs. We observe that two properties of an underlying primi-
tive are essential to achieve our goals. Firstly, it should handle the functions
and their inputs separately. Secondly, without explicit permission, no functions
should be computable. As FE meets both of these requirements, Alice can share
functional secret keys, corresponding to allowed functions, with Bob using OTn1
. This enables the computation of a predetermined function of Bob on any input
that Alice has encrypted to him. Our protocol is formally defined as follows.

SessionSetup(λ)→ (skA, pp) Upon receiving a security parameter λ, the setup al-
gorithm chooses the system parameters, samples (mskFE, ppFE)←$FE.Setup(λ),
ppOT←$OT.Setup and ck←$C.Setup. Finally it outputs (skA = mskFE, pp =
(ppFE, ppOT, ck)).

GenRepD(pp,D,PD, skA, d)→ {Drep,⊥} The algorithm first verifies data request
d, based on the data access control policy PD.

– If Bob is allowed to use the specific data, then the corresponding data
value x from D is determined and then encrypted.

– The output is Drep = ct←$FE.Enc(ppFE,mskFE, x) or Drep = ⊥ if Bob
is not allowed to access the requested data determined by d.

GenReqF(pp, f, n)→ Freq, skB Besides the public parameters pp, the algorithm
takes as input the function f to be computed, and an integer n ∈ N+, then
it executes the following steps.

– Samples n− 1 functions randomly from the function class F (that con-
tains f): {fi←$F}i∈[n−1] and let fn = f .

– Takes a random permutation σ and prepares FR := (f̂1, . . . , f̂n), where

f̂i = fσ−1(i) so that each fi ends up at position σ(i) in the sequence.
– Determines the sequence number of the function for which the functional

key will become available by computing pkOT←$OT.Commit(ppOT, σ(n)),
– commit to the value σ(n) and all the random choices (rand) used in the

previous step: (c, d)←$C.Commit(ck, σ(n), rand).
– Finally it outputs Freq = (FR, pkOT, c) and skB = (σ, d).

GenRepF(pp,PF , skA,Freq)→ {Frep,⊥} Upon a function request Freq, it is parsed

as ((f̂1, . . . , f̂n), pkOT, c), and the algorithm proceeds as follows.
– It first enforces the function access policy PF by checking whether Bob

is allowed to compute the functions of FR. The allowed function set is
denoted by FA ⊆ FR. If FA is the empty set, then the output is ⊥. Let
I := {i|f̂i ∈ FA} denote the index set of the allowed functions.

– Functional secret keys are generated for all f̂i ∈ FA:
{fskfi ←$FE.KeyGen(ppFE,mskFE, f̂i)}i∈I .

– The resulting functional keys are made oblivious:
{oi←$OT.Trans(ppOT, pkOT, fskfi)}i∈I .

– Finally it outputs Frep = {(i, oi)}i∈I .
Extr(pp, skB,Drep,Frep)→ f(x) Extraction can be used to evaluate f = f̂σ(n) =

fn (underlying Frep) on input x (encoded by Drep), if f̂σ(n) ∈ FA and Bob
has right to use x.
– first the functional secret key for the requested function is retrieved:

fskfσ(n) = OT.Retr(ppOT, oσ(n)) and
– finally the ciphertext is decrypted to output FE.Dec(fskfσ(n) , ct) = f(x).

The correctness of the proposed protocol follows from the correctness of the
underlying schemes. We note that the use of the commitment scheme is necessary
for the security proof and it does not contribute to the functionality of the
protocol.

4.1 Security Analysis

Next, we state our main theorem.

Theorem 1. The proposed protocol is secure according to Definition 2 as long
as the underlying FE scheme achieves s-IND-CPA security, the OTn1 scheme is
secure with respect to a malicious receiver, and the commitment scheme is also
secure.

Proof (informal). Function privacy directly follows from the receiver’s privacy
in the applied OTn1 protocol and the hiding property of the used commitment
scheme.

