Ll | OO
ue
0 s (B

WWW.crysys.hu

There Is Always an Exception:
Controlling Partial Information Leakage in
Secure Computation

|ICISC-2019

M. Horvath, L. Buttyan, G. Székely, D. Neubrandt

Budapest University of Technology and Economics,
Laboratory of Cryptography and System Security

Roadmap

N

Roadmap

N

Roadmap

C
i)
)

(q°)

=

@)
G—
=
©
)

| -

L)
(a

leakage problem

2

Roadmap

Partial information
leakage problem

| 2

Roadmap

__Generic CPFE
protocol

Partial information
leakage problem

| 2

Roadmap

Relaxed CPFE
(rCPFE)

__Generic CPFE
protocol

Partial information
leakage problem

= | 2

Roadmap

Relaxed CPFE
(rCPFE)

)

__Generic CPFE
protocol

Partial information
leakage problem

= | 2

Roadmap

Relaxed CPFE
(rCPFE)

/i, Conclusion & Future Work

Generic rCP@%otocol

)

__Generic CPFE
protocol

Partial information
leakage problem

| 2

Roadmap

Contributions:
= Definitional framework

/i, Conclusion & Future Work

Generic rCP@%otocol

)

__Generic CPFE
protocol

;@1 Relaxed CPFE
= (rCPFE)

Partial information
leakage problem

| 2

Roadmap

Contributions:
= Definitional framework
New protocols

/i, Conclusion & Future Work

Generic rCPF Qotocol

)

\ — Generic CPFE
\@} Controlled PFE (CPFE —= \ & protocol \@_

;@1 Relaxed CPFE
= (rCPFE)

%

Partial information
leakage problem

Yo\
i N :
N~ L
\ e
\ ey
3 W
l\ .\N‘.?:;*
—_ | 2
.

Background

® Secure Function Evaluation (SFE or 2PC)

SFE
for f

Controlling Partial Information Leakage in Secure Computation | 3

Background

® Secure Function Evaluation (SFE or 2PC)

SFE
for f

PFE
for F

Controlling Partial Information Leakage in Secure Computation | 3

Background

® Secure Function Evaluation (SFE or 2PC)

SFE
for f

PFE
for F

Data Broker Value-Added Service Provider

Controlling Partial Information Leakage in Secure Computation | 3

Problem Statement

> PFE
for F

® Requirements from PFE:
® Function privacy: Alice does no learn anything about f

® Data privacy: Bob does not learn more about x than what is already
revealed by f(x)

Controlling Partial Information Leakage in Secure Computation | 4

Problem Statement

(5
- > PFE

x \ for F

¢
® Requirements from PFE:
® Function privacy: Alice does no learn anything about f
® Data privacy: Bob does not learn more about x than what is already

revealed by f(x)

®* What if besides x, some partial information g(x) is also
sensitive?
® In particular, what if g € F as well?

Controlling Partial Information Leakage in Secure Computation | 4

Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]

3 232

Controlling Partial Information Leakage in Secure Computation | 5

Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]
— Let F be the class of Boolean functions.
— Let f € F represent the crediting policy of the bank.
— Let x contain private information of Alice

> PFE [¢ M s 09
i 9 U=

> THE BANK OF KOREA

Controlling Partial Information Leakage in Secure Computation | 5

Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]

— Let F be the class of Boolean functions.
— Let f € F represent the crediting policy of the bank.
— Let x contain private information of Alice

Honest crediting policy

X eF
{ e M= B wizow

for F s
f(x)

THE BANK OF KOREA

Binary answer:
can/cannot receive credit

Controlling Partial Information Leakage in Secure Computation | 5

Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]

— Let F be the class of Boolean functions.
— Let f € F represent the crediting policy of the bank.
— Let x contain private information of Alice

Malicious function

X fET()
(- S

for ? > THE BANK OF KOREA
f(x)

Binary output:
Gender/salary greather than...

