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Abstract

The field of embedded devices is changing rapidly. While these devices have originally
been developed to perform specific tasks, they are now increasingly connected to the
Internet. This new lifephase of the Internet, in which there are more connected de-
vices than people, is called the Internet of Things. Consequently, embedded devices are
increasingly called embedded IoT devices.

On the one hand, Internet connectivity enables new and innovative application areas,
including smart home appliances, automated traffic management in smart cities, and re-
motely monitored personal healthcare devices. On the other hand, Internet connectivity
is a new attack surface for embedded devices which need protection. Indeed, there have
been a rising number of attacks against and security incidents involving embedded IoT
devices. The threats these devices face include malware, data theft, illegitimate access,
and hijacking, among others. Therefore, there is a growing need to enhance embedded
IoT devices with cybersecurity capabilities.

In this dissertation, we investigate the security of embedded IoT devices from mul-
tiple aspects. First, we study the threat landscape and derive an attack taxonomy to
classify common attack scenarios. We draw two conclusions from this study, namely,
that malware is a significant threat in the case of embedded IoT devices and that the
vulnerabilities of these devices form a diverse set.

In order to tackle the issue of malware, we use malware clustering to find groups of
similar malware, thereby reducing the workload of analysts tasked with understanding
individual samples. The rationale behind malware clustering is that samples may share
similar features and knowing the behavior of a sample can be used to approximate the
features of similar samples. Specifically, we use binary similarity hashes to capture byte-
level similarity between malware samples. We show that existing clustering algorithms
perform poorly with this feature, hence we propose a new clustering algorithm with
superior performance.

We also investigate a type of stealthy malware, which exhibits malicious behavior only
when it receives specific inputs from its environment, e.g., specific command line inputs
or network packages. Malware samples with this capability are especially challenging to
analyze because the analyst has no knowledge about the necessary inputs. Therefore, we
propose a new analysis method that can uncover environmental conditions hard-coded
into malware samples to allow analysts to construct the right environment for observing
potentially malicious behavior. We evaluate our proposed method on both artificial and
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real malware samples and show that it has acceptable performance.
Based on our investigation into the threat landscape, we know that there is a diverge

set of vulnerabilities to be addressed. We believe that doing so individually is not
scalable enough to match the pace with which these devices are deployed in our daily
lives. Therefore, we propose a new mode of operation, called RoViM, for embedded IoT
devices, which accepts the possibility of compromises but allows devices to periodically
cleanse themselves, restoring a compromise-free state. We formally verify the design of
the proposed mode of operation and show that the interactions leading up to cleansing
satisfy reachability, liveness, and safety properties. We also investigate the impact that
RoViM has on user experience with a prototype implementation and show that the
latency introduced by cleansing has no significant impact.
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Kivonat

A beágyazott eszközök területe gyorsan változik. Míg ezeket az eszközöket eredetileg
jól meghatározott feladatok ellátására fejlesztették ki, ma már egyre több ilyen eszközt
csatlakoztatnak az internethez. Manapság az interneten több a csatlakoztatott eszköz,
mint az emberi felhasználó, ezért gyakran hivatkozunk rá a dolgok internete (Internet of
Things, röviden IoT) elnevezéssel. Következésképpen a beágyazott eszközöket is egyre
inkább beágyazott IoT-eszközöknek nevezzük.

Az internetkapcsolat egyfelől új és innovatív alkalmazási területeket tesz lehetővé,
beleértve az intelligens háztartási készülékeket, az intelligens városok automatizált forga-
lomirányítását és a távfelügyelhető személyes egészségügyi készülékeket. Másfelől viszont
az internetkapcsolat egy új támadási felület is a beágyazott eszközök számára, amely
védelmet igényel. Valóban, egyre több támadás és biztonsági incidens köthető beágya-
zott IoT-eszközökhöz. Az ilyen fenyegetések közé tartoznak többek között a kártékony
kódok, az adatlopás, a törvénytelen hozzáférés és az eltérítés. Ezért egyre nagyobb
szükség van a beágyazott IoT-eszközök biztonsági képességeinek fejlesztésére.

Ebben a disszertációban több szempontból vizsgáljuk a beágyazott IoT-eszközök
biztonságát. Először a fenyegetéseket tanulmányozzuk, és levezetünk egy új támadási
taxonómiát, amit a gyakori támadási forgatókönyvek rendszerezéséhez használunk. A
rendszerezett támadási forgatókönyvekből két következtetést vonunk le, nevezetesen azt,
hogy a kártékony kódok jelentős veszélyforrást képeznek a beágyazott IoT-eszközök es-
etében, és hogy ezen eszközök sebezhetőségei változatos formákat ölthetnek.

A kártékony kódok kérdésére reagálva klaszterezéssel azonosítjuk hasonló kártékony
kódok csoportjait, ezáltal csökkentve az egyedi minták megértésével megbízott elemzők
munkaterhelését. A kártékony kódok klaszterezésének alapötlete az, hogy a minták ha-
sonló tulajdonságokkal bírhatnak, és egy minta viselkedésének ismerete felhasználható
a hasonló minták jellemzőinek közelítésére. Konkrétan bináris hasonlósági hash algorit-
musokat használunk a kártékony kódok mintái közötti bájtszintű hasonlóság mérésére.
Megmutatjuk, hogy a meglévő klaszterezési algoritmusok gyengén teljesítenek, amenny-
iben ezzel a tulajdonsággal reprezentálunk egy-egy mintát. Ezért egy új, jobb teljesít-
ményű klaszterező algoritmust javasolunk.

Olyan rejtőzködő kártékony kódokat is vizsgálunk, amelyek csak akkor mutatnak
rosszindulatú viselkedést, ha meghatározott bemeneteket kapnak a környezetükből, pl.
speciális parancssori bemeneteket vagy hálózati csomagokat. Az ilyen képességű kárté-
kony kódok mintáinak elemzése különösen nagy kihívást jelent, mivel az elemző nem is-
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meri a szükséges bemeneteket. Ezért egy új elemzési módszert javasolunk, amely feltárja
a kártékony kódok mintáiba kódolt környezeti feltételeket, hogy az elemző megfelelő
környezetet állíthasson össze a potenciálisan rosszindulatú viselkedés megfigyeléséhez.
A javasolt módszert mind mesterséges, mind valós rosszindulatú mintákon értékeljük, és
megmutatjuk, hogy elfogadható teljesítményt nyújt.

Végül a beágyazott IoT-eszközök felé fordítjuk figyelmünket. A támadási forga-
tókönyvekből tudjuk, hogy a sérülékenységek különböző fajtáival kell foglalkoznunk.
Meggyőződésünk, hogy ha ezt egyesével tesszük, akkor az nem skálázódik megfelelően
ütemben ahhoz képest, amilyen ütemben jelennek meg ezek az eszközök a minden-
napi életünkben. Ezért javasoljuk a beágyazott IoT-eszközök új működési módját, amit
RoViM-nek nevezünk, és amely elfogadja a kompromittálódás lehetőségét, ám lehetővé
teszi az eszközök számára, hogy periodikusan megtisztítsák önmagukat, helyreállítva egy
kompromittálódás-mentes állapotot. Formálisan ellenőrizzük a javasolt működési mód
terveit, és megmutatjuk, hogy a tisztításhoz vezető interakciók kielégítenek elérhetőségi,
életképességi és biztonsági tulajdonságokat. Egy prototípuson keresztül azt is megvizs-
gáljuk, hogy milyen hatást gyakorol a RoViM működési mód a felhasználói élményre, és
igazoljuk, hogy a tisztítás által okozott késleltetésnek nincs jelentős hatása.
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Chapter 1

Introduction

Embedded devices are special-purpose devices developed to perform specific tasks. They
are present in many modern-day application domains, including healthcare, transporta-
tion and agriculture. A recent advancement in the field of developing embedded devices
is their connection to the Internet, which leads to what is known as the Internet of
Things (IoT for short). Internet connection has enabled a wide range of new and in-
novative applications for these devices, which we commonly call embedded IoT devices.
For example, houses equipped with smart meters can automatically report water and
energy use. Smart traffic lights in cities can sense the flow of traffic and adjust accord-
ingly to reduce traffic jams. Medical experts can monitor certain implanted healthcare
devices, e.g., pacemakers, remotely.

Internet connection, however, has also opened the way for attackers to target and
compromise embedded IoT devices. Attacking these devices is a rational choice from
the attackers’ point of view. Embedded IoT devices, especially in the healthcare and
smart home application domains, handle sensitive and personal data worth stealing. In
addition, even though the computational power of individual embedded IoT devices is
small, it is non-negligible when considering these devices combined. From the technical
point of view, the hardware and software components of embedded IoT devices are not
very different from those found in traditional computers. Their insecure configuration,
e.g., accessible open ports without proper authentication, as well as default or hard-
coded passwords, allow easy access the device. It is also technically possible to exploit
vulnerabilities in software components running on IoT devices, including their firmware
and operating system (OS), which is often based on some embedded Linux variant.
Consequently, the security community has observed a rise in the number of viruses,
worms, Trojans and other types of malware targeting embedded IoT devices. One of the
most infamous examples is Mirai [5], which infected hundreds of thousands of IoT devices
and launched one of the largest distributed denial of service attacks ever recorded against
popular Internet-based services in 2016. The IoT threat landscape, however, includes
other malware as well, for example, Gafgyt, Tsunami, and Dnsamp [33].

In this dissertation, we explore the security of embedded IoT devices. Specifically, we
review the threat landscape of IoT devices with a new taxonomy for attack scenarios. The
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Introduction

proposed taxonomy is based on existing vulnerability data and highlights several aspects
of attacks against embedded IoT devices. We evaluate the taxonomy on relevant records
of the Common Vulnerabilities and Exposures1 (CVE), a publicly available database of
known vulnerabilities. The results highlight several areas in which improvements to the
security of embedded devices are necessary.

One of the key insights gained from the analysis of CVE records is that malware
is a major threat to embedded IoT devices. Therefore, we focus our attention on this
threat and study the issue of malware from two aspects. First, we address the problem of
malware clustering. Anti-virus companies rely on clustering techniques to group similar
malware samples, thereby reducing the workload on human analysts and automated
analysis tools tasked with analyzing samples. Given groups of similar samples, both
human analysts and automated tools need to focus their attention on only those samples
that have not been analyzed before and are not similar to any known malware. In this
context, we study the applicability of an emerging binary similarity hash algorithm,
TLSH by Trend Micro [91]. We find that existing clustering algorithms, namely k-
medoid [60] and OPTICS [4], perform poorly with TLSH and consequently develop a
new clustering algorithm with superior performance.

Second, we address the problem of stealthy malware. There exists a class of mal-
ware that perform malicious actions only when specific inputs, e.g., commands from the
attacker, are received. This behavior is known as trigger-based behavior and is a great
challenge for both human analysts and automated tools. When analyzing malware, it
is customary to execute samples in a controlled environment and observe their behavior
for clues of malice. However, in the case of malware implementing trigger-based behav-
ior, this approach does not yield results because the malware sample does not exhibit
malicious behavior without the correct inputs. In order to overcome this challenge, we
propose a new method to uncover environmental constraints guarding malicious behav-
ior in an automated manner. We evaluate our proposed method on both artificial and
real malware samples and find that it is indeed capable of recovering environmental
constraints with acceptable performance.

Based on the results of analyzing CVE records, there is a wide range of vulnerabilities
these devices can contain. Finding and patching these vulnerabilities individually is a
tedious task, which does not scale well. Instead, we propose a new mode of operation,
RoViM, for embedded IoT devices that allows them to restore themselves periodically to
a known compromise-free state. We formally verify the proposed design and show that
it satisfies reachability, liveness, and safety requirements. We also present a prototype
implementation for RoViM and show that it does not affect user experience significantly.

