
There Is Always an Exception:
Controlling Partial Information Leakage in

Secure Computation

M. Horváth, L. Buttyán, G. Székely, D. Neubrandt
Budapest University of Technology and Economics,

Laboratory of Cryptography and System Security

w w w . c r y s y s . h u

ICISC-2019

|

Roadmap

2

|

Roadmap

2

PFE

|

Roadmap

2

PFE Partial information
leakage problem

|

Roadmap

2

PFE Partial information
leakage problem

Controlled PFE (CPFE)

|

Roadmap

2

PFE Partial information
leakage problem

Controlled PFE (CPFE)

Generic CPFE
protocol

|

Roadmap

2

PFE Partial information
leakage problem

Controlled PFE (CPFE)

Generic CPFE
protocol

Relaxed CPFE
(rCPFE)

|

Roadmap

2

PFE Partial information
leakage problem

Controlled PFE (CPFE)

Generic CPFE
protocol

Relaxed CPFE
(rCPFE)

Generic rCPFE protocol
(Implementation for inner products)

|

Roadmap

2

Conclusion & Future Work

PFE Partial information
leakage problem

Controlled PFE (CPFE)

Generic CPFE
protocol

Relaxed CPFE
(rCPFE)

Generic rCPFE protocol
(Implementation for inner products)

|

Roadmap

Contributions:
 Definitional framework

2

Conclusion & Future Work

PFE Partial information
leakage problem

Controlled PFE (CPFE)

Generic CPFE
protocol

Relaxed CPFE
(rCPFE)

Generic rCPFE protocol
(Implementation for inner products)

|

Roadmap

Contributions:
 Definitional framework
 New protocols

2

Conclusion & Future Work

PFE Partial information
leakage problem

Controlled PFE (CPFE)

Generic CPFE
protocol

Relaxed CPFE
(rCPFE)

Generic rCPFE protocol
(Implementation for inner products)

|

• Secure Function Evaluation (SFE or 2PC)

Background

Controlling Partial Information Leakage in Secure Computation 3

SFE

for 𝑓

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

|

• Secure Function Evaluation (SFE or 2PC)

Background

Controlling Partial Information Leakage in Secure Computation 3

SFE

for 𝑓

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

• Private Function Evaluation (PFE)

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥) 𝑓(𝑥)

|

• Secure Function Evaluation (SFE or 2PC)

Background

Controlling Partial Information Leakage in Secure Computation 3

SFE

for 𝑓

𝑥 𝑦

𝑓(𝑥, 𝑦) 𝑓(𝑥, 𝑦)

• Private Function Evaluation (PFE)

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥) 𝑓(𝑥)

Data Broker Value-Added Service Provider

|

Problem Statement

Controlling Partial Information Leakage in Secure Computation 4

• Requirements from PFE:
• Function privacy: Alice does no learn anything about 𝑓
• Data privacy: Bob does not learn more about 𝑥 than what is already

 revealed by 𝑓 𝑥

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥)

|

Problem Statement

Controlling Partial Information Leakage in Secure Computation 4

• Requirements from PFE:
• Function privacy: Alice does no learn anything about 𝑓
• Data privacy: Bob does not learn more about 𝑥 than what is already

 revealed by 𝑓 𝑥

• What if besides 𝑥, some partial information 𝑔 𝑥 is also

sensitive?
• In particular, what if 𝑔 ∈ ℱ as well?

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥)

|

Example: Privacy-Preserving Credit Checking

 Is Alice eligible for credit in the Bank of Korea? [PSS09]

Controlling Partial Information Leakage in Secure Computation 5

|

Example: Privacy-Preserving Credit Checking

 Is Alice eligible for credit in the Bank of Korea? [PSS09]
– Let ℱ be the class of Boolean functions.

– Let 𝑓 ∈ ℱ represent the crediting policy of the bank.

– Let 𝑥 contain private information of Alice

Controlling Partial Information Leakage in Secure Computation 5

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥)

|

Example: Privacy-Preserving Credit Checking

 Is Alice eligible for credit in the Bank of Korea? [PSS09]
– Let ℱ be the class of Boolean functions.

– Let 𝑓 ∈ ℱ represent the crediting policy of the bank.