Controlling Partial Information Leakage in Secure Computation | 5

Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

> CPFE [<
for F

>
fx)iff f & Fy

Controlling Partial Information Leakage in Secure Computation | 6

Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

>

Controlling Partial Information Leakage in Secure Computation | 6

Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

>
fx)iff f & Fy

® Realization idea: with SFE and conditional universal circuits
® Universal circuit (UC) is a “'programable’” function for F:

UCT(]C' X) — f(X)

Controlling Partial Information Leakage in Secure Computation | 6

Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

> SFE ¢
for UCx

>
fx)iff f & Fy

® Realization idea: with SFE and conditional universal circuits
® Universal circuit (UC) is a “'programable’” function for F:

UCg:'(f, X) — f(X)

® Conditional UC:
ey 5,7 = [F T €,

1 otherwise

Controlling Partial Information Leakage in Secure Computation | 6

Towards an Efficiency-Function Privacy Trade-off

= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f

Controlling Partial Information Leakage in Secure Computation | 7

Towards an Efficiency-Function Privacy Trade-off

= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f

= k-relaxed CPFE (rCPFE) for |Fgz| = k:

> rCPFE
for F

Controlling Partial Information Leakage in Secure Computation | 7

Towards an Efficiency-Function Privacy Trade-off

= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f

= k-relaxed CPFE (rCPFE) for |Fgz| = k:

> rCPFE
for F

Fp
= Strong k-rCPFE: extra requirement

V PPT A: P(A(aux,Fg) = f) —% < negl(i)

Controlling Partial Information Leakage in Secure Computation | 7

Towards an Efficiency-Function Privacy Trade-off

= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f

= k-relaxed CPFE (rCPFE) for |Fgz| = k:

Fp
= Strong k-rCPFE: extra requirement

V PPT A: P(A(aux,Fg) = f) —% < negl(i)

Controlling Partial Information Leakage in Secure Computation | 7

Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT)

OoT

Controlling Partial Information Leakage in Secure Computation | 8

Naive OT-based Idea to Realise rCPFE

= Atool: 1 out of k Oblivious Transfer (OT):

OoT

= A naive rCPFE protocol:

%\ x,F, INPUTS

Controlling Partial Information Leakage in Secure Computation | 8

Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT):

OoT

= A naive rCPFE protocol:

% X,TA INPUTS

- Sample f; € F fori € [k — 1]
< B :F'B — (fl’""ﬁ’f’ﬁ+1""’fk—1)

Controlling Partial Information Leakage in Secure Computation | 8

Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT):

oT
INPUTS
7 Sample f; € Ffori € [k — 1]
For F5 \ F, compute fi(x) < 5 Fp=Uv - fif fivr o fre-1)

m; = {fi(x) if f; & Fy

1 otherwise

Controlling Partial Information Leakage in Secure Computation | 8

Naive OT-based Idea to Realise rCPFE

= Atool: 1 out of k Oblivious Transfer (OT):

OT
INPUTS .
- Sample f; € F fori € [k — 1]
For F5 \ F, compute fi(x) < 5 Fp=Uv - fif fivr o fre-1)
mi::{fi(x)iffigng i +1
1 otherwise €
OT
mq, ..., My > > M1 = f(x)
miyq

Controlling Partial Information Leakage in Secure Computation | 8

Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT):

OT
INPUTS
p Sample f; € Ffori € [k — 1]
For F5 \ F.fompute fi(x)) < 5 Fp=Uv - fif fivr o fre-1)
mi::{fi(x)iffigpr i+ 1
1 otherwise €
OT
mq, ..., My > > M1 = f(x)
Mmiiq

Controlling Partial Information Leakage in Secure Computation | 8

Another Tool: Functional Encryption (FE)

= Recall traditional (secret key) encryption!