To argue that data privacy holds as well, we indirectly assume that A can
achieve a non-negligible advantage in the security game, which can happen in
the following two ways. Let us denote with E the event that A can obtain
some information about functional secret keys that it should not have access to

(e.g., corresponding to more than one functions from a single Frep). Ē is the
complement of the previous event, namely that A has only access to information
about legitimate functional secret keys.

Considering the probability of E, we observe that FE related – non-key –
values (ciphertexts, public parameters) clearly cannot leak information about
the keys without harming the semantic security of FE so we can focus on those
values that depend on functional keys. At the same time, these also cannot leak
such information, because that would contradict with the sender’s privacy in
the applied OT scheme even if A is malicious, i.e., deviates from the protocol.
This implies event Ē, i.e., A can only have information about functional keys
corresponding to functions, which must respect the rules of the game, but cannot
access keys for any of the dummy functions. Recall that A has to prove that its
function requests adhered to the restrictions of the game. To do so, A can submit
the opening values d for the corresponding commitments (c) that were included
in the Freq queries. Using these, with the C.Open algorithm the challenger can
efficiently check which functional keys were revealed to A and whether these
indeed met the requirements of the security game.

At this point, note that in the security game it is irrelevant whether the
constraint on the function queries is enforced by C before answering them or A
can prove that it respected the rules. With this observation, it turns out that the
security game is equivalent to the s-IND-CPA game for FE, where the challenge
messages are the differing elements of D0 and D1. In other words, achieving
a non-negligible advantage in the game would contradict the security of the
underlying FE scheme. ut

5 Concrete Instantiation for Inner Products

Besides our generic solution, we also present a concrete instantiation of our
CPFEn1 protocol for computing inner products. The investigated functionality is
a particularly important tool for statistical analysis. Furthermore, in a different
context, [17] showed that it enables the computation of conjunctions, disjunction,
more generally CNF or DNF formulas, exact thresholds and even polynomial
evaluation. We use the DDH-based inner product FE scheme of [2], the OTn1
protocol of [32] (against malicious receiver) and Pedersen commitments [28].
Our choice for FE can be surprising for the first sight as it is a public-key
scheme and we do not publish the public key. The motivation behind our choice
is the extreme simplicity of the scheme compared to secret-key variants that also
achieve function privacy which we do not need in our solution.

Focusing on a specific function class and choosing the applied primitives such
that they share the same underlying structure allows us simplifications compared
to the general case. E.g., our proof technique, which necessitates the application
of a commitment scheme, does not cause any additional overhead now because
the OT.Commit algorithm of [32] itself computes a Pedersen commitment that
can also be used in the security proof.

We also mention the limitation of our construction that is common in every
DDH-like assumption-based inner product FE schemes. The expressiveness of
the function is limited to a polynomial-sized output range because extraction
of the result involves a discrete logarithm computation. However, this is always
relative to the same base, enabling pre-computation.

The algorithms of our inner product CPFEn1 protocol are the following.

SessionSetup(λ, `)→ (skA, pp) The algorithm takes in a security parameter λ and
the length ` of vectors that are going to be the inputs of the inner product
computation. The algorithm
– chooses a λ-bit prime number p, and a group G of order p with generators
g, h ∈ G,

– selects a hash function H : G→ Zp, that is modelled as a random oracle,
– samples a random vector s = (s1, . . . , s`)←$Z`p,
– and outputs skA = s and pp = (G, p, g, h,H, `).

GenRepD(pp,D,PD, skA,Dreq)→ {Drep,⊥} The reply generation for some in-
put request d has access to the database D where data vectors can be iden-
tified based on their metadata. It executes the following steps.
– It enforces the access control policy PD. If the affected party is not

authorised to compute on the vector with metadata d, the algorithm
outputs ⊥ and terminates, otherwise

– randomly chooses r′←$Z∗p and computes R′ = gr
′
.

– It computes ctj = gr
′sjgxj for j = 1, . . . , `.