The dissertation is structured as follows. Chapter 2 discusses the threat landscape of
embedded IoT devices, including existing attacks and techniques for uncovering vulnera-
bilities in them. It also presents a new taxonomy for attack scenarios and evaluates it on
records from the CVE database. Chapter 3 discusses malware clustering and binary sim-
ilarity hashes. It also evaluates two well-known clustering algorithms, k-medoid [60] and
OPTICS [4], and proposes a new clustering algorithm which achieves better performance

1https://cve.mitre.org/ (Last accessed: Dec 29, 2020)
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Introduction

than those two. Chapter 4 studies the problem of malware implementing trigger-based
behavior and proposes a new method for uncovering the conditions under which specific
malicious behaviors can be observed. The chapter also evaluates our proposed method
on artificial and real malware samples. Chapter 5 presents RoViM, our proposed mode
of operation for embedded IoT devices which allows them to periodically cleanse them-
selves of potential compromises. The chapter also discusses the formal verification of
RoViM and the impact its prototype implementation has on user experience. Chapter 6
summarizes this dissertation and reviews the presented results. Because this disserta-
tion addresses multiple and diverse aspects of the security of embedded IoT devices, we
provide background on these various aspects in their respective chapters.

3



Chapter 2

The threat landscape of
embedded IoT devices

Having a comprehensive view and understanding of an attacker’s capability, i.e., know-
ing the enemy, is a prerequisite for the security engineering of embedded IoT systems.
Security analysis, secure design, and secure development must all take into account the
full spectrum of the threat landscape in order to identify security requirements, as well
as innovate and apply security controls within the boundary of constraints. Understand-
ing the threat landscape requires identifying the main causes of successful attacks, the
commonalities of the attacks, and the main vulnerabilities that they exploit.

In this chapter, we present a systematic review of existing threats and vulnerabilities.
We focus on two sets of data, i.e., the exposures of attacks on embedded IoT systems in
security conferences and literature, and the published vulnerabilities specific to embed-
ded IoT systems. Based on the data, we derive an attack taxonomy to systematically
identify and classify common attacks against embedded IoT devices and systems using
such devices as building blocks. We evaluate the proposed attack taxonomy on relevant
records from the CVE database. The results highlight several important aspects of the
security of embedded devices and provides the basis for further research.

The chapter is structured as follows. Section 2.1 presents existing attacks against
embedded IoT devices and systems.Section 2.2 presents and evaluates a new attack
taxonomy, which can highlight potential attack scenarios for threat modeling. Section
2.3 concludes this chapter.

2.1 Examples for attacks against embedded IoT devices
We now list existing attacks against embedded IoT devices and systems and look into the
attackers’ capabilities and their implications. Although not comprehensive, in our view,
the examples are very representative and cover a broad range of application domains
such as industrial systems, communications, and consumer devices.

Keefe [61] presented a timeline of attacks for critical infrastructure. Noteworthy
attacks date back to 1982 and the number of attacks have been increasing since 2001. Apa
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et al. [6] presented vulnerabilities and possible exploits of key management in wireless
devices. For example, one of the devices is shipped with a graphical user interface with
default values to configure the device. The implementation of the interface generates a
passphrase, which is later used to generate an AES key. However, the Pseudo-Random
Number Generator is seeded by feeding the current time to the srand() function and
the generator itself is the rand() function. As a result, the attacker can calculate the
passphrase and the encryption key, and can intercept all communication on the target
wireless network. Forner and Meixell [42] demonstrated remote attacks against SCADA
devices using the ModBus protocol. The vulnerability they exploited is within the design
of the protocol: it lacks encryption and authentication. As a result, devices can easily
be exploited with a carefully crafted packet. RuggedCom devices can be attacked via
hard-coded credentials in the operating system [28]. The default account in the system
is necessary to support password recovery, therefore, it cannot be disabled. However,
attackers knowing the MAC address can use this account to connect to the device and
take full control of it.

Santamarta [107] presented multiple attacks against satellite communication systems
originating from the ground segment. In one of the attack scenarios, the man-machine
interface of the airplane onboard SATCOM unit requires administrator password for
restricted configurations and control mechanisms. The generation algorithm uses the
device serial number (which can be found printed on the device) and a hard-coded
string, which makes it easy to guess the password. Thus, the attacker has access to all
configurations and can disable critical parts related to the safety of the aircraft. Geovedi
and Irayndi [44] implemented a rogue carrier for satellite systems. Their method allows
the attacker to become an illegitimate user of services provided. First, the attacker must
select its target, an artificial satellite. Then, the attacker points his antenna to the tar-
get and searches for unused, legal frequencies for clients. If such a frequency is found,
the attacker is free to transmit and receive as he wishes. However, the attacker still
has to avoid detection: he has to sniff packets sent by the operator to legitimate clients
and do exactly as the operator packet asks. As stated in their talk, the method works
because even if the satellite supports encryption, turning it on causes performance to
drop significantly. As a result, operators usually turn it off. Costin and Francillon [29]
investigated the Automatic Dependent Surveillance-Broadcast (ADS-B) protocol and
presented practical attacks exploiting the vulnerabilities the protocol has: no authen-
tication, no encryption and no challenge-response mechanisms. As a result, messages
can be sniffed, spoofed or replayed. The attacker can confuse pilots and hinder them in
performing their tasks.

Hernandez et al. [51] presented an attack against a smart home automation device,
the Nest Thermostat. Pressing a button for 10 minutes on the device initiates a global
reset. Afterwards, there is a small time window during which the device accepts code
from connected USB sticks and uses that code for booting without any cryptographic
checks on the code. An attacker can use this vulnerability to install an SSH server
and access the home network of the user. However, physical access is needed to the
device to launch the attack, therefore, the attacker either has to break into the house or

5



The threat landscape of embedded IoT devices

compromise the device during transport.
Checkoway et al. [25] presented physical and remote attack surfaces in cars. For

example, the authentication protocol between the Telematics Unit and the center relies
on a challenge-response mechanism. However, the random number generator is seeded
with the same constant each time it is initialized. As a result, the attacker can replay
a previously observed response packet to authenticate himself as the Telematics Call
Center, gaining full control over the car.

Wireless home automation devices used for controlling electrical outlets can also
be compromised1. The implementation of the Home Network Administration Protocol
contains a buffer overflow vulnerability, which can be used to execute arbitrary code on
the device. As the device controls the power outlet to all devices physically connected to
it, the attacker can gain the ability to damage connected devices. The D-Link DIR-815
Wireless-N Dual Band Router contains a command injection vulnerability that allows
the attacker to get remote access to the device2. The vulnerability lies with the packet
parsing: strings inside backticks are considered commands and are executed on the
router.

Cui et al. [34] discussed a case study of malicious firmware updates to a HP-RFU (Re-
mote Firmware Update) LaserJet printer. The vulnerability, which enables this attack,
comes from the fact that the printer has to accept printing jobs in an unauthenticated
way (as dictated by the standard) and that the firmware is updated by printing to the
memory. Thus, an attacker can send a printing job to the device, instructing it to update
its firmware with the malicious code provided.

Costin and Francillon [30] discussed attacks against a fireworks control system. The
protocol used by the system provides neither encryption, nor authentication, which
allows the attacker to sniff packets and thus learn the addresses of each device. Now, the
attacker might wait for the operator to arm the system, the attacker can immediately send
the digital arm and fire commands. The system will immediately fire its pyrotechnics
loads and may cause physical harm to the operator. The attack can be automated as
well, since arbitrary Python code can be uploaded to the devices.

Hanna et al. [49] demonstrated multiple attacks against an automated external defib-
rillator. For example, the firmware upgrade software package shipped with the device has
a buffer overflow vulnerability, which may result in arbitrary code execution. Another
vulnerability is the use of CRC as a digital signature. Combining these two vulnerabili-
ties allows the attacker to harm patients by setting shock protocols and shock strengths,
or launch a cyberattack against the IT system in which the device is deployed.

1http://www.devttys0.com/2014/05/hacking-the-d-link-dsp-w215-smart-plug/ (Last visited:
Jan 4, 2021)

2http://shadow-file.blogspot.hu/2013/02/dlink-dir-815-upnp-command-injection.html
(Last visited: Jan 4, 2021)
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2.2 New attack taxonomy for embedded IoT devices
Due to researchers’ specific interests, the cost incurred in security testing, and the non-
disclosure agreement forced by the vendors or asset owners, the published attacks/hacks
only reflect a fraction of the whole threat landscape. To gain a comprehensive view, we
study the information on vulnerabilities related to embedded systems, which we consider
as the other side of the same coin. Our main information source is the Common Vulnera-
bilities and Exposures (CVE) database, the most comprehensive aggregation of security
vulnerabilities. Each entry in the CVE database is assigned a standardized identifier,
which can be used to share vulnerability information across different organizations. At
the time of our research3, the database contained more than 60,000 entries, not all re-
lated to embedded systems. We improvised several techniques on-the-fly to filter and
extract relevant entries from the general vulnerability data, and manually analyzed the
selected entries. The result of the analysis is a set of attack classification criteria that
serves as a basis for our attack taxonomy.

Analyzing CVE data was a major challenge in our work. The CVE database has
more than 60,000 records, in which only a small part is relevant to embedded devices.
CVE records do not contain meta-information that would make it easy to identify which
records are related to embedded systems. Therefore, we applied heuristics to identify
and extract the relevant subset. Specifically, we implemented a script that matched
CVE records to a whitelist and a blacklist of keywords that we defined, and selected
those entries whose textual description contains at least one word from our whitelist and
did not contain any word from our blacklist. Our script identified 3826 relevant CVE
records, which was still infeasible to read and analyze manually. In addition, the set of
selected CVE records was quite biased in the sense that a large subset of the records
was related to devices produced by a small number of embedded device manufacturers
(e.g., 3,306 out of the 3,826 records were related to CISCO products).

Next, we randomly sampled the 3,826 CVE records based on the target mentioned
at CVE Details4 with the limitation that only 35 entries may relate to same target
type (hardware, operating system or application). However, this resulted in the over-
representation of some large companies (e.g., Cisco), so we had to set the limit of 9 for the
number of CVE records from the same company. The result of the steps mentioned above
was a sample set of 106 CVE records. We also added one CVE entry for which CVE
Details did not provide information about the affected product. Finally, we manually
analyzed all the 106 CVE records in the selected sample set, and identified appropriate
criteria based on which the vulnerabilities in the CVE records can be classified.

Assuming that our selected sample set is representative, the identified classification
criteria form the basis of a taxonomy of attacks against embedded devices. In order to
check that indeed all 3,826 CVE records can be categorized according to the criteria
derived from the analysis based on the 106 samples, we later created a script that
classifies all 3,826 records according to our criteria in an automated way. Our script

32015, results were published in [C2].
4https://www.cvedetails.com/ (Last visited: Dec 11, 2020)
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classified the majority of the records with no problem, and we were able to handle the
few exceptions manually by refining our set of classification criteria. At the end of this
process, we obtained a final set of criteria that allowed for the classification of all 3,826
CVE records related to embedded device vulnerabilities.