Enc(msk,x) — CT, Dec(CT,, msk) - x

Controlling Partial Information Leakage in Secure Computation | 9

Another Tool: Functional Encryption (FE)

= Recall traditional (secret key) encryption!

Cloud

Skf, CTx

FE .Setup(A)Q—> msk
FE.Enc(msk,x) = CT, FE.Dec(CTy, sks) - f(x)
FE.KeyDer(msk,) — sky

" FE generalizes traditional encryption [BSW11]

= Decryption reveals about x no more than f(x)
» Arbitrary keys and ciphertexts can be combined in decryption @

" To good to be true?
— For general functions: impossibility/use of untested assumptions [BSW11] Q

— For restricted functions: secure consructions, e.g. [GVW12, ALS16]

Controlling Partial Information Leakage in Secure Computation | 9

Generic rCPFE based on FE & OT

% X1, ey Xgq, Fyg INPUTS
ONLINE PHASE

Controlling Partial Information Leakage in Secure Computation | 10

Generic rCPFE based on FE & OT

%x X1, ey Xgq, Fyg INPUTS fEF
‘ ONLINE PHASE

. Sample f; € F fori € [k — 1]
< 5 Fg = (1o fir o fivrs ooor fr-1)

Controlling Partial Information Leakage in Secure Computation | 10

Generic rCPFE based on FE & OT

X1, 0 Xq, Fa INPUTS fEF
ONLINE PHASE

Sample f; € F fori € [k — 1]
Fp

€ TB = (flr""fi'f'ﬁ'+1'""fk—l)
Runs FE.Setup(4) —» msk CT,.,
Vi € [d]: FE.Enc(msk, x;) = CT,——

s CTy

Controlling Partial Information Leakage in Secure Computation | 10

Generic rCPFE based on FE & OT

X1, Xq, Fa INPUTS fEF %@2@

ONLINE PHASE
7 Sample f; € F fori € [k — 1]
<€ B :FB T (flr . fuf fl+1' ""fk—l)

Runs FE.Setup(4) —» msk CT,., .., CT,
Vi € [d]: FE.Enc(msk, x;) = CT,—— 5

For £ \ ¥4 compute:
FE.KeyDer(msk,fj) = Skfj
- {Skfj if f; & Fa
J 1 otherwise

__
Controlling Partial Information Leakage in Secure Computation | 10

Generic rCPFE based on FE & OT

X1, ey Xgq, Fyg INPUTS fEF %?f@%
ONLINE PHASE
7 Sample f; € F fori € [k — 1]
<€ 5 Fg = (fr, - fi /o fivrr -0 f-1)

Runs FE.Setup(4) —» msk CT,., .., CT,
Vi € [d]: FE.Enc(msk,x;) = CTy, : S
For £ \ ¥4 compute:
FE.KeyDer(msk,fj) = Skfj
1 otherwise OT
ml, ...,mk> ml_l_l > ml+1 — Skf

Controlling Partial Information Leakage in Secure Computation | 10

Generic rCPFE based on FE & OT

X1, ey Xgq, Fyg

‘r"’&-:.',"
INPUTS fEF “w~

Runs FE.Setup(4) —» msk

Vi € [d]: FE.Enc(msk,x;) = CTy,

For £ \ ¥4 compute:
FE.KeyDer(msk,fj) = Skfj

— {Skfj iffj & Fy
j :
1 otherwise

mq, ...

ONLINE PHASE
7 Sample f; € F fori € [k — 1]
<€ B :FB = (flr"'lfilflﬁ'+1""lfk—l)

CTyy o CToy

1+ 1

<€

OoT

> My = Skg

My M1
)) l

OFFLINE PHASE
Vi € [d]: FE.Dec(CTy,, skr) - f(x;)

Controlling Partial Information Leakage in Secure Computation | 10

Generic rCPFE based on FE & OT

= Theorem. /informal/

The protocol is SIM secure against semi-honest adversaries, if the underlying
FE scheme is k-query non-adaptive SIM secure for a single message and the
used OT protocol is SIM secure against semi-honest adversaries.