– The output is Drep = (R′, {ctj}j∈[`]).
GenReqF(pp,y, n)→ Freq, skB The function to be computed is represented by

yn := y = (y1,1, . . . , y1,`) ∈ Z`p, n is the security parameter for function pri-
vacy, while pp is parsed as (G, p, g, h,H, `). The request generation algorithm
– samples n−1 random vectors yi = (yi,1, . . . , yi,`) ∈ Z`p for i = 1, . . . , n−1,
– takes a random permutation σ and prepares FR = (ŷ1, . . . , ŷn) where

ŷi = yσ−1(i).

– Using a randomly chosen r←$Z∗p computes R = grhσ(n).
– Finally, it outputs Freq = (FR, R) and skB = (σ, r,y).

GenRepF(pp,PF , skA,Freq)→ {Frep,⊥} The function reply generation parses Freq
as (FR, R) and executes the following steps.
– It enforces the function access policy PF . Accordingly, FA ⊆ FR is deter-

mined that only contains allowed vectors. Let I := {i|ŷi ∈ FA} denote
the index set of the allowed vectors. If FA is the empty set, then it returns
⊥.

– Randomly chooses r′′←$Z∗p and computes R′′ = gr
′′
.

– For all allowed function request ŷi = (ŷi,1, . . . , ŷi,`) ∈ FA, it computes
Si = 〈ŷi, skA〉.

– Finally, it computes oi = Si ⊕H((R/hi)r
′′
, i) for all i ∈ I.

– The output is Frep = (R′′, {(i, oi)}i∈I).
Extr(ppskB,Drep,Frep)→ {⊥, 〈x,y〉} For extraction of the result of the inner

product the following steps are executed.
– If oσ(n) is not part of Frep, then output ⊥.

– Otherwise, computes Sσ(n) = oσ(n) ⊕H(R′′r, σ(n)).

– The results are obtained by computing
∏
j∈[`] ct

yj
j /R

′Sσ(n) = g〈x,y〉.

– The discrete logarithm of g〈x,y〉 is computed with basis g and returned
as the output. If 〈x,y〉 is not contained in a predetermined polynomial-
sized range, then ⊥ is returned.

The correctness of the above scheme follows from the correctness of the un-
derlying schemes.

5.1 Security and Performance

Theorem 2. The above Inner Product CPFEn1 scheme is secure according to
Definition 2 in the random oracle model as long as the DDH assumption holds.

Proof. The theorem directly follows from Theorem 1 and from the fact that
the underlying inner product FE scheme is s-IND-CPA secure under the DDH
assumption [2] (that implies the CDH assumption), the applied OT scheme is
secure against malicious receivers in the random oracle model under the CDH
assumption [32] (that implies the Dlog assumption) and that the implicitly used
Pedersen commitment [28] is secure under the Dlog assumption. ut

Finally, we summarise the costs of the above inner product CPFEn1 scheme.
Regarding the communication costs, Freq contains n` integers, Frep consists of
2n integers and one group element, while Drep is ` + 1 group elements. The
computational costs of the algorithms, depicted in Table 1, are comparable to
the applied inner product FE scheme [2], that also enables private inner product
computation but without any control over the affected vectors. The overhead of
our solution is proportional to the security parameter n, which determines the
number of the applied dummy vectors.

Table 1: The computational costs of our algorithms for Inner Product CPFEn1 .
Operation GenReqF GenRepD GenRepF Extr

#{rand from Z∗
p} `(n+ 1) + 1 1 1 -

#{exp in G} 2 2`+ 1 n+ 1 2`+ 1

#{mult in G} 1 ` n 2`+ 1

#{mult in Z∗
p} - ` ` -

#{Hashing} - - n 1

#{Dlog} - - - 1

6 Conclusion and Open Directions

In this work, we initiated the study of controlled but still private function evalua-
tion protocols motivated both by the shortcomings of widespread PFE protocols

and by open problems arising in the context of secure IoT data markets. We
proposed a generic solution for the problem of simultaneous input and function
privacy, building on functional encryption and showed a concrete instantiation
for inner product computation. As the most straightforward extension of our
work, we are planning to implement this latter protocol to demonstrate its prac-
tical relevance.