2.2.1 Related work

ENISA [39] maintains a list of existing incident taxonomies for general computer and IT
systems. Among them is the common language security incident taxonomy developed
at the Sandia National Laboratories, which divides an incident into attackers, tools,
vulnerability, action, target, unauthorized results, and objective. Simmons et al. [112]
proposes a cyber attack taxonomy that classifies cyber attacks into attack vector, op-
erational impact, defense, information impact, and target, abbreviated to AVOIDIT.
Common Attack Pattern Enumeration and Classification (CAPEC) [90] defines struc-
tured description of IT security attacks. It organizes attack patterns into 11 categories,
such as data leakage attacks, resource depletion, injection, etc. Hansman and Hunt [50]
proposed a four dimensional approach to attack taxonomy, including attack vector, tar-
get, vulnerabilities and exploits, and the possibility of having a payload or effect beyond
itself. The information in each dimension is further described in several hierarchical
levels of details. The MITRE ATT&CK framework5 is a publicly available knowledge
base of attack methods against enterprise IT systems and mobile systems observed in
real-life. Attack methods are categorized into 14 dimensions with each dimension hav-
ing multiple categories. Dimensions encompass the whole range of attack phases, from
reconnaissance to lateral movement and impact.

There exist taxonomies for attacks against embedded systems, however, they do not
cover the full spectrum of embedded IoT systems. Zhu et al. [135] provided a taxonomy
of cyber attacks on Supervisory Control and Data Acquisition (SCADA) systems. Cyber
attacks are classified according to their targets: hardware, software and the communica-
tion stack. The attacks on software are grouped into exploitation of embedded operating
systems without privilege separation, buffer overflow, and SQL injection. The attacks
on communication stack are classified into network, transport, and application layer, as
well as the implementation of the protocols. Dessiatnikoff et al. [38] focused on poten-
tial attacks against onboard aerospace systems. Attacks are categorized into two major
classes: attacks against core functions and against fault-tolerance mechanisms. For each
subcategory, the authors provide examples and emphasize the impact of such attacks.
Yampolskiy et al. [128] placed their emphasis on how cyber attacks might influence the
physical space and proposed a taxonomy that could be used to categorize cross-domain
attacks as well. This approach is advantageous for IoT systems, because many such
systems have cyber-physical components and the cross-domain aspect of the taxonomy
can capture affects on edge and cloud components as well. The proposed taxonomy has
six dimensions, as follows:

• Influenced Element: The object that is directly manipulated by an attack.
5https://attack.mitre.org/, Last visited: Apr 30, 2021
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• Influence: It describes how the Influenced Element is manipulated.

• Victim Element: A list of other elements that become manipulated via interactions.

• Impact on Victim: It describes what impact the attack has on the Victim Element.

• Attack Means: It defines the manipulation performed on the Influenced Element.

• Preconditions: It defines the conditions necessary for the attack to lead the results
captured in Victim Element and Impact on Victim.

Unfortunately, none of the dimensions has categories to aggregate information. This lack
of structure in the taxonomy makes it difficult to efficiently process attack information.
In order to demonstrate this shortcoming, let us consider CVE-2015-1179:

Multiple cross-site scripting (XSS) vulnerabilities in
data_point_details.shtm in Mango Automation 2.4.0 and earlier allow
remote attackers to inject arbitrary web script or HTML via the (1) dpid,
(2) dpxid, or (3) pid parameter.

The Attack Means for this CVE can be formulated in multiple ways. It can be specified
as “inject arbitrary web script or HTML”, but “XSS” and “cross-site scripting” are also
valid choices. The Precondition is that the attacker has to get the victim to follow the
crafted link, which can be achieved in many different ways (e.g., via e-mail, messages,
embedding in other websites). As a result, the value chosen for the Precondition di-
mension can be specified in multiple ways. The Influenced Element dimension can also
hold multiple valid values, including data_point_details.shtm, Mango Automation
2.4.0, or the device running this software. Specifying the Victim Element is challenging
in itself. Interacting with the Influenced Element via a browser definitely influences
the browser processing the injected web script or HTML. However, depending on the
specifics of the script, the interaction may also affect user data (e.g., by stealing cre-
dentials, session data, etc.) and/or the user (e.g., sending HTTP requests in the user’s
name). In summary, the flexibility provided by this taxonomy is advantageous for human
interpretation, but poses challenges for automated processing and data aggregation.

In summary, existing taxonomies for embedded systems have one of the following
two shortcomings. They are either limited to a single application domain [135, 38] or
too generic [128] for automated data processing. To overcome these shortcomings, we
extend the existing attack taxonomies, and modify their contents and structures.

2.2.2 Proposed attack taxonomy

Based on existing attack taxonomies and attacks, we defined 5 dimensions along which
attacks against embedded systems can be classified: (1) precondition, (2) vulnerability,
(3) target, (4) attack method, and (5) effect of the attack. The precondition dimension
contains possible conditions that are needed to be satisfied in order for the attacker to
be able to carry out the attack. The vulnerability dimension contains different types
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of vulnerabilities that can be exploited by the attacker. The target dimension contains
possible attack targets by which we mean a specific layer of the system architecture or
the embedded device as such if no specific layer can be identified as a target. The attack
method dimension contains various exploitation techniques that the attacker can use.
The effect dimension contains possible impacts of an attack. Taking a value from each
category gives a 5-tuple that characterizes an attack scenario.

We populated the above dimensions by going through the 106 selected CVE records
and observing the preconditions and the type of the vulnerabilities described in the CVE
records, as well as the targets, methods, and effects of the potential attacks that may
exploit the described vulnerabilities. As for the preconditions, we observed the following
types of requirements for the attacker:

• Internet facing device: Many vulnerabilities in the CVE records are potentially
exploitable by a remote attacker if the device is connected to the Internet. The
attacker does not necessarily need to have access privileges; the only requirement
is that the attacker can potentially discover the device and send messages to it via
the network.

• Local or remote access to the device: This precondition requires the attacker
to have some privileges that allow for logical access to the services or functions
provided by the device. This logical access can be restricted to local access or it
can be a remote access capability (e.g., via the Internet). Often, the privileges
required by the access are normal user privileges, and not administrator privileges.

• Direct physical access to the device: Direct physical access requires the at-
tacker to access the device physically. However, the attacker might not need any
privileges to access the services of the device.

• Physically proximity of the attacker: In some cases, the attacker does not
need physical access. It is sufficient that the attacker can be in the physical prox-
imity of the device. For instance, attacks on wireless devices may only require
being within the radio range of the target device.

• Miscellaneous: We observed a number of other preconditions in CVE records,
each appearing in only one or a few records, and we decided to create this general
category to represent them. For example, a miscellaneous precondition is when
the target device has to run some software or has to be configured in a certain way
for the vulnerability to be exploitable.

• Unknown: Some CVE records and other sources do not provide sufficient amount
of information to determine the preconditions of a potential attack; in these cases,
we classify the precondition as unknown.

The vulnerabilities that we observed in the CVE records have the following types:
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• Programming errors: Many of the vulnerabilities in the selected CVE records
stem from programming errors, which may lead to control flow attacks (e.g., input
parsing vulnerabilities leading to buffer overflow problems, and memory manage-
ment problems such as using pointers referring to memory locations that have been
freed).

• Web based vulnerability: Many embedded devices have a web based man-
agement interface through which they can be configured and updated. However,
the web server applications running on those devices are typically rarely updated.
Hence, those devices are exposed to web based attacks that exploit unpatched
vulnerabilities in the web-based interface of the device.

• Weak access control or authentication: Many devices use default or weak
passwords, and some devices have hard-coded passwords that provide backdoor
access to those who know the hard-coded password. Such vulnerabilities make
it possible for attackers to bypass access control mechanisms rather easily with
minimal effort.

• Improper use of cryptography: Some devices use cryptographic mechanisms
for authentication purposes or for preserving the confidentiality of some sensitive
information. Often, cryptographic mechanisms are not used appropriately, which
leads to fatal security failures. Examples include the use of weak random number
generators for generating cryptographic keys, or vulnerabilities in the protocols
that use cryptographic primitives.

• Unknown: Similar to precondition, some CVE records do not contain information
about the vulnerability itself, while they described the target and the effect of the
potential attacks exploiting the unspecified vulnerability.

Regarding the target of the potential attacks, we distinguish the following layers of
the embedded system architecture: hardware, firmware/OS, and application. When
no specific layer can be determined from the CVE record, or when a potential attack can
target multiple layers, we identify the device itself as the target of the attack. Note that
we do not make a clear distinction between the firmware and the operating system (OS),
because in many cases, embedded devices have no real OS, but their firmware provides
typical OS functionality (such as control to resources). In addition, we observed that
the attacks may not target the embedded devices themselves, but many CVE records
report potential attacks on the protocol used by those devices for communication or
device management.

The attacks that we observed in the selected CVE records cover a wide range of
methods. We grouped them in the following types:

• Control hijacking attacks: This type of attacks divert the normal control flow of
the programs running on the embedded device, which typically results in executing
code injected by the attacker.
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• Reverse engineering: Often, an attacker can obtain sensitive information (e.g.,
an access credential) by analyzing the software (firmware or application) in an
embedded device. This process is called reverse engineering. By using reverse
engineering techniques, the attacker can find vulnerabilities in the code (e.g., input
parsing errors) that may be exploited by other attack methods.

• Malware: An attacker can try to infect an embedded device with a malicious
software (malware). There are different types of malware. A common characteristic
is that they all have unwanted, potentially harmful functionality that they add to
the infected system. A malware that infects an embedded device may modify the
behavior of the device, which may have consequences beyond the cyber domain.
For instance, the infamous Stuxnet worm reprogrammed PLCs in an uranium
enrichment facility, which ultimately led to the physical destruction of the uranium
centrifuges controlled by the infected PLCs.

• Injecting crafted packets or input: We observed that injection of crafted pack-
ets is an attack method against protocols used by embedded devices. A similar
type of attack is the manipulation of the input to a program running on an embed-
ded device. Both packet and input crafting attacks exploit parsing vulnerabilities
in protocol implementations or other programs. In addition, replaying previously
observed packets or packet fragments can be considered as a special form of packet
crafting, which can be an effective method to cause protocol failures.

• Eavesdropping: While packet crafting is an active attack, eavesdropping (or
sniffing) is a passive attack method whereby an attacker only observes the mes-
sages sent and received by an embedded device. Those messages may contain
sensitive information that is weakly protected or not protected at all by cryp-
tographic means. In addition, eavesdropped information can be used in packet
crafting attacks (e.g., in replay type of attacks).

• Brute-force search attacks: Weak cryptography and weak authentication meth-
ods can be broken by brute force search attacks. Those involve exhaustive key
search attacks against cryptographic algorithms such as ciphers and MAC func-
tions, and dictionary attacks against password based authentication schemes. In
both cases, brute-force attacks are feasible only if the search space is sufficiently
small. Unfortunately, we observed CVE records that report such vulnerabilities.

• Normal use: This refers to the attack that exploit an unprotected device or
protocol through normal usage. This is because we observed CVEs that reported
on potential attacks where the attacker simply used some unprotected mechanism
as if he was a legitimate user. For instance, the attacker can access files on an
embedded device just like any other user if the device does not have any access
control mechanism implemented on it.

• Unknown: We observed some CVEs that described vulnerabilities but did not
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identify any particular attack method that would exploit those identified vulnera-
bilities.

The effect of the above attacks can be the following:

• Denial-of-Service: Many CVE records identify potential attacks that lead to
denial-of-service conditions such as malfunctioning or completely halting the de-
vice.

• Code execution: Another large part of the analyzed CVE records identify exe-
cution of attacker supplied code on the embedded device as the effect of potential
attacks. This also includes web scripts and SQL injections, not only native code
of the device.

• Integrity violation: A commonly observable effect of potential attacks is the
integrity violation of some data or code on the device. This includes modification
of files and configuration settings, as well as the illegitimate update of the firmware
or some applications on the device.

• Information leakage: In some cases, the effect of the attack is the leakage of
some information that should not be obtained by the attacker.