= Corollary.

The protocol achieves strong relaxed function privacy if all dummy functions
are sampled from the same distribution as f and aux =.1.

= |nstantiations:
— Using FE of [GVW12] — rCPFE for P/poly (intheory!)

— Using inner product FE [ALS16] = inner product rCPFE from
the DDH assumption

Application: statistical analysis, e.g. logistic regression, etc.

Controlling Partial Information Leakage in Secure Computation | 11

Performance of Our Inner Product rCPFE

= Comparison with the state of the art secure inner product
protocol (ABY framework) [DSZ15]:

— Vector dimension: 100
— Number of dummy functions: 1000

—=- ABY —=— ABY
#— Naive —A— Naive
—8— r-CPFE 301 —8— r-CPFE
40 1 —e— r-CPFE opt. —6— r-CPFE opt.

251
’g 30 E_S
c T =

S — 20
@ N
o *
))
[e)]

£ ¢ 15 -
S 20 5
Eu ©

= 2 10 -

10 A
5 -
0 A 0
2I5 5l0 7I5 1(l)0 1é5 léO 1%5 260 25 50 75 100 125 150 175 200
Number of input vectors (d) Number of input vectors (d)

Controlling Partial Information Leakage in Secure Computation | 12

Performance of Our Inner Product rCPFE

= Representating the cost of our dummy functions
— Vector dimension: 1000
— Number evaluations with different inputs: 100
— Approx equality of running time (with ABY) is for k=6200

] = £]
25 f
B { &l 60
20 1 ;- 50 -
W / @
£ , =
g 1
8.] £ 540 ~B- ABY
" 7 v —&— Maive
E x o ~8— r-CPFE
5 E 301 —&— r-CPFE opt.
= / T
5 101 £ 3
2 4
."I [= 210 -
/
5 / —=— ABY 10 - gt T
/ —4— Naive SO+ —O——— OO
h —e— r-CPFE A
—5— r-CPFE opt. o T
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Mumber of dummy functions (k) Number of dummy functions (k)

Controlling Partial Information Leakage in Secure Computation | 13

Summary & Open Directions

= We initiate the study of partiol information leakage in PFE
= Defined variants of CPFE \

" (Generic realizations

— Focus on scenarios where multiple evaluations occur —
— Trade-off to achieve better performance T & N

" |nner Product rCPFE is practical
Future work

"= Non-zero auxiliary info?

= How to get rid of dummy functions?
= Different trade-offs?

Take-home message

= Parital information can be sensitive
and can leak easily!

Controlling Partial Information Leakage in Secure Computation | 14

E WWW.crysys.hu

Thank you for the attention!

[X

References

[ALS16] Aarawal, S., Libert, B., Stehlé, D.: Fully secure functional
encryption for innerproducts. from standard assumptions. In:
Robshaw, M., Katz, J. (eds.) Advancesin Cryptology - CRYPTO 2016,

[BSW11] Boneh, Dan, Amit Sahai, and Brent Waters. Functional
encrvption: Definitions and challenaes. Theory of Cryptography
Conference. Springer, Berlin, Heidelberg, 2011.

[DSZ15] Demmler, D., Schneider, T., Zohner, M.: ABY - A framework for efficient
mixed-protocol secure two-party computation. In: 22nd AnnualNetwork and
Distributed System Security Symposium, NDSS 2015.

[GVW12] Gorbunov, S.. Vaikuntanathan, V., Wee. H.: Functional
encryption with bounded collusions via multi-party computation. In:
Safavi-Naini, R., Canetti, R. (eds.)Advances in Cryptology - CRYPTO 2012.

[PSS09] Paus, A., Sadeghi, A. R., & Schneider, T. (2009, June). Practical
secure evaluation of semi-private functions. ACNS-2009

