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Background

® Secure Function Evaluation (SFE or 2PC)

SFE
for f
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Background

® Secure Function Evaluation (SFE or 2PC)

SFE
for f

PFE
for F

Data Broker Value-Added Service Provider
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Problem Statement

>  PFE
for F

® Requirements from PFE:
® Function privacy: Alice does no learn anything about f

® Data privacy: Bob does not learn more about x than what is already
revealed by f(x)
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Problem Statement

(5
- > PFE

x \ for F

¢
® Requirements from PFE:
® Function privacy: Alice does no learn anything about f
® Data privacy: Bob does not learn more about x than what is already

revealed by f(x)

®* What if besides x, some partial information g(x) is also
sensitive?
® In particular, what if g € F as well?
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Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]

3 232
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Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]
— Let F be the class of Boolean functions.
— Let f € F represent the crediting policy of the bank.
— Let x contain private information of Alice

> PFE [¢ M s 09
i 9 U=

> THE BANK OF KOREA
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Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]

— Let F be the class of Boolean functions.
— Let f € F represent the crediting policy of the bank.
— Let x contain private information of Alice

Honest crediting policy

X eF
{ e M= B wizow

for F s
f(x)

THE BANK OF KOREA

Binary answer:
can/cannot receive credit
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Example: Privacy-Preserving Credit Checking

= |s Alice eligible for credit in the Bank of Korea? [PSS09]

— Let F be the class of Boolean functions.
— Let f € F represent the crediting policy of the bank.
— Let x contain private information of Alice

Malicious function

X fET()
(- S

for ? > THE BANK OF KOREA
f(x)

Binary output:
Gender/salary greather than...
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Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

> CPFE [<
for F

>
fx)iff f & Fy
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Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

>
fx)iff f & Fy

® Realization idea: with SFE and conditional universal circuits
® Universal circuit (UC) is a “'programable’” function for F:

UCT(]C' X) — f(X)
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Controlled Private Function Evaluation (CPFE)

® Goal: To enable Alice to make exceptions, i.e. to define a set of
forbidden functions ¥4 € F

® Controlled PFE (CPFE):

> SFE ¢
for UCx

>
fx)iff f & Fy

® Realization idea: with SFE and conditional universal circuits
® Universal circuit (UC) is a “'programable’” function for F:

UCg:'(f, X) — f(X)

® Conditional UC:
ey 5,7 = [F T €,

1 otherwise
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Towards an Efficiency-Function Privacy Trade-off

= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f
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= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f

= k-relaxed CPFE (rCPFE) for |Fgz| = k:

> rCPFE
for F
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Towards an Efficiency-Function Privacy Trade-off

= Drawbacks of the previous solution:
— UCs are not efficient enough (even for a single evaluation)

— Scalability: evaluating the same f on d different inputs costs d times
more for both parties

= Goal: to relax the function privacy requirement to achieve
additive online overhead in case of multiple evaluations of f

= k-relaxed CPFE (rCPFE) for |Fgz| = k:

> rCPFE
for F

Fp
= Strong k-rCPFE: extra requirement

V PPT A: P(A(aux,Fg) = f) —% < negl(i)
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Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT)

OoT
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Naive OT-based Idea to Realise rCPFE

= Atool: 1 out of k Oblivious Transfer (OT):

OoT

= A naive rCPFE protocol:

%\ x,F, INPUTS
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Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT):

OoT

= A naive rCPFE protocol:

% X,TA INPUTS

- Sample f; € F fori € [k — 1]
< B :F'B — (fl’""ﬁ’f’ﬁ+1""’fk—1)
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Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT):

oT
INPUTS
7 Sample f; € Ffori € [k — 1]
For F5 \ F, compute fi(x) < 5 Fp=Uv - fif fivr o fre-1)

m; = {fi(x) if f; & Fy

1 otherwise
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Naive OT-based Idea to Realise rCPFE

= Atool: 1 out of k Oblivious Transfer (OT):

OT
INPUTS .
- Sample f; € F fori € [k — 1]
For F5 \ F, compute fi(x) < 5 Fp=Uv - fif fivr o fre-1)
mi::{fi(x)iffigng i +1
1 otherwise €
OT
mq, ..., My > > M1 = f(x)
miyq
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Naive OT-based Idea to Realise rCPFE

= Atool:1 out of k Oblivious Transfer (OT):

OT
INPUTS
p Sample f; € Ffori € [k — 1]
For F5 \ F.fompute fi(x)) < 5 Fp=Uv - fif fivr o fre-1)
mi::{fi(x)iffigpr i+ 1
1 otherwise €
OT
mq, ..., My > > M1 = f(x)
Mmiiq
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Another Tool: Functional Encryption (FE)

= Recall traditional (secret key) encryption!

Enc(msk,x) — CT, Dec(CT,, msk) - x
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Another Tool: Functional Encryption (FE)

= Recall traditional (secret key) encryption!