Finally, we close our study by collecting possible directions for future work.
First, it would be interesting to see whether our techniques are generalizable for
the more realistic multi-input functions. While we worked in the semi-honest
model with an indistinguishability-based security definition, it would be chal-
lenging to achieve similar results for malicious participants or simulation-based
security. Another interesting direction could be to increase the privacy of the
function provider e.g., by also hiding the exact location of the used input sim-
ilarly as it was done in [7]. We also find it possible that more sophisticated
variants of controlled PFE can be realised as well, which may fall closer to the
ideal functionality depicted in Fig. 1c. A possible approach could be to design
function verification in a zero-knowledge manner, such that Bob could prove
that his function is not among certain “forbidden ones” without revealing his
function.

Appendix

We summarise the meaning of the different parameters used in this work in Table
2.

References

1. Abadi, M., Feigenbaum, J.: Secure circuit evaluation. Journal of Cryptology 2(1),
1–12 (1990)

2. Abdalla, M., Bourse, F., Caro, A.D., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) Proceedings of Public-Key Cryptog-
raphy - PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer (2015)

3. Armknecht, F., Boyd, C., Carr, C., Gjøsteen, K., Jäschke, A., Reuter, C.A., Strand,
M.: A guide to fully homomorphic encryption (2015), http://eprint.iacr.org/
2015/1192

4. Badrinarayanan, S., Goyal, V., Jain, A., Sahai, A.: Verifiable functional en-
cryption. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology - ASI-
ACRYPT 2016, Proceedings, Part II. LNCS, vol. 10032, pp. 557–587 (2016).
https://doi.org/10.1007/978-3-662-53890-6 19

5. Bishop, A., Jain, A., Kowalczyk, L.: Function-hiding inner product encryption. In:
Advances in Cryptology - ASIACRYPT 2015, Proceedings, Part I. pp. 470–491
(2015), http://dx.doi.org/10.1007/978-3-662-48797-6_20

6. Boneh, D., Sahai, A., Waters, B.: Functional encryption: Definitions and chal-
lenges. In: Ishai, Y. (ed.) Theory of Cryptography - TCC 2011. Proceedings. LNCS,
vol. 6597, pp. 253–273. Springer (2011)

Table 2: A brief summary our notations.
Related to Notation Meaning

FE

ppFE public parameters for FE
mskFE FE master secret key
fskf functional secret key for function f
ct FE ciphertext

OTn
1

ppOT public parameters for OTn
1

pkOT commitment of the receiver
skOT secret of the receiver
oi ith oblivious message element of the sender

CPFEn
1

D database
PD description of data access control policy
PF description of function access policy
Freq function request
Drep reply for a data request
Frep reply for a function request
skA secret (session) key of the data provider (Alice/data borker)
skB secret key of the funct. provider (Bob/VASP) for a funct. request
λ security parameter (corresponding to data privacy)
n security parameter (corresponding to function privacy)
σ a random permutation
d a metadata description
FR requested function set (including dummy functions)
FA accessible function set (FA ⊆ FR)
I accessible function’s index set

Commit.
ck public commitment key
c commitment value
d opening value

7. Canetti, R., Ishai, Y., Kumar, R., Reiter, M.K., Rubinfeld, R., Wright, R.N.:
Selective private function evaluation with applications to private statistics. In:
Kshemkalyani, A.D., Shavit, N. (eds.) Proceedings of the Twentieth Annual ACM
Symposium on Principles of Distributed Computing, PODC 2001,. pp. 293–304.
ACM (2001). https://doi.org/10.1145/383962.384047

8. Caro, A.D., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the
achievability of simulation-based security for functional encryption. In: Canetti,
R., Garay, J.A. (eds.) Advances in Cryptology - CRYPTO 2013, Proceedings, Part
II. LNCS, vol. 8043, pp. 519–535. Springer (2013). https://doi.org/10.1007/978-3-
642-40084-1 29