• Illegitimate access: Many attacks result in the attacker gaining illegitimate
access to the device. This not only includes the cases when an attacker, who
otherwise has no access to the device, manages to logically break into it, but also
cases when the attacker has already some access, but he gains more privileges (i.e.,
privilege escalation).

• Financial loss: Certain attacks enable the attacker to cause financial loss to the
victim, e.g., by making calls from a smart phone. Actually, most attacks can lead
to financial loss in a general sense, so we use this criterion to represent only those
attacks whose primary goal is to cause financial loss. A typical example would be
an attack that aims at sending and SMS or making a call to a premium number
from a compromised smart phone.

• Degraded level of protection: In some CVE records, we observed that the
potential attack results in a lower level of protection than expected. For example,
a device could be tricked into using weaker algorithms or security policies than
those that it actually supports.

• Miscellaneous: Some attacks cause users to be redirected to malicious websites
or traffic to be redirected. In these cases, there is not enough information about
what happens exactly to the redirected user or traffic, but there is information
about the effect.

• Unknown: In some CVE records, no specific attack effect is identified. This is
mainly the case when the attack method is not identified either, and the CVE
record contains only information about a vulnerability.
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In the rest of this section, we will show how the taxonomy can be applied to CVE
entries through two examples. Firstly, the description of CVE-2006-2560 is as follows:

Sitecom WL-153 router firmware before 1.38 allows remote attackers to
bypass access restrictions and conduct unauthorized operations via a
UPnP request with a modified InternalClient parameter, which is not
validated, as demonstrated by using AddPortMapping to forward arbitrary
traffic.

The description mentions a remote attacker without authentication, who has to be able
to send packets to the Internet facing device. The description also states, that the
exploitation is done via a modified parameter, which means that the attack method is
Injecting crafted packets or input. The entry also tells us that the parameter is
not validated by the firmware, so the vulnerability is a programming error. By
exploiting this vulnerability, the attacker can conduct unauthorized operations, so the
effect is illegitimate access.

As another example, let us consider CVE-2008-1262:

The administration panel on the Airspan WiMax ProST 4.1 antenna with
6.5.38.0 software does not verify authentication credentials, which
allows remote attackers to (1) upload malformed firmware or (2) bind
the antenna to a different WiMAX base station via unspecified requests
to forms under process_adv/.

The attacker remotely sends messages to the Internet facing device. He is able to
upload a malformed firmware, which results in an integrity violation. The antenna
does not verify authentication credentials and thus implements weak access control
or authentication. As a result, the attacker does not need to do anything suspicious:
he has to access the device, type in credentials when prompted and upload the modified
firmware, which is a completely normal usage.

Finally, let us consider CVE-2015-1179:

Multiple cross-site scripting (XSS) vulnerabilities in
data_point_details.shtm in Mango Automation 2.4.0 and earlier allow
remote attackers to inject arbitrary web script or HTML via the (1) dpid,
(2) dpxid, or (3) pid parameter.

The CVE record describes a cross-site scripting vulnerability, which is a well-known
vulnerability of Web Applications. Such vulnerabilities are easily exploited via HTTP
requests sent to Internet facing devices. In this case, exploitation requires the attacker
to inject malicious Javascript code into one of the specified parameters. Successful
exploitation results in code execution in the victim’s browser.

2.2.3 Evaluation of proposed attack taxonomy

To evaluate our taxonomy, we applied it to the subset of 3826 CVEs related to embedded
systems. Applying the taxonomy was done in a half-automated and iterative way. We
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Figure 2.1: Common attack scenarios for embedded IoT devices

created a Python script6 that used expressions of CVE entries related to a particular
category in each dimension of our taxonomy. For example, obtaining some kind of access
to the system is common in the Illegitimate Access category of the Effect dimension.
When the script encountered an entry for which it could not determine the correct
category, it displayed the description of the entry and the relevant expression had to be
added manually. We repeated this procedure until all CVE entries were categorized.

The immediate result of our script shows that many CVE entries can be put into
multiple categories. And this outcome is natural if we look at some examples. For
example, CVE-2010-0597 tells us that the vulnerability “allows remote authenticated
users to read or modify the device configuration, and gain privileges or cause a denial of
service (device reload)”. Reading the configuration discloses sensitive information to the
attacker, writing the configuration violates the integrity of the configuration, privilege
escalation is a type of illegitimate access and then there is denial of service, which is a
single category in itself. It depends on the attacker what effect he wishes to have. In
addition, if his actions had multiple effects, his attack could be categorized into multiple
categories in the Effect dimension. This observation stands for the attack method as well
since there are attacks that require multiple steps to be performed by the attacker. The
description of CVE-2009-1477 states that certain switches have hard-coded SSL private
keys, which allows the attacker to decrypt HTTPS sessions. Exploiting this vulnerability
requires the attacker to obtain the hard-coded key from a previous installation, and then
sniff the channel for messages to decrypt. Our taxonomy allows an attack to be classified
into multiple categories, thus variations of attacks can be handled easily. However, to
create statistics and for the sake of manageability, we needed to simplify the output of

6The created scripts can be found at http://www.hit.bme.hu/~buttyan/publications.html#
PappMB15pst
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our script. We chose the following approach: when a CVE entry could be categorized
into multiple categories, we have manually selected the scenario we think has the most
possibility of happening.

The output of our script was a table in which each row represents a vector from our
taxonomy, a possible attack scenario. Vectors have five coordinates, each coordinate
representing a category from our five dimensions. Figure 2.1 shows vectors on a parallel
coordinates diagram. Each path on the diagram is an attack scenario described by the
vector; the categories the path touches in each dimension show a different aspect of the
attack. The thicker a path, the more CVE entries mention it as a possible scenario. It
is clear from the figure that most attacks require only that the attacked device should
have a public IP address. Local or remote access (some kind of user authentication) is
also often needed to launch the attack.

The attacker has multiple methods available, but according to the CVE entries,
most of the time he will either inject crafted inputs and arguments, or perform a control
hijack by exploiting buffer overflows or embedding commands into parameters. Another
common exploitation method is the use of malware, when the attacker injects scripts
into web pages or is able to install a compromised firmware. Numerous CVE entries do
not state how the vulnerability could be exploited.

CVE entries suggest that embedded systems have three common vulnerabilities: pro-
gramming errors, web-based vulnerabilities and weak access control or authentication.
Figure 2.1 also shows common ways to exploit the vulnerabilities. A programming error
can be exploited by control hijacking and crafted inputs. A malicious script often exploits
a web-based vulnerability. Weak access control or authentication is also exploitable by
crafting inputs, e.g., directory traversal vulnerabilities. It must also be stated that a
considerable amount of CVE entries do not disclose the vulnerability.

The possible target of the attack is usually (although sometimes indirectly) men-
tioned in the entries. Operating systems and firmware suffer the most attacks: program-
ming errors in these pieces of software and weak access control or weak authentication
enable attacks at the lowest software-based level but the undisclosed vulnerabilities of-
ten affect these pieces of software as well. Applications could be targeted via exploiting
programming errors and web-based vulnerabilities. Many black lines touch the Device
category because when the entry did not provide any information about which part of
the system if affected by the attack, we classified the target into the Device category.
Another observation here concerns protocols: this category is closely related to program-
ming errors which tells us that most of the time the implementation of protocols contain
exploitable vulnerabilities and it is not the design of the protocol that is flawed.

Embedded systems can be affected by attacks in multiple ways. Denial of service
situations are quite commonly mentioned, especially if there is no accurate information
on the target of the attack. The attacker may also be able to execute code, either
his own or a program installed on the system. Operating systems and firmware suffer
the most integrity violation: the attacker might compromise sensitive files or install
a new firmware. Information leakage affects operating systems and firmware as well in
situations when the attacker cannot modify an arbitrary file but is able to read said file or
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when sensitive information, e.g., version information is disclosed. Naturally, illegitimate
access is closely related to operating systems and firmware through privilege escalation
and impersonation.

2.3 Conclusion
This chapter provided a comprehensive overview of the threat landscape of embedded
IoT devices and systems by describing both attacks and vulnerabilities. Based on the
discussed attacks and vulnerabilities, as well as existing taxonomies, we proposed a new
attack taxonomy to classify and describe common attack scenarios against embedded IoT
devices and systems. The attack taxonomy derived in this chapter provides information
on how an embedded system can be attacked. Moreover, the structured knowledge can
assist analysis and design of systems including or based on embedded devices during
system development lifecycle. The results were published in [C1, C2].

In its present state, the attack taxonomy also helps us to forecast trends in embedded-
system security. Given the recent trends in machine-to-machine communications and the
growing number of embedded devices with Internet connection, we expect Internet facing
devices to continue to suffer the majority of attacks. These attacks can come in many
forms; however, based on the results of applying our attack taxonomy to CVE records,
malware and exploits are the most common approaches.

Consequently, the security of embedded IoT devices could be improved significantly
with better protection from malware. This observation is the key motivator behind our
research presented in Chapters 3 and 4 in the fields of malware clustering and malware
analysis, respectively. In order to deal with exploits, the targeted vulnerabilities could
be uncovered more reliably and patched individually. However, this approach requires
significant effort each time a vulnerability is uncovered, without the guarantee that
all vulnerabilities have been dealt with. Therefore, in Chapter 5, we take a different
approach and present a new mode of operation for embedded IoT devices. This mode
of operation give the device the ability to periodically self-heal and cleanse itself of
compromises.

In the future, the presented taxonomy may require adjustment to accurately reflect
the changes in technology and attacks. This need for change can be detected by checking
the number of entries in the Unknwon categories of each dimension. A growing number
of entries there can signal the need to adjustment. Depending on the cause for too many
CVE entries in the Unknown, it is either the processing script that needs adjustment
or the categorizes in the taxonomy. The first scenario requires additional key-words to
be added to the processing scripts. The second is a more fundamental change to the
presented taxonomy, which affects not only automated processing but also requires an
in-depth look at the landscape of the security of embedded IoT devices.
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Chapter 3

Malware clustering using binary
similarity hashes

The concept of malicious software – or malware, as it is called in the computer security
community – is almost as old as computers themselves. While in early years, malware
was mainly created for fun or for experimental purposes, with the growing number of
personal computers and the proliferation of Internet connectivity, malware development
became a profitable business for miscreants at the end of the last century. Later, smart
phones appeared, and attackers started developing malware for mobile devices. Today,
we are witnessing a new trend: all sorts of embedded devices are being connected to
the Internet, which is rapidly transforming into an Internet of Things, or IoT for short.
Not surprisingly, malware development followed this new trend, and malware is now
developed for embedded IoT devices as well.

A significant problem is that the number of IoT devices is already large and grows
exponentially, which means that they can be converted into a substantial attack infras-
tructure by infecting them with malware and organizing them into botnets. Such botnets
have already appeared in the wild. An infamous example is the Mirai botnet, and the
importance of the problem is illustrated by the fact that it holds the record for the most
intensive DDoS attack in history ever [5]. Of course, malware infected IoT devices can
be used not only for building botnets, but also for all sorts of other misdeeds, such as
click fraud and bitcoin mining.

Anti-virus companies rely on malware classification methods to identify relating mal-
ware samples. Clustering malware into families makes sense, as members of the same
family, while being different at the binary level, exhibit similar behavior. Ultimately,
such clustering reduces the load on analysts by allowing them to focus on samples that
are not similar to any known sample.