Cloud

Skf, CTx

FE .Setup(A)Q—> msk
FE.Enc(msk,x) = CT, FE.Dec(CTy, sks) - f(x)
FE.KeyDer(msk, ) — sky

" FE generalizes traditional encryption [BSW11]

= Decryption reveals about x no more than f(x)
» Arbitrary keys and ciphertexts can be combined in decryption @

" To good to be true?
— For general functions: impossibility/use of untested assumptions [BSW11] Q

— For restricted functions: secure consructions, e.g. [GVW12, ALS16]

Controlling Partial Information Leakage in Secure Computation | 9



Generic rCPFE based on FE & OT

% X1, ey Xgq, Fyg INPUTS
ONLINE PHASE
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Generic rCPFE based on FE & OT

%x X1, ey Xgq, Fyg INPUTS fEF
‘ ONLINE PHASE

. Sample f; € F fori € [k — 1]
< 5 Fg = (1o fir o fivrs ooor fr-1)
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Generic rCPFE based on FE & OT

X1, 0 Xq, Fa INPUTS fEF
ONLINE PHASE

Sample f; € F fori € [k — 1]
Fp

€ TB = (flr""fi'f'ﬁ'+1'""fk—l)
Runs FE.Setup(4) —» msk CT,.,
Vi € [d]: FE.Enc(msk, x;) = CT,——

s CTy
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Generic rCPFE based on FE & OT

X1, Xq, Fa INPUTS fEF %@2@

ONLINE PHASE
7 Sample f; € F fori € [k — 1]
<€ B :FB T (flr . fuf fl+1' ""fk—l)

Runs FE.Setup(4) —» msk CT,., .., CT,
Vi € [d]: FE.Enc(msk, x;) = CT,—— 5

For £ \ ¥4 compute:
FE.KeyDer(msk,fj) = Skfj
- {Skfj if f; & Fa
J 1 otherwise

__________________________________________________________________________________________________________
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Generic rCPFE based on FE & OT

X1, ey Xgq, Fyg INPUTS fEF %?f@%
ONLINE PHASE
7 Sample f; € F fori € [k — 1]
<€ 5 Fg = (fr, - fi /o fivrr -0 f-1)

Runs FE.Setup(4) —» msk CT,., .., CT,
Vi € [d]: FE.Enc(msk,x;) = CTy, : S
For £ \ ¥4 compute:
FE.KeyDer(msk,fj) = Skfj
1 otherwise OT
ml, ...,mk> ml_l_l > ml+1 — Skf
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Generic rCPFE based on FE & OT

X1, ey Xgq, Fyg

‘r"’&-:.',"
INPUTS fEF “w~

Runs FE.Setup(4) —» msk

Vi € [d]: FE.Enc(msk,x;) = CTy,

For £ \ ¥4 compute:
FE.KeyDer(msk,fj) = Skfj

— {Skfj iffj & Fy
j :
1 otherwise

mq, ...

ONLINE PHASE
7 Sample f; € F fori € [k — 1]
<€ B :FB = (flr"'lfilflﬁ'+1""lfk—l)

CTyy o CToy

1+ 1

<€

OoT

> My = Skg

My M1
) ) l

OFFLINE PHASE
Vi € [d]: FE.Dec(CTy,, skr) - f(x;)
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Generic rCPFE based on FE & OT

= Theorem. /informal/

The protocol is SIM secure against semi-honest adversaries, if the underlying
FE scheme is k-query non-adaptive SIM secure for a single message and the
used OT protocol is SIM secure against semi-honest adversaries.

= Corollary.

The protocol achieves strong relaxed function privacy if all dummy functions
are sampled from the same distribution as f and aux =.1.

= |nstantiations:
— Using FE of [GVW12] — rCPFE for P/poly (intheory!)

— Using inner product FE [ALS16] = inner product rCPFE from
the DDH assumption

Application: statistical analysis, e.g. logistic regression, etc.
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Performance of Our Inner Product rCPFE

= Comparison with the state of the art secure inner product
protocol (ABY framework) [DSZ15]:

—  Vector dimension: 100
—  Number of dummy functions: 1000

—=- ABY —=— ABY
#— Naive —A— Naive
—8— r-CPFE 301 —8— r-CPFE
40 1 —e— r-CPFE opt. —6— r-CPFE opt.

251
’g 30 E_S
c T =

S — 20
@ N
o *
) )
[e)]

£ ¢ 15 -
S 20 5
Eu ©

= 2 10 -

10 A
5 -
0 A 0
2I5 5l0 7I5 1(l)0 1é5 léO 1%5 260 25 50 75 100 125 150 175 200
Number of input vectors (d) Number of input vectors (d)
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Performance of Our Inner Product rCPFE

= Representating the cost of our dummy functions
— Vector dimension: 1000
— Number evaluations with different inputs: 100
— Approx equality of running time (with ABY) is for k=6200

] = £]
25 f
B { &l 60
20 1 ;- 50 -
W / @
£ , =
g 1
8. ] £ 540 ~B- ABY
" 7 v —&— Maive
E x o ~8— r-CPFE
5 E 301 —&— r-CPFE opt.
= / T
5 101 £ 3
2 4
."I [ = 210 -
/
5 / —=— ABY 10 - gt T
/ —4— Naive SO+ —O——— OO
h —e— r-CPFE A
—5— r-CPFE opt. o T
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000
Mumber of dummy functions (k) Number of dummy functions (k)
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Summary & Open Directions

= We initiate the study of partiol information leakage in PFE
= Defined variants of CPFE \

" (Generic realizations

— Focus on scenarios where multiple evaluations occur —
— Trade-off to achieve better performance T & N

" |nner Product rCPFE is practical
Future work

"= Non-zero auxiliary info?

= How to get rid of dummy functions?
= Different trade-offs?

Take-home message

= Parital information can be sensitive
and can leak easily!
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