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• Goal: To enable Alice to make exceptions, i.e. to define a set of 
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Towards an Efficiency-Function Privacy Trade-off  

 Drawbacks of the previous solution: 
– UCs are not efficient enough (even for a single evaluation) 

– Scalability: evaluating the same 𝑓 on 𝑑 different inputs costs 𝑑 times 
more for both parties 

 Goal: to relax the function privacy requirement to achieve 
additive online overhead in case of multiple evaluations of 𝑓 

 𝑘-relaxed CPFE (rCPFE) for ℱ𝐵 = 𝑘: 
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Runs 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘 
∀𝑖 ∈ 𝑑 :  𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥𝑖 = 𝐶𝑇𝑥𝑖

 

 

For ℱ𝐵 ∖ ℱ𝐴 compute: 

𝐹𝐸.𝐾𝑒𝑦𝐷𝑒𝑟 𝑚𝑠𝑘, 𝑓𝑗 = 𝑠𝑘𝑓𝑗
 

𝑚𝑗 ≔  
𝑠𝑘𝑓𝑗

 if 𝑓𝑗 ∉ ℱ𝐴

⊥   otherwise
 

OT 
 

𝑖 + 1 

𝑚𝑖+1 𝑚1, … ,𝑚𝑘 
𝑚𝑖+1 = 𝑠𝑘𝑓 

ONLINE PHASE 

𝐶𝑇𝑥1
, … , 𝐶𝑇𝑥𝑑
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𝑥1, … , 𝑥𝑑 , ℱ𝐴 𝑓 ∈ ℱ INPUTS 

Sample 𝑓𝑖 ∈ ℱ for 𝑖 ∈ 𝑘 − 1  

ℱ𝐵 ≔ (𝑓1, … , 𝑓𝑖 , 𝑓, 𝑓𝑖+1, … , 𝑓𝑘−1) 
ℱ𝐵 

Runs 𝐹𝐸. 𝑆𝑒𝑡𝑢𝑝 𝜆 → 𝑚𝑠𝑘 
∀𝑖 ∈ 𝑑 :  𝐹𝐸. 𝐸𝑛𝑐 𝑚𝑠𝑘, 𝑥𝑖 = 𝐶𝑇𝑥𝑖

 

 

For ℱ𝐵 ∖ ℱ𝐴 compute: 

𝐹𝐸.𝐾𝑒𝑦𝐷𝑒𝑟 𝑚𝑠𝑘, 𝑓𝑗 = 𝑠𝑘𝑓𝑗
 

𝑚𝑗 ≔  
𝑠𝑘𝑓𝑗

 if 𝑓𝑗 ∉ ℱ𝐴

⊥   otherwise
 

OT 
 

𝑖 + 1 

𝑚𝑖+1 𝑚1, … ,𝑚𝑘 
𝑚𝑖+1 = 𝑠𝑘𝑓 

ONLINE PHASE 

OFFLINE PHASE 

𝐶𝑇𝑥1
, … , 𝐶𝑇𝑥𝑑

 

∀𝑖 ∈ 𝑑 :  𝐹𝐸. 𝐷𝑒𝑐 𝐶𝑇𝑥𝑖
, 𝑠𝑘𝑓 → 𝑓 𝑥𝑖  
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Generic rCPFE based on FE & OT 

 Theorem. /informal/ 
The protocol is SIM secure against semi-honest adversaries, if the underlying 
FE scheme is k-query non-adaptive SIM secure for a single message and the 
used OT protocol is SIM secure against semi-honest adversaries. 

 Corollary. 

The protocol achieves strong relaxed function privacy if all dummy functions 
are sampled from the same distribution as 𝑓 and 𝑎𝑢𝑥 =⊥. 

 Instantiations: 

– Using FE of [GVW12] → rCPFE  for  𝑃/𝑝𝑜𝑙𝑦    (in theory!) 

– Using inner product FE [ALS16] → inner product rCPFE from 
the DDH assumption 
Application: statistical analysis, e.g. logistic regression, etc. 
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Performance of Our Inner Product rCPFE 
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 Comparison with the state of the art secure inner product 
protocol (ABY framework) [DSZ15]: 
– Vector dimension: 100 
– Number of dummy functions: 1000 



| 

 Representating the cost of our dummy functions 
– Vector dimension: 1000 
– Number evaluations with different inputs: 100 
– Approx equality of running time (with ABY) is for k=6200 

 

Performance of Our Inner Product rCPFE 
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Summary & Open Directions 

 We initiate the study of partiol information leakage in PFE 

 Defined variants of CPFE 

 Generic realizations 
– Focus on scenarios where multiple evaluations occur 

– Trade-off to achieve better performance 

 Inner Product rCPFE is practical 

Future work 
 Non-zero auxiliary info? 

 How to get rid of dummy functions? 

 Different trade-offs? 

Take-home message 
 Parital information can be sensitive  

 and can leak easily! 
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Thank you for the attention! 

Q&A 

w w w . c r y s y s . h u 
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