In this chapter, we investigate the possibility of clustering malware samples based on
their TLSH similarity score, where TLSH is the Trend Micro Similarity Hash, a binary
similarity hash algorithm developed by Trend Micro [91]. While this approach can be
used for clustering any malware, here we use it to cluster IoT malware samples due to the
importance of this new trend. We study the performance of two distance-based clustering
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algorithms, k-medoid and OPTICS, on a large corpus of IoT malware samples when they
are used with the TLSH similarity metric to measure distances between samples. Our
results show that neither of the two algorithms have acceptable performance: k-medoid
produces clusters with unacceptably large diameters, meaning that it puts unrelated
samples into the same cluster, whereas OPTICS fails to cluster more than half of the
samples in our data set. To overcome these problems, we propose a new clustering
algorithm, which is based on OPTICS and achieves a performance superior to both
k-medoid and OPTICS.

The organization of the chapter is as follows. Section 3.1, discusses program similarity
measures. Section 3.2 gives an overview of our research methodology, including how we
obtained our initial set of IoT malware samples, how we cleaned this initial corpus,
and how we determined the TLSH difference threshold under which two samples are
considered variants of the same malware. Section 3.3 presents the performance of the
k-medoid and OPTICS clustering algorithms on our corpus and explain why they are
not appropriate for malware clustering. We describe our own clustering algorithm in
Section 3.4, evaluate its performance, and compare it to that of k-medoid and OPTICS.
We present other approaches to clustering malware in Section 3.6. Finally, we conclude
this chapter and sketch some possible future work in Section 3.7.

3.1 Background on binary similarity hashes
Binary similarity hash algorithms are a popular group of static analysis techniques, which
can compare programs and find similar instances. The input of such algorithms is the
raw sequence of bytes and their output is a specially constructed fingerprint or digest,
also called the similarity hash value. The similarity hash value is constructed in such
a way that slight changes to the input sequence of bytes results in only a slight change
to the resulting similarity hash value. Binary similarity schemes also have comparison
algorithms unique to each scheme that take two similarity hash values as input and
output a difference score. Different schemes interpret scores differently; for example,
higher scores for ssdeep [68] and sdhash [106] signals a higher degree of similarity, while
in the case of TLSH [91], the lower the score, the more similar the inputs are.

Currently, ssdeep and sdhash are treated as the industry best practice. Many com-
panies, including VirusTotal, VirusShare and Malwr list the similarity hash of samples
for these algorithms. ssdeep generates string hashes up to 80 bytes that are concate-
nations of 6-bit piece-wise hashes. The hash value then can be compared with other
hashes to measure of how many character operations are necessary to transform one
string into the other. Because of the fixed-size hash it produces, it quickly loses gran-
ularity and only works for relatively small files of similar sizes. sdhash, on the other
hand, is slower than ssdeep in terms of computation performance but it also overcomes
ssdeep’s main weakness: sensitivity to byte ordering. The scoring method used by sd-
hash, however, results in the undesirable property that similarities are not symmetric,
i.e., sim(A,B) 6= sim(B,A).

Recent research [92] have shown that TLSH is not only more precise than previous
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Figure 3.1: Overview of the methodology for evaluating clustering algorithms

methods, including ssdeep and sdhash, it is also applicable for malware classification.
The TLSH digest of an input byte string, e.g., malware sample, is calculated in four steps.
First, the byte string is processed in a 5-byte-long sliding window and the different byte
triplets in the input are counted. In the case of binary executables, the sliding window
captures the correlation between neighboring instructions, which encode the executable’s
functionality. Second, so called quartile points are calculated which separate the counter
values from the previous step into four equal regions. In the third step, the 3-byte-long
digest header is constructed. The first byte of the header is a checksum of the byte string,
the second byte represents the logarithm of the byte string (modulo 256), and the third
byte is derived from the quartile points. The remainder of the digest is computed based
on the counter values. The result of these steps is a 70-byte-long digest.

TLSH, similarly to other static analysis techniques and binary similarity hashes,
performs well as long as the input binary is not packed or encrypted. Packed executables
contain only a small portion of executable code; most of the files’ contents are filled
with high entropy data. High entropy data decreases the accuracy of calculated TLSH
differences, resulting in detecting samples of the same variants as dissimilar.

3.2 Methodology
This research is concerned with identifying groups of similar malware using their TLSH
similarity score. The high-level overview of the methodology we followed during this
research is shown in Figure 3.1. The methodology can be divided into three main steps:

1. data collection, which results in a data set of IoT malware samples,

2. filtering, which removes packed and/or encrypted samples from the data set, and

20



Malware clustering using binary similarity hashes

3. clustering, which identifies variants in the data set by grouping malware samples
based on their pair-wise TLSH differences.

To evaluate cluster configurations, we need the TLSH difference threshold denoting
variants of malware families.

3.2.1 Data Collection

In order to acquire a data set of IoT malware samples, we first need to select an IoT-
relevant embedded architecture, which the data set should target. This is a necessary
step, as different instruction sets could cause TLSH to measure big differences between
variants compiled for different architectures. For this study, we select samples targeting
the ARM architecture due to its widespread use in the IoT world. Secondly, we compile
a list of 29 malware family names based on previous studies of the IoT malware land-
scape [36, 32, 122]. These malware families specifically target the IoT ecosystem. Many
of them implement the ability to infect other machines and connect them to an existing
botnet. The attacker remotely administers the botnet via various channels, e.g., IRC or
HTTP-based communication. Samples from these families take various commands from
the attacker via a command & control server. The families also share similar traits as
they are known to copy and develop features from each other, e.g., after Mirai’s source
code was leaked1, several modifications led to the branches Satori, Okiru, Masuta and
PureMasuta.

We use the compiled list to search for and download malware samples from VirusTo-
tal 2, a publicly available site to which users can upload executables and submit URLs.
The site scans uploaded executables with a number of anti-virus tools and returns to
the user the collected results, including the malware family names assigned by anti-virus
tools. We downloaded 12,993 samples and their corresponding anti-virus scan results.

The scan results from VirusTotal are fed to AVClass [110], which outputs the most
likely malware family name based on a majority vote cast of anti-virus tools’ assigned
labels. We made changes to the tool’s source code because initially, it could not provide
a label for a number of samples. In order for AVClass to cast a majority vote, it needs
at least 4 detections per sample. As some of our samples have lower detection rates, we
remove this requirement. Throughout our study, we use AVClass’s output as the ground
truth for all samples.

3.2.2 Filtering

The second step in our methodology is to filter the downloaded samples. The step
is required because TLSH has difficulty identifying similarities between packed and/or
encrypted samples. We use two approaches for filtering our data set. Firstly, we use
binary entropy calculation, which calculates the empirical entropy of a file based on the

1https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-released/ (Last
visited: Dec 30, 2020)

2https://www.virustotal.com/ (Last visited: Dec 30, 2020)
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Figure 3.2: Entropy distribution of the data set used to evaluate clustering algorithms

contained bytes. There exist best practices for calculated entropy values signaling packed
and/or encrypted executables [75]. The measured empirical entropy values of our data
set is shown in Figure 3.2. There is a clear cut between the set of native executables and
the set of packed and/or encrypted samples. As a result, we excluded 2,817 samples.

Table 3.1: Malware families in the filtered corpus for evaluating clustering algorithms

Family # Samples Family # Samples
mirai 6,108 ditertag 2
gafgyt 3,711 oneeva 2
dofloo 163 cloxer 1
tsunami 92 zergrush 1
ddostf 63 luabot 1
presenoker 19 lightaidra 1
dnsamp 5 no name recovered 7

Binary entropy calculation has one major limitation, namely, that large sections of
low-entropy bytes can lower the calculated overall entropy. In order to overcome this
limitation, we also use YARA-rules3, as packers can leave traces in the binary, e.g.,
specific strings and/or byte sequences unique to the packer. We run YARA-rules for
UPX and other packers on our whole data set, looking for packed binaries. We found a
total of 980 packed samples, all of which were packed with UPX and have already been
filtered using binary entropy calculation. Table 3.1 shows the distribution of malware
families in our filtered data set.

3https://yara.readthedocs.io/en/latest/ (Last visited: Dec 30, 2020)
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3.2.3 TLSH difference threshold selection

Before being able to cluster our data set, we needed a TLSH difference threshold signaling
variants of malware families that produce zero false matches. This work was carried out
by Tamás [117], however, we summarize his work here for completeness. In [117], he
suggested a threshold of 70 to be used for few false positives. This suggestion, however,
was based on a relatively small set of 477 samples with most of the samples belonging
to two families. In order to define a globally applicable TLSH difference threshold for
malware similarity, he carried out a measurement at a much bigger scale.

He used the EMBER data set [3], the largest available labeled malware data set
at the time of this research4. He processed its test set, containing 100,000 malicious
samples from 917 malware families. As the actual malware binaries required to calculate
the TLSH digests are not included in the data set, his measurements were carried out on
the 62,863 samples available in Ukatemi Technologies’s malware repository. In order to
find the maximal zero false positive threshold, he searched the available sample set with
a candidate threshold. If false matches are found, the threshold is reduced. This process
yielded the zero false positive threshold of 1, which is a much lower threshold than we
anticipated. Manual investigation based on VirusTotal details and behavior pages, as
well as IDA Pro5 with the Diaphora plugin6 revealed that the EMBER data set labels
are often incorrect. Samples with very similar functionality and behavior are labeled as
members of different malware families.

Therefore, he resorted to manual verification. He randomly select samples from
a data set of 355,795,714 unlabeled malware samples, courtesy of Ukatemi Technolo-
gies. The selected samples include 9 Azorult samples, 3 Lightneuron samples and 10
Pioneer samples. He compared these samples to the rest of the data set using the above-
mentioned methodology. His analysis yielded the TLSH difference threshold of 48.

3.2.4 Clustering

The final step is clustering the data set. Our goal is to group samples based on their
TLSH difference, thereby detecting variants of malware families. Initially, we clustered
the data set with two widespread algorithms, k-medoid and OPTICS, using TLSH dif-
ference as the distance metric. The results, presented in more details in Section 3.3,
show that k-medoid often puts unrelated data into the same clusters, while OPTICS
fails to cluster more than half of the samples in our data set. Therefore, we develop a
new clustering algorithm, which we present in Section 3.4.

3.3 Performance of existing clustering algorithms
We now elaborate on the performance results of clustering our data set using both k-
medoid [60] and OPTICS [4]. k-medoid is a PAM-based algorithm in which clusters can

42018, results were published in [C3].
5https://www.hex-rays.com/products/ida/ (Last visited: Dec 30, 2020)
6https://github.com/joxeankoret/diaphora (Last visited: Dec 30, 2020)
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Table 3.2: Best s(k) values for different k-medoid cluster configurations

k s(k)
318 0.962
625 0.959
232 0.955
925 0.950
396 0.948

have only valid data points as their centers (also called medoids). The algorithm has one
input parameter, k, which determines how many clusters will be present in the output
of the algorithm. The algorithm first selects k medoids, then tries to fit all data points
to the nearest cluster head. Medoid selection and re-clustering is repeated iteratively
until an optimum is reached. The measure of goodness for the algorithm is s(k), which
measures the gain in assigning data points to specific clusters based on distance. The
closer the metric is to 1, the better the setup.

OPTICS identifies sparse and dense regions in the data set in order to create clusters.
It takes two parameters, εmax and minPts. ε describes the radius of an area, while
minPts is the minimum number of data points in that area. The algorithm dynamically
calculates ε values for data points such that data points have at leastminPts−1 samples
in their ε radius. OPTICS also has a built-in clustering algorithm, ξ, which clusters data
points by detecting abrupt changes in the ε-values.

3.3.1 k-medoid

There are several rationales behind choosing k-medoid as the clustering algorithm. It
is unsupervised, i.e., there is no need to supply any additional data, only the similarity
measurements between samples. In addition, the algorithm only selects existing data
points as cluster heads. This is useful in our scenario, because cluster heads can represent
other malware samples in the same cluster. The disadvantage of this algorithms is that
the input k has to be specified.