– Let 𝑥 contain private information of Alice

Controlling Partial Information Leakage in Secure Computation 5

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥)

Honest crediting policy

Binary answer:

can/cannot receive credit

|

Example: Privacy-Preserving Credit Checking

 Is Alice eligible for credit in the Bank of Korea? [PSS09]
– Let ℱ be the class of Boolean functions.

– Let 𝑓 ∈ ℱ represent the crediting policy of the bank.

– Let 𝑥 contain private information of Alice

Controlling Partial Information Leakage in Secure Computation 5

PFE

for ℱ

𝑓 ∈ ℱ 𝑥

𝑓(𝑥)

Honest crediting policy

Binary answer:

can/cannot receive credit

Malicious function

Binary output:
Gender/salary greather than…

|

• Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ℱ𝐴 ⊂ ℱ

• Controlled PFE (CPFE):

Controlled Private Function Evaluation (CPFE)

Controlling Partial Information Leakage in Secure Computation 6

CPFE

for ℱ

𝑓 ∈ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴

|

• Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ℱ𝐴 ⊂ ℱ

• Controlled PFE (CPFE):

Controlled Private Function Evaluation (CPFE)

Controlling Partial Information Leakage in Secure Computation 6

CPFE

for ℱ

𝑓 ∈ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴

|

• Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ℱ𝐴 ⊂ ℱ

• Controlled PFE (CPFE):

• Realization idea: with SFE and conditional universal circuits
• Universal circuit (UC) is a ``programable’’ function for ℱ:

𝑈𝐶ℱ 𝑓, 𝑥 = 𝑓(𝑥)

Controlled Private Function Evaluation (CPFE)

Controlling Partial Information Leakage in Secure Computation 6

CPFE

for ℱ

𝑓 ∈ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴

|

• Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ℱ𝐴 ⊂ ℱ

• Controlled PFE (CPFE):

• Realization idea: with SFE and conditional universal circuits
• Universal circuit (UC) is a ``programable’’ function for ℱ:

𝑈𝐶ℱ 𝑓, 𝑥 = 𝑓(𝑥)
• Conditional UC:

𝑈𝐶ℱ
′ 𝑓, 𝑥, ℱ𝐴 =

𝑓 𝑥 iff 𝑓 ∉ ℱ𝐴

⊥ otherwise

Controlled Private Function Evaluation (CPFE)

Controlling Partial Information Leakage in Secure Computation 6

CPFE

for ℱ

𝑓 ∈ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴

SFE

for 𝑈𝐶ℱ
′

|

Towards an Efficiency-Function Privacy Trade-off

 Drawbacks of the previous solution:
– UCs are not efficient enough (even for a single evaluation)

– Scalability: evaluating the same 𝑓 on 𝑑 different inputs costs 𝑑 times
more for both parties

 Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of 𝑓

 𝑘-relaxed CPFE (rCPFE) for ℱ𝐵 = 𝑘:

 Strong 𝑘-rCPFE: extra requirement

 ∀ 𝑃𝑃𝑇 𝒜: 𝑃 𝒜 𝑎𝑢𝑥, ℱ𝐵 = 𝑓 −
1

𝑘
< 𝑛𝑒𝑔𝑙(𝜆)

Controlling Partial Information Leakage in Secure Computation 7

|

Towards an Efficiency-Function Privacy Trade-off

 Drawbacks of the previous solution:
– UCs are not efficient enough (even for a single evaluation)

– Scalability: evaluating the same 𝑓 on 𝑑 different inputs costs 𝑑 times
more for both parties

 Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of 𝑓

 𝑘-relaxed CPFE (rCPFE) for ℱ𝐵 = 𝑘:

 Strong 𝑘-rCPFE: extra requirement

 ∀ 𝑃𝑃𝑇 𝒜: 𝑃 𝒜 𝑎𝑢𝑥, ℱ𝐵 = 𝑓 −
1

𝑘
< 𝑛𝑒𝑔𝑙(𝜆)

Controlling Partial Information Leakage in Secure Computation 7

rCPFE

for ℱ

𝑓 ∈ ℱ𝐵 ⊂ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴 ℱ𝐵

|

Towards an Efficiency-Function Privacy Trade-off

 Drawbacks of the previous solution:
– UCs are not efficient enough (even for a single evaluation)

– Scalability: evaluating the same 𝑓 on 𝑑 different inputs costs 𝑑 times
more for both parties

 Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of 𝑓

 𝑘-relaxed CPFE (rCPFE) for ℱ𝐵 = 𝑘:

 Strong 𝑘-rCPFE: extra requirement

 ∀ 𝑃𝑃𝑇 𝒜: 𝑃 𝒜 𝑎𝑢𝑥, ℱ𝐵 = 𝑓 −
1

𝑘
< 𝑛𝑒𝑔𝑙(𝜆)

Controlling Partial Information Leakage in Secure Computation 7

rCPFE

for ℱ

𝑓 ∈ ℱ𝐵 ⊂ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴 ℱ𝐵

|

Towards an Efficiency-Function Privacy Trade-off

 Drawbacks of the previous solution:
– UCs are not efficient enough (even for a single evaluation)

– Scalability: evaluating the same 𝑓 on 𝑑 different inputs costs 𝑑 times
more for both parties

 Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of 𝑓

 𝑘-relaxed CPFE (rCPFE) for ℱ𝐵 = 𝑘:

 Strong 𝑘-rCPFE: extra requirement

 ∀ 𝑃𝑃𝑇 𝒜: 𝑃 𝒜 𝑎𝑢𝑥, ℱ𝐵 = 𝑓 −
1

𝑘
< 𝑛𝑒𝑔𝑙(𝜆)

Controlling Partial Information Leakage in Secure Computation 7

rCPFE

for ℱ

𝑓 ∈ ℱ𝐵 ⊂ ℱ 𝑥, ℱ𝐴

𝑓(𝑥) iff 𝑓 ∉ ℱ𝐴 ℱ𝐵

|

Naive OT-based Idea to Realise rCPFE

 A tool: 1 out of 𝑘 Oblivious Transfer (OT):

Controlling Partial Information Leakage in Secure Computation 8

OT

𝑖 ∈ [𝑘] 𝑚1, … ,𝑚𝑘

𝑚𝑖

|

Naive OT-based Idea to Realise rCPFE

 A tool: 1 out of 𝑘 Oblivious Transfer (OT):

 A naive rCPFE protocol:

Controlling Partial Information Leakage in Secure Computation 8

OT

𝑖 ∈ [𝑘] 𝑚1, … ,𝑚𝑘

𝑚𝑖

𝑥, ℱ𝐴 𝑓 ∈ ℱ INPUTS

|

Naive OT-based Idea to Realise rCPFE

 A tool: 1 out of 𝑘 Oblivious Transfer (OT):

 A naive rCPFE protocol:

Controlling Partial Information Leakage in Secure Computation 8

OT

𝑖 ∈ [𝑘] 𝑚1, … ,𝑚𝑘

𝑚𝑖

𝑥, ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

|

Naive OT-based Idea to Realise rCPFE

 A tool: 1 out of 𝑘 Oblivious Transfer (OT):

 A naive rCPFE protocol:

Controlling Partial Information Leakage in Secure Computation 8

OT

𝑖 ∈ [𝑘] 𝑚1, … ,𝑚𝑘

𝑚𝑖

𝑥, ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

For ℱ𝐵 ∖ ℱ𝐴 compute 𝑓𝑖 𝑥

𝑚𝑖 ≔
𝑓𝑖 𝑥 if 𝑓𝑖 ∉ ℱ𝐴

⊥ otherwise

|

Naive OT-based Idea to Realise rCPFE

 A tool: 1 out of 𝑘 Oblivious Transfer (OT):

 A naive rCPFE protocol:

Controlling Partial Information Leakage in Secure Computation 8

OT

𝑖 ∈ [𝑘] 𝑚1, … ,𝑚𝑘

𝑚𝑖

𝑥, ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

For ℱ𝐵 ∖ ℱ𝐴 compute 𝑓𝑖 𝑥

𝑚𝑖 ≔
𝑓𝑖 𝑥 if 𝑓𝑖 ∉ ℱ𝐴

⊥ otherwise

OT

𝑖 + 1

𝑚𝑖+1
𝑚1, … ,𝑚𝑘 𝑚𝑖+1 = 𝑓(𝑥)

|

Naive OT-based Idea to Realise rCPFE

 A tool: 1 out of 𝑘 Oblivious Transfer (OT):

 A naive rCPFE protocol:

Controlling Partial Information Leakage in Secure Computation 8

OT

𝑖 ∈ [𝑘] 𝑚1, … ,𝑚𝑘

𝑚𝑖

𝑥, ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

For ℱ𝐵 ∖ ℱ𝐴 compute 𝑓𝑖 𝑥

𝑚𝑖 ≔
𝑓𝑖 𝑥 if 𝑓𝑖 ∉ ℱ𝐴

⊥ otherwise

OT

𝑖 + 1

𝑚𝑖+1
𝑚1, … ,𝑚𝑘 𝑚𝑖+1 = 𝑓(𝑥)

|

𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘
𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥 → 𝐶𝑇𝑥

𝐹𝐸. 𝐷𝑒𝑐 𝐶𝑇𝑥, 𝑚𝑠𝑘 → 𝑥

Another Tool: Functional Encryption (FE)

Controlling Partial Information Leakage in Secure Computation 9

– 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘

– 𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥 → 𝐶𝑇𝑥

– 𝐹𝐸. 𝐷𝑒𝑐 𝐶𝑇𝑥, 𝑚𝑠𝑘 → 𝑥

𝑚𝑠𝑘, 𝐶𝑇𝑥
 Recall traditional (secret key) encryption!

|

𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘
𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥 → 𝐶𝑇𝑥
𝑭𝑬.𝑲𝒆𝒚𝑫𝒆𝒓 𝒎𝒔𝒌, 𝒇 → 𝒔𝒌𝒇

𝐹𝐸. 𝐷𝑒𝑐 𝐶𝑇𝑥 , 𝒔𝒌𝒇 → 𝒇 𝒙

 Recall traditional (secret key) encryption!

 FE generalizes traditional encryption [BSW11]

 Decryption reveals about 𝑥 no more than 𝑓 𝑥

 Arbitrary keys and ciphertexts can be combined in decryption

 To good to be true?
– For general functions: impossibility/use of untested assumptions [BSW11]

– For restricted functions: secure consructions, e.g. [GVW12, ALS16]

Another Tool: Functional Encryption (FE)

Controlling Partial Information Leakage in Secure Computation 9

– 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘

– 𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥 → 𝐶𝑇𝑥

– 𝐹𝐸. 𝐷𝑒𝑐 𝐶𝑇𝑥, 𝑚𝑠𝑘 → 𝑥

𝒔𝒌𝒇, 𝐶𝑇𝑥

|

Generic rCPFE based on FE & OT

Controlling Partial Information Leakage in Secure Computation 10

𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS

ONLINE PHASE

|

Generic rCPFE based on FE & OT

Controlling Partial Information Leakage in Secure Computation 10

𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

ONLINE PHASE

|

Generic rCPFE based on FE & OT

Controlling Partial Information Leakage in Secure Computation 10

𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

Runs 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘
∀𝑖 ∈ 𝑑 : 𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥𝑖 = 𝐶𝑇𝑥𝑖

ONLINE PHASE

𝐶𝑇𝑥1
, … , 𝐶𝑇𝑥𝑑

|

Generic rCPFE based on FE & OT

Controlling Partial Information Leakage in Secure Computation 10

𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

Runs 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘
∀𝑖 ∈ 𝑑 : 𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥𝑖 = 𝐶𝑇𝑥𝑖

For ℱ𝐵 ∖ ℱ𝐴 compute:

𝐹𝐸.𝐾𝑒𝑦𝐷𝑒𝑟 𝑚𝑠𝑘, 𝑓𝑗 = 𝑠𝑘𝑓𝑗

𝑚𝑗 ≔
𝑠𝑘𝑓𝑗

 if 𝑓𝑗 ∉ ℱ𝐴

⊥ otherwise

ONLINE PHASE

𝐶𝑇𝑥1
, … , 𝐶𝑇𝑥𝑑

|

Generic rCPFE based on FE & OT

Controlling Partial Information Leakage in Secure Computation 10

𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

Runs 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘
∀𝑖 ∈ 𝑑 : 𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥𝑖 = 𝐶𝑇𝑥𝑖

For ℱ𝐵 ∖ ℱ𝐴 compute:

𝐹𝐸.𝐾𝑒𝑦𝐷𝑒𝑟 𝑚𝑠𝑘, 𝑓𝑗 = 𝑠𝑘𝑓𝑗

𝑚𝑗 ≔
𝑠𝑘𝑓𝑗

 if 𝑓𝑗 ∉ ℱ𝐴

⊥ otherwise

OT

𝑖 + 1

𝑚𝑖+1 𝑚1, … ,𝑚𝑘
𝑚𝑖+1 = 𝑠𝑘𝑓

ONLINE PHASE

𝐶𝑇𝑥1
, … , 𝐶𝑇𝑥𝑑

|

Generic rCPFE based on FE & OT

Controlling Partial Information Leakage in Secure Computation 10

𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1)
ℱ𝐵

Runs 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘
∀𝑖 ∈ 𝑑 : 𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥𝑖 = 𝐶𝑇𝑥𝑖

For ℱ𝐵 ∖ ℱ𝐴 compute:

𝐹𝐸.𝐾𝑒𝑦𝐷𝑒𝑟 𝑚𝑠𝑘, 𝑓𝑗 = 𝑠𝑘𝑓𝑗

𝑚𝑗 ≔
𝑠𝑘𝑓𝑗

 if 𝑓𝑗 ∉ ℱ𝐴

⊥ otherwise

OT

𝑖 + 1

𝑚𝑖+1 𝑚1, … ,𝑚𝑘
𝑚𝑖+1 = 𝑠𝑘𝑓

ONLINE PHASE

OFFLINE PHASE

𝐶𝑇𝑥1
, … , 𝐶𝑇𝑥𝑑

∀𝑖 ∈ 𝑑 : 𝐹𝐸. 𝐷𝑒𝑐 𝐶𝑇𝑥𝑖
, 𝑠𝑘𝑓 → 𝑓 𝑥𝑖

|

Generic rCPFE based on FE & OT

 Theorem. /informal/
The protocol is SIM secure against semi-honest adversaries, if the underlying
FE scheme is k-query non-adaptive SIM secure for a single message and the
used OT protocol is SIM secure against semi-honest adversaries.

 Corollary.

The protocol achieves strong relaxed function privacy if all dummy functions
are sampled from the same distribution as 𝑓 and 𝑎𝑢𝑥 =⊥.

 Instantiations:

– Using FE of [GVW12] → rCPFE for 𝑃/𝑝𝑜𝑙𝑦 (in theory!)

– Using inner product FE [ALS16] → inner product rCPFE from
the DDH assumption
Application: statistical analysis, e.g. logistic regression, etc.

Controlling Partial Information Leakage in Secure Computation 11

|

Performance of Our Inner Product rCPFE

Controlling Partial Information Leakage in Secure Computation 12

 Comparison with the state of the art secure inner product
protocol (ABY framework) [DSZ15]:
– Vector dimension: 100
– Number of dummy functions: 1000

|

 Representating the cost of our dummy functions
– Vector dimension: 1000
– Number evaluations with different inputs: 100
– Approx equality of running time (with ABY) is for k=6200

Performance of Our Inner Product rCPFE

Controlling Partial Information Leakage in Secure Computation 13

|

Summary & Open Directions

 We initiate the study of partiol information leakage in PFE

 Defined variants of CPFE

 Generic realizations
– Focus on scenarios where multiple evaluations occur

– Trade-off to achieve better performance

 Inner Product rCPFE is practical

Future work
 Non-zero auxiliary info?

 How to get rid of dummy functions?

 Different trade-offs?

Take-home message
 Parital information can be sensitive

 and can leak easily!

Controlling Partial Information Leakage in Secure Computation 14

Thank you for the attention!

Q&A

w w w . c r y s y s . h u

References
[ALS16] Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional
encryption for innerproducts, from standard assumptions. In:
Robshaw, M., Katz, J. (eds.) Advancesin Cryptology - CRYPTO 2016,

[BSW11] Boneh, Dan, Amit Sahai, and Brent Waters. Functional
encryption: Definitions and challenges. Theory of Cryptography
Conference. Springer, Berlin, Heidelberg, 2011.

[DSZ15] Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient
mixed-protocol secure two-party computation. In: 22nd AnnualNetwork and
Distributed System Security Symposium, NDSS 2015.

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption with bounded collusions via multi-party computation. In:
Safavi-Naini, R., Canetti, R. (eds.)Advances in Cryptology - CRYPTO 2012.

[PSS09] Paus, A., Sadeghi, A. R., & Schneider, T. (2009, June). Practical
secure evaluation of semi-private functions. ACNS-2009