9. Dong, C., Chen, L.: A fast secure dot product protocol with application to
privacy preserving association rule mining. In: Tseng, V.S. et al (eds.) Ad-
vances in Knowledge Discovery and Data Mining - 18th Pacific-Asia Conference,
PAKDD 2014. Proceedings, Part I. LNCS, vol. 8443, pp. 606–617. Springer (2014).
https://doi.org/10.1007/978-3-319-06608-0 50

10. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for

all circuits. In:FOCS-2013. pp. 40–49. IEEE Computer Society (2013).
https://doi.org/10.1109/FOCS.2013.13

11. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Functional encryption without ob-
fuscation. In: Kushilevitz, E., Malkin, T. (eds.) Theory of Cryptography - TCC
2016-A, Proceedings, Part II. LNCS, vol. 9563, pp. 480–511. Springer (2016).
https://doi.org/10.1007/978-3-662-49099-0 18

12. Goethals, B., Laur, S., Lipmaa, H., Mielikäinen, T.: On private scalar product
computation for privacy-preserving data mining. In: Park, C., Chee, S. (eds.) In-
formation Security and Cryptology - ICISC 2004, Revised Selected Papers. LNCS,
vol. 3506, pp. 104–120. Springer (2004). https://doi.org/10.1007/11496618 9

13. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
Advances in Cryptology - CRYPTO 2012. Proceedings. LNCS, vol. 7417, pp. 162–
179. Springer (2012). https://doi.org/10.1007/978-3-642-32009-5 11

14. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit construc-
tions. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryptology - ASIACRYPT
2017, Proceedings, Part II. LNCS, vol. 10625, pp. 443–470. Springer (2017).
https://doi.org/10.1007/978-3-319-70697-9 16

15. Horváth, M., Buttyán, L.: Problem domain analysis of iot-driven secure data mar-
kets. In: Gelenbe, E.e.a. (ed.) Security in Computer and Information Sciences. pp.
57–67. Springer (2018)

16. Katz, J., Malka, L.: Constant-round private function evaluation with linear
complexity. In: Lee, D.H., Wang, X. (eds.) Advances in Cryptology - ASI-
ACRYPT 2011. Proceedings. LNCS, vol. 7073, pp. 556–571. Springer (2011).
https://doi.org/10.1007/978-3-642-25385-0 30

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions,
polynomial equations, and inner products. J. Cryptology 26(2), 191–224 (2013).
https://doi.org/10.1007/s00145-012-9119-4

18. Kennedy, W.S., Kolesnikov, V., Wilfong, G.T.: Overlaying conditional circuit
clauses for secure computation. In: Takagi, T., Peyrin, T. (eds.) Advances in Cryp-
tology - ASIACRYPT 2017. Proceedings, Part II. LNCS, vol. 10625, pp. 499–528.
Springer (2017). https://doi.org/10.1007/978-3-319-70697-9 18

19. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J. (eds.) Advances in Cryptology - EUROCRYPT 2016. Proceedings, Part
I. LNCS, vol. 9665, pp. 699–728. Springer (2016). https://doi.org/10.1007/978-3-
662-49890-3 27.

20. Koblitz, N., Menezes, A.J.: The random oracle model: a twenty-
year retrospective. Des. Codes Cryptography 77(2-3), 587–610 (2015).
https://doi.org/10.1007/s10623-015-0094-2

21. Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure
evaluation of private functions. In: Tsudik, G. (ed.) Financial Cryptography and
Data Security, FC-2008, Revised Selected Papers. LNCS, vol. 5143, pp. 83–97.
Springer (2008). https://doi.org/10.1007/978-3-540-85230-8 7

22. Liang, F., Yu, W., An, D., Yang, Q., Fu, X., Zhao, W.: A survey on big data
market: Pricing, trading and protection. IEEE Access 6, 15132–15154 (2018).
https://doi.org/10.1109/ACCESS.2018.2806881

23. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party compu-
tation. Journal of Cryptology 22(2), 161–188 (2009)

24. Mohassel, P., Sadeghian, S.S.: How to hide circuits in MPC an efficient framework
for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) Advances

in Cryptology - EUROCRYPT 2013. Proceedings. LNCS, vol. 7881, pp. 557–574.
Springer (2013). https://doi.org/10.1007/978-3-642-38348-9 33

25. Mohassel, P., Sadeghian, S.S., Smart, N.P.: Actively secure private function eval-
uation. In: Sarkar, P., Iwata, T. (eds.) Advances in Cryptology - ASIACRYPT
2014. Proceedings, Part II. LNCS, vol. 8874, pp. 486–505. Springer (2014).
https://doi.org/10.1007/978-3-662-45608-8 26

26. Naveed, M., Agrawal, S., Prabhakaran, M., Wang, X., Ayday, E., Hubaux, J.,
Gunter, C.A.: Controlled functional encryption. In: Ahn, G., Yung, M., Li, N.
(eds.) Proceedings of the 2014 ACM SIGSAC. pp. 1280–1291. ACM (2014).
https://doi.org/10.1145/2660267.2660291

27. Paus, A., Sadeghi, A., Schneider, T.: Practical secure evaluation of semi-private
functions. In: Abdalla, M., Pointcheval, D., Fouque, P., Vergnaud, D. (eds.) Applied
Cryptography and Network Security, ACNS-2009. Proceedings. LNCS, vol. 5536,
pp. 89–106 (2009). https://doi.org/10.1007/978-3-642-01957-9 6

28. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) Advances in Cryptology - CRYPTO ’91, Pro-
ceedings. LNCS, vol. 576, pp. 129–140. Springer (1991)

29. Sadeghi, A., Schneider, T.: Generalized universal circuits for secure evaluation of
private functions with application to data classification. In: Lee, P.J., Cheon, J.H.
(eds.) Information Security and Cryptology - ICISC 2008. Revised Selected Papers.
LNCS, vol. 5461, pp. 336–353. Springer (2008). https://doi.org/10.1007/978-3-642-
00730-9 21

30. Sadeghian, S.: New Techniques for Private Function Evaluation. Ph.D. thesis, Uni-
versity of Calgary (2015)

31. Sander, T., Young, A.L., Yung, M.: Non-interactive cryptocomputing for nc1. In:
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18
October, 1999, New York, NY, USA. pp. 554–567. IEEE Computer Society (1999).
https://doi.org/10.1109/SFFCS.1999.814630

32. Tzeng, W.: Efficient 1-out-of-n oblivious transfer schemes with univer-
sally usable parameters. IEEE Trans. Computers 53(2), 232–240 (2004).
https://doi.org/10.1109/TC.2004.1261831

33. Valiant, L.G.: Universal circuits (preliminary report). In: Chandra, A.K.,
Wotschke, D., Friedman, E.P., Harrison, M.A. (eds.) Proceedings of the 8th An-
nual ACM Symposium on Theory of Computing. pp. 196–203. ACM (1976).
https://doi.org/10.1145/800113.803649

34. Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd An-
nual Symposium on Foundations of Computer Science 1982. pp. 160–164. IEEE
Computer Society (1982). https://doi.org/10.1109/SFCS.1982.38

35. Yao, A.C.C.: How to generate and exchange secrets. In: Foundations of Computer
Science, 1986., 27th Annual Symposium on. pp. 162–167. IEEE (1986)

36. Zhu, Y., Wang, Z., Hassan, B., Zhang, Y., Wang, J., Qian, C.: Fast secure scalar
product protocol with (almost) optimal efficiency. In: Guo, S. et al (eds.) Col-
laborative Computing: Networking, Applications, and Worksharing 2015. Pro-
ceedings. Lecture Notes of the Institute for Computer Sciences, Social Informat-
ics and Telecommunications Engineering, vol. 163, pp. 234–242. Springer (2015).
https://doi.org/10.1007/978-3-319-28910-6 21