Unfortunately, we do not know how many variants there are in our data set, therefore,
we calculate cluster configurations for all potential k values. We compute the s(k) metric
for all cluster configurations in order to rank our setups.

As shown in Table 3.2, the best s(k) values of the calculated cluster configurations
barely differ, however, the corresponding k values have a wide range, making it unclear
which setup to choose. We also observed that several cluster heads have small TLSH
differences when compared to other cluster heads, which suggests that clusters could be
merged. As variants have a TLSH difference lower then 48, cluster heads of different
clusters should have a TLSH difference score higher than 48. With this requirement in
mind, we looked at our cluster configurations and found, that with TLSH thresholds
ranging from 30 to 70, k = 17 achieves the best s(k) value.

Statistics of the cluster configuration k = 17 is shown in Table 3.3. In this configu-

24



Malware clustering using binary similarity hashes

Table 3.3: Statistics of k-medoid cluster configuration with k = 17

s(k) 0.405
Maximum diameter 1,038
Minimum diameter 180
Mean diameter 467.824
Largest cluster size 1,110
Smallest cluster size 35
Mean cluster size 573.294

ration, the calculated cluster diameters range from 180 to 1,038, the mean being 468. In
our scenario, cluster diameter is interpreted as the largest TLSH difference between any
two samples in the same cluster. Taking our TLSH difference threshold for variants of
48 into consideration, we can conclude that clusters in this setup contain very different
samples; clusters should be split into smaller clusters.

Cluster sizes in the setup range from 35 to 1,110 samples. However, as shown in
Table 3.1, certain families contribute only a small number of samples to our data set.
The configuration does not reflect that distribution, as it does not have any singleton or
small clusters. Thus, we conclude, that the k-medoid algorithm does not perform well
for the goal of clustering malware samples based on TLSH differences.

3.3.2 OPTICS

The second algorithm we tested was OPTICS [4], a density-based algorithm. It is able to
detect and cluster dense and sparse regions in the data set. This characteristic makes it
favorable in our scenario as we have families with only a few samples as well as families
with thousands of samples, as shown in Table 3.1.

The algorithm takes two additional parameters besides a precomputed distance ma-
trix: minPts and εmax. We can specify an upper bound for εmax as the maximum TLSH
difference in our data set. However, selecting minPts is a challenge without knowledge
about the internal structure of our data set. To gain this knowledge, we ran OPTICS
with different parameter setups: εmax values were set to be 40, 50, 60 and 70, while
minPts was set to be 1, 2, 5, 10, 20, 40, 50, 70, 100, 150 and 200.

The resulting cluster configurations are again unsatisfactory. In all configurations,
the number of unclassified samples is very high. Different values of εmax do not seem
affect this trait: setting minPts to 2, εmax = 40 yielded 1,800 unclassified samples, while
εmax = 70 resulted in 1,721 unclassified samples. The more we increased minPts, the
more unclassified samples were returned. The configuration εmax = 70, minPts = 200
resulted in 6,934 unclassified samples, which is 68% of our data set. Such a high number
of unclassified samples is disadvantageous in our scenario, as many samples would require
additional analysis.
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3.4 New clustering algorithm
The performance of both k-medoid and OPTICS present issues for malware analysis.
Firstly, k-medoid produces clusters whose diameters are too large to represent variants
of malware families. We determined the threshold TLSH difference of 48 for variants,
however, k-medoid’s diameters range between 180 and 1,038. OPTICS’s cluster diame-
ters are more in line with our threshold value, however, as much as 68% of our samples
are detected as outliers.

These algorithms were originally developed to cluster measurements that may be
noisy. In order to remove noise, the data set must be cleaned and it must also be
balanced. A balanced data set in our scenario requires exclusion of samples from families
with very high and very low sample counts. Such a step, however, is undesirable as
potential outliers may represent previously unseen variants or entirely new families.

In light of these challenges, we develop a new clustering algorithm that meets the
following requirements. First, it has to cluster samples based on their binary similarity
expressed as TLSH differences. Second, it has to be able to find even the smallest clusters
in a varying density data set. The input data set may contain singleton clusters, i.e.,
samples dissimilar to every other sample; however, these must not be treated as noise
because these are the most interesting samples for malware analysis.

Our algorithm is based on OPTICS, however, we replace OPTICS’s default clustering
algorithm, ξ. Our algorithm can be divided into three major phases. In the first phase,
we extract information about the structure of the data set using OPTICS. In the second
phase, we generate a greedy, initial cluster configuration based on TLSH differences. In
the last phase, we merge clusters in order to compensate for the greedy mechanism in
the previous phase.

In order to extract structural information from the data set, we reuse OPTICS
with input parameters minPts and εmax. OPTICS can compute the minimum ε values
required to form a cluster around individual samples and the algorithm outputs this
information in the form of a list. Elements of this list are si-εi pairs, where si is an
individual sample and εi is the reachability value, i.e., the minimum radius of the area
around si in which there areminPts number of other samples. Samples with low εi values
represent dense regions while samples with high εi values represent sparse regions. We
sort the resulting εi values such that samples in dense regions come first in the list.

Our initial clustering, described by Algorithm 1, begins with no clusters and chooses
the first sample with the lowest εi value. This sample represents the densest region of
the data set and it becomes the first cluster head. We then put those samples into
the selected head’s cluster that are considered similar enough, captured by a threshold
parameter. Subsequent cluster heads are selected iteratively based on the samples’ εi
value. Candidates with lower εi values are tried first and are selected as a next cluster
head, if their dissimilarity to all existing cluster heads exceeds a predefined threshold
value (see line 6). There may be cases when new cluster heads cannot be selected this
way. In such cases, we disregard the pre-defined threshold value and select the sample
that is the most dissimilar from the cluster head they are most similar to (see line 17).
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Algorithm 1 Initial clustering algorithm based on OPTICS
Input:

s0 , . . . , sn : samples to cluster
ε0 , . . . , εn : reachability values of samples s0 , . . . , sn (computed by OPTICS)
hThr : TLSH similarity score threshold to keep cluster heads dissimilar
cThr : TLSH similarity score threshold for forming clusters

Output:
clusters: list of clusters. Each cluster is a list of samples

1: begin
2: remaining ← s0 , . . . , sn
3: clHeads ← []
4: clusters ← []
5: while remaining is not empty do
6: if ∃si : (∀j : εi ≤ εj) ∧ (¬∃sj ∈ clHeads : simTLSH (sj , si) < hThr) then
7: . si is a new cluster head
8: append(clHeads, si)
9: . assign all similar enough samples to si’s cluster
10: cli ← {∀sk ∈ remaining : simTLSH (sk , si) < cThr} ∪ {si}
11: for all sk in cli do
12: remove(remaining, sk)
13: end for
14: append(clusters, cli)
15: else
16: . maximize dissimilarity from most similar cluster head
17: nextHead ← si : ∀sj ∈ remaining : max{∀sl ∈ remaining : min{∀scl ∈

clHeads : simTLSH (scl , sl)}}
18: append(clHeads,nextHead)
19: . assign all similar enough samples to si’s cluster
20: clnextHead ← {∀sk : simTLSH (sk , si) < cThr} ∪ {nextHead}
21: for all sk in clnextHead do
22: remove(remaining, sk)
23: end for
24: append(clusters, clnextHead)
25: end if
26: end while
27: end
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We repeat this process until all samples are clustered.

Algorithm 2 Merging initial clusters
Input:

clusters: list of clusters
threshold: TLSH similarity score threshold to merge clusters
maxInc: maximum increase allowed in cluster diameter when merging two clusters

Output:
clustersfinal : modified list of clusters

1: begin
2: clustersfinal ← clusters
3: for all (cli , clj) pairs of clusters do
4: cltemp ← merge(ci , cj)
5: if d(cltemp) < max(threshold,maxInc ∗max(d(cli), d(clj))) then
6: remove(clustersfinal , cli)
7: remove(clustersfinal , clj)
8: append(clustersfinal , cltemp)
9: end if
10: end for
11: end

The data set may contain dense regions whose diameter is larger than the maximum
allowed dissimilarity. In such cases, the initial clustering strategy faces a limitation
as it groups the center of the region into one large cluster and generates several small
clusters on its perimeter. In order to overcome this challenge, we try to detect such
perimeter clusters and merge them with the center cluster. We combine two clusters if
the combined cluster’s diameter either remains under a given threshold value, or merging
increases the diameter of the center cluster by a fixed parameter. This strategy is shown
by Algorithm 2.

3.5 Evaluation of proposed clustering algorithm
In order to evaluate the efficiency of our proposed clustering algorithm, we compared
it against the results of both k-medoid and OPTICS. During evaluation, we took into
consideration cluster diameters, the number of singleton clusters generated and two new
measures of goodness. We used the following configuration for our clustering approach:
hThr = 150 and cThr = 20 for Algorithm 1, and for Algorithm 2, threshold = 48 and
maxInc = 1.1.

The number of generated clusters and singleton clusters are shown in Table 3.4. k-
medoid and OPTICS both generate considerably fewer clusters than our algorithm does,
more in line with the number of malware families our data set contains. Our algorithm
generates 745 clusters of which 353 are singletons, a negligible amount compared to
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Table 3.4: Comparison of the clustering methods

k-medoid OPTICS Our algorithm
Non-singleton clusters 17 13 392
Number of singletons 0 6,058 353

Figure 3.3: Cluster diameters produced by different clustering algorithms

OPTICS’s performance.
The diameters of cluster configurations from all three algorithms are shown in Fig-

ure 3.3. Because our algorithm produced much more clusters than k-medoid and OP-
TICS, we use a different scale for the number of clusters in its case. Our experiments
have shown that in order to detect variants of malware families, cluster diameters must
be below 48. The figure shows that both k-medoid’s and OPTICS’s cluster diameters
are too large to denote variants. The cluster configuration of our algorithm, however,
is much closer to this threshold with 93.69% of our clusters having diameters below 50.
As a result, our clusters are more likely to represent malware variants.

The first measure of goodness we present shows how “pure” a cluster is, i.e., how
many samples of the cluster are of the family with the most samples in that cluster.
This metric can only be computed for non-singleton clusters as clusters containing only
a single sample automatically achieve the measure of 1. Figure 3.4 shows the algorithms’
performance with respect to this measure of goodness. Cluster configurations of both
k-medoid and OPTICS typically achieve ratios between 0.56 and 0.63. By contrast, of
the 392 non-singleton clusters produced by our algorithm, 185 have ratios over 0.6 of
which 103 outperform both OPTICS and k-medoid.

We need to take into consideration that malware families share and/or copy features
from each other. In response, the relaxation of our measure of goodness considers not
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Figure 3.4: Goodness ratios produced by different clustering algorithms

Figure 3.5: Relaxed goodness ratios produced by different clustering algorithms
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only the family with the most samples in a given cluster but also families with which it is
known to share features. For our data set, there exist known shared features among the
Gafgyt/BASHLITE, the Kaiten/Tsunami, the Darlloz/Zollard, the Aidra/LightAidra,
and the Mirai families. For this measure of goodness, singleton clusters can be included,
because non-singleton clusters have a chance of achieving the ratio 1 thanks to the rela-
tionships between malware families. The figure shows that even though both OPTICS
and k-medoid achieve ratios above 0.95, our algorithm outperforms both with almost
all clusters achieving the measure of 1. However, our algorithm produces clusters whose
relaxed ratios are well below those achieved by k-medoid and OPTICS. While investigat-
ing this issue, we found an indication of poor anti-virus labels. Specifically, all clusters
achieving ratios of 0.5 contain 2 samples and their malware family labels do not match.
However, the diameters of these clusters is quite low, the mean diameter being 30.71.
Checking the samples’ VirusTotal pages, we also saw that there were only a few labels
on their scan pages. Therefore, the low ratios could be caused by misclassifications on
AVClass’s part.

3.6 Related work
Accurately identifying groups of similar malware in a large data set is an important
problem for anti-virus companies. With rising tide of malware, these companies receive
thousands of samples each day from various sources, including their intelligence networks,
malware sharing sites, and specialized malware feeds. Manually dissecting and analyzing
each sample does not scale well, therefore, there is a growing need to automate the
process. The goal is to help analysts focus on those samples that are not similar to
known malware. These samples are highly interesting for anti-virus companies because
they could be indicators of highly sophisticated targeted attacks or new types of malware.

Due to the high interest in malware clustering, the field has a vast literature. Several
surveys [130, 118, 45] have been published to organize existing research and systemize the
lessons learned. In light of this, we only provide a short summary of the field of malware
clustering here. Interested readers can look to the previously mentioned surveys for a
more in-depth discussion.

The process of clustering malware samples typically starts with feature extraction.
The goal of this step is to extract the main characteristics of individual samples and
later use these characteristics to identify groups. Features proposed in literature can be
categorized into static, dynamic and network features depending on the program anal-
ysis techniques used to extract them. Static features, such as byte sequences [131, 80],
opcodes [52, 70, 120] and call graphs [53, 64, 67], are extracted using static program
analysis techniques. TLSH similarity hashes can also be categorized as static features
because their computation involves reading through the bytes in a sample and comput-
ing statistics over said bytes. Dynamic features are extracted using dynamic program
analysis techniques and require samples to be executed in controlled environments, e.g.,
sandboxes. Examples of dynamic features include traces of system calls [103, 94, 95, 101]
and behavioral profiles [11, 12, 81]. Network features [99, 115, 102] also require samples
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to be executed, however, instead of focusing on events in the controlled environment,
these features capture the behavior of a sample from the network’s perspective.

Studies in literature typically explore a few types of features at most. However, in an
industrial setting, features can transformed into vectors, in which individual coordinates
correspond to different features. The resulting vector usually has high dimensionality.
Therefore, dimensionality reduction and feature selection are important steps in the
process [55, 119].

Existing research has explored a number of clustering algorithms as candidates for
clustering malware samples. Most notable of these algorithms are hierarchical algo-
rithms [98], PAM-based algorithms [83], k-nn [85] and DBSCAN [64]. Recently, there
is an emerging trend of replacing clustering algorithms with machine learning algo-
rithms [129], such as support vector machines [93], neural networks [66], and decision
trees [84]. The expected benefit of this change is to automate feature selection and use
machine learning algorithms to provide not only labels for individual groups for models
for different malware families and variants.

3.7 Conclusion
In this chapter, we studied the applicability of TLSH in the field of malware clustering.
We applied this approach to cluster IoT malware samples, however, we note that our
approach is generic and can be applied to other malware as well. We studied the perfor-
mance of two distance-based clustering algorithms, k-medoid and OPTICS, on a large
corpus of IoT malware samples when they are used with the TLSH difference metric to
measure distances between samples. We found that neither of the two algorithms had
acceptable performance: k-medoid produced clusters with unacceptably large diameter,
meaning that it put unrelated samples into the same cluster, whereas OPTICS failed to
cluster more than half of the samples in our corpus.

To overcome these problems, we proposed a new clustering algorithm based on OP-
TICS, which achieved a better clustering performance. Our algorithm identifies dense
regions in the data set and considers the data points in the center of the dense regions
as cluster heads. A data point is included in a given cluster if and only if its TLSH
difference to the cluster head is below a threshold value. We also merge clusters if they
are close to each other in terms of TLSH difference and the diameter of the resulting
merged cluster does not exceed a pre-specified threshold. We used the TLSH difference
threshold below which two samples are considered variants of the same malware by em-
pirical analysis of an independent set of malware samples (the EMBER data set). These
results were published in [C3].
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Chapter 4

Uncovering environmental
requirements of malware

As mentioned in Chapter 3, there exist malware clustering approaches that rely on fea-
tures executed during samples’ execution. However, attackers have developed malware
in which the undocumented, potentially malicious features are executed only when spe-
cific conditions are met, for example, some inputs that satisfy pre-defined criteria are
received. This behavior is known as trigger-based behavior and such inputs are called to
as trigger inputs. The pre-defined criteria are hard-coded into the program in the form
of checks and their semantic meaning can encompass all sorts of external requirements,
e.g., specific system time or location, special text entered or messages received. While
not all instances of trigger-based behavior are malicious (take, for example, software
easter eggs1), such behavior is often exhibited by malware. For example, malware can
evade in-depth analysis by scanning its environment and ceasing malicious activities if it
finds signs of an analysis framework2. Trigger-based behavior also includes backdoors,
a behavior prevalent in embedded firmware images [31], in which case access is granted,
if a specific string is received as input.

Due to the often malicious intent behind the implementation of trigger-based be-
havior, its detection is important. However, the specific conditions required to trigger
the hidden behavior is known only to its author, therefore, uncovering such behavior via
testing is challenging. Previous works in this field [16, 43, 65] have demonstrated the use-
fulness of symbolic execution [9] to determine the conditions necessary to trigger hidden
behaviors. Symbolic execution was originally developed to automate testing by analyz-
ing execution paths and generating test cases, which lead execution down the analyzed
execution path. In order to uncover the conditions related to trigger-based behavior, we
need to analyze the program’s interaction with its environment and the environment’s
influence on the program’s behavior. If data from the environment is replaced with sym-
bolic variables, symbolic execution can be used to analyze this interaction and obtain

1https://electrek.co/2017/12/23/tesla-christmas-easter-egg/ (Last visited: Jun 8, 2020
2https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-malware.

html (Last visited: Jun 8, 2020)
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Figure 4.1: Using symbolic execution for recovering environmental conditions guarding
malicious behavior

the hard-coded conditions. Solving these conditions give analysts concrete values that
can be used for further analysis. However, using symbolic execution has a limitation:
the more symbolic variables are introduced into the analysis, the more execution paths
must be analyzed, leading to the path explosion problem. Previous work addressed this
problem by considering only a subset of potential trigger condition types [43, 16].

In this chapter, we improve upon existing work by considering all potential trigger
condition types automatically. In order to deal with the greater number of symbolic
variables and the resulting path explosion problem, our approach focuses on specific
instances of malicious behavior. Malicious behavior can be modeled using library or
system calls [19, 37, 20, 133, 71], depending on how the analyzed program’s environment
is defined. The overview of the main idea is shown in Fig. 4.1. We assume that the
analyzed program is deterministic and interacts with the environment through libraries
or the operating system and its API (system calls). In real-life execution, the program
would invoke multiple calls and a subset of the return values would be matched against
the pre-defined criteria hard-coded into its logic. Only if the result of the comparison(s)
were a match, would the program execute the potentially malicious behavior. In order
to analyze this interaction, the return values of those calls that return data from exter-
nal sources must be replaced with fresh symbolic variables. Our contributions are the
following:

1. We present an approach for uncovering trigger-based behavior at both the source
code and binary levels, which is capable of considering all external data sources as
trigger input types. Our approach replaces library and system calls with symbolic
summary functions, which return fresh symbolic variables instead of external data.

2. We validate the applicability of the general idea at the source code level using real-
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world, open-source software samples. The results suggest that if symbolic execution
succeeds, environmental conditions guarding the hidden, malicious behavior can
be extracted from programs.

3. Our experiments at the source code level also show that our analysis is prone to
the path explosion problem. In order to overcome this challenge, we develop a
new path selection strategy relying on directed symbolic execution [77] to guide
analysis towards selected program points.

4. Directed symbolic execution expects a semantically correct and complete inter-
procedural control-flow graph. The generation of such a control-flow graph is a
challenge at the binary level, mainly due to indirect jumps. Therefore, we design
our approach such that directed symbolic execution can be performed even if the
interprocedural control-flow graph has incorrect/missing edges and/or nodes. We
also discuss a technique to proactively check and add missing return edges to the
graph throughout analysis, resulting in a more accurate view of the interprocedural
control-flow graph.

5. We implement our approach in angr [111] for the binary level: we model 41 system
calls for Linux and discuss modifications to angr’s workflow in order to make our
approach feasible in practice.

6. We evaluate our approach on an artificial malware sample with multiple instances
of trigger-based behavior, as well as on a real malware sample compiled for the
ARM platform. The program logics of the selected samples contain elements known
to be challenging for symbolic execution and their execution relies on multiple
sources of environmental input. Our approach is able to reach the specified pro-
gram points and obtain the environmental conditions required to trigger their
execution. In addition, our analysis has a reasonable performance considering the
complexity of the analyzed samples and the generality of our approach.

The chapter is structured as follows. Section 4.1 provides an overview of symbolic
execution and Section 4.2 discusses related work on triggering specific behaviors. Section
4.3 presents preliminary results on the validity of our approach when applied to source
code. Section 4.4 builds on the results and presents an approach to uncover environmen-
tal conditions without a priori assumptions about trigger condition types at the binary
level. Section 4.8 concludes the chapter and outlines future research directions.

4.1 Background on symbolic execution
The concept of symbolic execution [9, 109] has been well-researched over the years and
as such, a full survey of the field is out of scope for this chapter. We only summarize its
main characteristics and discuss the challenges it poses for our research.

Symbolic execution is an analysis technique originally proposed to automatically
generate test cases and increase code coverage. During symbolic analysis, registers and
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memory addresses do not store exact values but instead special symbols called symbolic
variables. When first introduced into the analysis, symbolic variables may take on any
value, i.e., they are unconstrained. When analysis reaches a branch in the analyzed
program, two execution paths are spawned for both sides of the branch, i.e., it forks.
In each spawned execution path, constraints are placed on the symbolic variables to
represent the chosen path. The set of constraints collected on an execution path is
the path condition. An execution path is satisfiable, if there exists an assignment to its
symbolic variables such that the path condition is satisfied. If no such assignment exists,
the execution path is said to be unsatisfiable.

The challenges of performing symbolic execution on arbitrary programs in binary
form are manifold. First, tools implementing the technique need to model the execution
state on the platform the analyzed program is intended to run on, including instruction
set, registers, memory, calling conventions, flags, etc. Tools implementing symbolic
execution, e.g., DART [47], KLEE [18], S2E [27], Mayhem [24] and angr [111], have such
a model of the execution platform.

Second, symbolic execution can only reason about code it analyzes and has no inher-
ent knowledge about library functions, system calls and their side effects. This is known
as the environment problem and is typically tackled using summary functions [46, 2],
which are pieces of code that summarize the effects of the missing piece of code.

Third, symbolic execution spawns execution paths to pursue at each encountered
branch, resulting in an exponential growth in the number of execution paths with respect
to the number of conditional branches. This challenge is known as the path explosion
problem and as a result, symbolic execution cannot exhaustively explore all execution
paths in all but the simplest of cases. This challenge is partially tackled by specifying
which parts of the program are of interest to the analysis and only executing those parts
symbolically. In such scenarios, the analysis engine keeps track of not only the symbolic
state, but the concrete execution state as well, earning the name mixed concrete and
symbolic execution. Previously mentioned tools implement such a mixed variant.

Lastly, since not all execution paths can be explored during symbolic execution,
analysis has to prioritize. This challenge is known as the path selection problem and it is
usually tackled using a heuristic exploration strategy. The depth-first strategy explores
an execution path to completion before backtracking to the last fork and continuing
with the second deepest branch. The breadth-first strategy, on the other hand, seeks to
explore all execution paths in parallel. There are also randomized strategies, where the
next pursued path is selected randomly with some probability. In certain application
domains of symbolic execution, path selection algorithms have been tailored for a specific
goal, e.g., maximizing coverage [18, 73] or reaching a certain program point [77, 96].

At the source code level, we use KLEE to validate the applicability our approach. At
the binary level, we use angr, which has a model for the ARM platform. However, neither
tools solve the environment problem and angr does not have built-in path selection
strategies; our solutions are discussed in Sections 4.3 and 4.4.
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4.2 Related work
We now present the existing literature related to our work. Uncovering hidden be-
haviors in malware is an important step in malware analysis as it allows for a more
comprehensive view of analyzed programs. Such analysis helps detecting if a program
executes differently in a controlled sandbox than in a real machine. This allows malware
analysts to better understand programs and develop more accurate signatures for detec-
tion. Our work is closely related to this field, therefore, existing work is summarized in
Section 4.2.1.

Section 4.4 introduces a path selection strategy for tackling the path explosion prob-
lem at the binary level. The building blocks for our proposed strategy have also been
used to reproduce field failures in the software engineering field. Therefore, we provide
an overview of this field in Section 4.2.2.

4.2.1 Uncovering hidden behavior in malware

There are three main approaches to uncovering hidden behaviors in the context of mal-
ware analysis. The main goal of all these approaches is to explore multiple execution
paths in the analyzed program. Depending on the underlying program analysis tech-
niques, the approaches must make a decision regarding a trade-off between precision and
scalability.

The most scalable approach is known as forced execution. This technique relies on
instruction-level monitoring to detect branches during execution. At branches, a snap-
shot is taken of the current execution state and the program is allowed to continue
execution. When the execution terminates or hits an exploration limit, one of the pre-
viously captured snapshots is restored and a different decision outcome is forced by
overriding the program counter [125, 8]. As a result, forced execution is imprecise: re-
sulting execution states may be infeasible, causing analysis to explore execution paths
that never occur during real execution. Understanding the trigger conditions is usually
out of scope for these approaches. More advanced examples of forced execution try to
improve precision by employing taint analysis [82, 97] to force only the predicates that
are related to program input.

A more precise analysis can be achieved by using dynamically configured environ-
ments. These approaches execute the program in different controlled environments, typ-
ically sandboxes, compare the execution results, and search for mismatches. Setting up
the controlled environments is usually semi-automated. Well-known API return values
or events in the system can be supplied to the program automatically [41, 58, 116, 126,
22, 23], however, persistent objects need to be set up by human analysts [1, 74]. This
analysis method is more precise than forced execution because the analyzed execution
paths are feasible. However, correctly setting up the environment such that all the right
trigger conditions are met during execution remains a major challenge.

The most precise, yet least scalable approaches use a variant of symbolic execution.
These approaches model the environment with symbolic summary functions, which in-
troduce symbolic variables to analysis. Concrete trigger inputs are acquired by taking
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the path conditions calculated by the symbolic execution engine and solving them using
a constraint solver. The main limitation of current approaches, however, is that they
consider only a limited number of trigger condition types in order to contain path explo-
sion. MineSweeper [16, 132] relies on the human analyst to select trigger condition types.
TriggerScope [43] only considers time, location and SMS objects. Rozzle [65] limits itself
to the navigator’s fields in JavaScript. BotMelt [59] focuses only on network packet data
and Li et al. [72] allow certain environment-related data to be returned concretely for
performance reasons.

The main difference between our work and the previously discussed related work
is that we expand on previous work relying on symbolic execution by considering all
potential trigger condition types automatically. As a result, our analysis introduces
more symbolic variables, therefore making the path explosion problem a bigger threat
to the success of our analysis. In order to overcome this challenge, our approach focuses
on searching for specific instances of malicious behavior, which we model differently at
the source code and binary levels.

4.2.2 Reproducing field failures

The software engineering problem of reproducing field failures has a similar goal as our
present work. In that field, the assumption is that the user experiences a fault or crash
and files a bug report. Then, it is the developers’ task to debug and fix the issue, which
requires triggering the same fault or crash in a controlled environment. In order to
help the developers, numerous approaches have been proposed to automatically force
(trigger) the program to malfunction. These approaches assume that some information
is available about the crash, e.g., specific program points, the call stack at the time of
the crash, function calls and/or UI events leading to the crash, complete traces, or parts
of a log file.

Approaches based on symbolic execution, such as BugRedux [56], F3 [57], Her-
cules [100], RDE [123], and STAR [26], employ a symbolic execution engine to automat-
ically generate test cases for developers to observe the malfunction in their debugging
environment. In order to deal with the potentially large number of execution paths,
these approaches use the information about the fault/crash to guide symbolic execution.

Approaches relying on observed events leading up to the malfunction, such as Pen-
sieve [134], Yakusu [40], RETracer [35], and CRASHDROID [124], utilize program
analysis techniques, e.g., dependency analysis or taint analysis. These approaches typi-
cally scale better than symbolic execution-based approaches but can often only produce
partial traces ending at the fault/crash site.

Search-based approaches, e.g., EvoCrash [113, 114], SBFR [63], and RECORE [105],
use genetic algorithms to generate test cases for developers. These approaches formulate
reproducing field failures as an optimization problem and define custom fitness functions.
Candidate test cases are generated using crossover and mutation operations. Defining
the fitness function is one of the major challenges because it involves measuring the dis-
tance between a test case and the targeted program point. There exist other approaches
as well, including crowd-sourcing the problem of acquiring information about the mal-
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function [48], exploring the program’s state space with model checking [86, 87] and using
random testing to generate the test cases [127, 14].

The major difference between the aforementioned works and our work is the amount
of input data available. Approaches to reproduce field failures assume the availability
of execution data about an existing fault/crash. In other words, they can assume that
the failure definitely exists in the application and there certainly is a way to make the
program exhibit the malfunction. What is more, the available execution data can be
used to pinpoint the location of the crash and guide the search for a test case. By
contrast, we do not know whether a malicious behavior exists in a program or not. We
also do not have a priori information about where such a behavior could be located.
We can locate invocation instances of library and system calls in the interprocedural
control-flow graph, however, we do not know whether a particular invocation instance
contributes to the malicious behavior or not. We also do not have (partial) information
about how to force the program to exhibit the malicious behavior.

4.3 Preliminary study at the source code level
Before moving to the binary level, we perform a study on the applicability of our ap-
proach at the source code level. There are two rationales behind performing this ex-
periment. First, trigger-based behavior may be present at the source code level during
development. For example, a disgruntled employee3 or a compromised supplier may de-
liver code with hidden unwanted functionalities. These scenarios show that uncovering
trigger-based behavior is also a software verification and validation problem: given a
piece of software that conforms to its specification, is said piece of software capable of
performing other functionalities as well? And if so, what are the ramifications of those
other functionalities? Second, program analysis at the binary level is more challenging
than it is at the source code level. If there are fundamental issues with the idea of replac-
ing all external data with symbolic variables, those issues are more easily understood
from the source code than from binary instructions.

For our experiment, we follow the methodology outlined in Fig. 4.2. For each piece
of software under analysis, we automatically instrument its source code to introduce
fresh symbolic variables instead of concrete environmental data. We then subject the
instrumented program to mixed concrete and symbolic execution, which generates test
cases for individual execution paths. By refeeding the generated test cases to the software
under analysis, we acquire the execution trace of an execution path. We examine this
execution path for signs of malicious or undocumented behavior.

4.3.1 Automatic source code instrumentation

Many existing mixed concrete and symbolic execution tools, including KLEE [18], S2E [27],
and CREST [17], require additional library calls to specify which variables in the software

3http://www.computerworld.com/article/2551740/government-it/it-worker-jailed-for-creating-logic-bomb.
amp.html (Last visited: Jan 4, 2021)
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Figure 4.2: Methodology for evaluating open-source software with respect to trigger-
based behavior

should be treated as symbolic. Therefore, the first step of the analysis is to instrument
the source code with the required library calls.

In order to detect trigger-based behavior, instrumentation must first identify vari-
ables and function calls that may guard the hidden behavior. Considering that the
attacker triggers the hidden behavior during execution, the trigger inputs must be sup-
plied via interaction with the software, thus, the attacker is part of the environment. As
software typically interacts with its environment via function calls, calls that return data
from the environment are potential entry points for trigger inputs. By replacing these
calls so that fresh symbolic values are returned, mixed concrete and symbolic execution
can determine how execution depends on the environment.

We propose that replacement should happen with symbolic summary functions. Sym-
bolic summary functions are empty functions that introduce fresh symbolic values to the
software under analysis. They have the same prototype as their original counterpart (i.e.,
same return type, same number and type of arguments). The introduction of fresh sym-
bolic values can happen either as a return value or by making certain arguments symbolic,
depending on the semantics of the original function. Symbolic summary functions should
be easily identifiable in the source code, e.g., with naming convention, to make the the
introduction of symbolic values obvious. For example, consider the pcap_next() func-
tion from the libpcap library. The function reads the next packet from a packet capture,
and as such, it may return the trigger inputs embedded in a packet. The original func-
tion has the signature const u_char *pcap_next(pcap_t*, struct pcap_pkthdr*).
The corresponding dummy function has the same return type and arguments, but it is
easily identified with a naming convention: it could be called pcap_next_dummy. How-
ever, instead of returning a pointer to a concrete packet, the symbolic summary function
returns a pointer to a symbolic variable representing a packet.
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Figure 4.3: Generating execution traces from highlighted test cases

4.3.2 Mixed concrete and symbolic execution

The mixed concrete and symbolic execution tool then analyzes the instrumented source
code and is capable of automatically generating test cases for the analyzed software. To
increase the effectiveness of our approach, we require the following two features:

1. The tool must be able to output path conditions at any given program point, and

2. path conditions output at potentially malicious points must be easily differentiated
from other test cases generated at different program points.

The first feature is used to output path conditions before potentially dangerous in-
structions. We define potentially dangerous instructions as system and library calls that
could be used for implementing malicious behavior. For example, the execv() call in C
is potentially dangerous because it may be used to give malicious commands to the op-
erating system. Other potentially dangerous instructions include calls to system() and
send(). Given a list of potentially dangerous functions, their use in the source code can
be identified automatically. Thus, the source code can be automatically instrumented in
such a way, that the mixed concrete and symbolic execution tool generates a test case
immediately before reaching the suspicious behavior. Since potentially dangerous system
and library calls can be used for benign purposes as well, false positives are possible.

The second requirement increases the level of support our approach gives to hu-
man analysts by prioritizing between generated test cases. We refer to solutions to
path conditions output at potentially malicious program points as highlighted test cases.
Highlighting potentially malicious test cases orients analysts towards potential trigger
inputs. The differentiation between ordinary and highlighted test cases may be based
on special file extensions, storage in a different folder, etc.

4.3.3 Trace generation

Highlighted test cases show the potential trigger inputs, but give no information about
how the trigger inputs are used in the software. This information is acquired by trace
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Table 4.1: Tools used in the prototype implementation of the methodology

Framework Element Tool in Prototype
Automatic source code instrumentation clang [69]
Mixed concrete and symbolic execution KLEE
Compilation gcc4

Test case refeeder klee-replay
Debugger gdb5

generation. We replay the highlighted test cases to see the sequence of instructions
executed (the trace) and follow the same execution path that the mixed concrete and
symbolic execution tool did. The overview of trace generation is shown in Fig. 4.3.

First, the instrumented source code has to be compiled into an executable, which
contains the symbolic summary functions. The compiled software is then executed in
the test case refeeder, which also takes as input the highlighted test case. The task
of the refeeder is to monitor the execution of the instrumented software and replace
symbolic values with the concrete values from the highlighted test case. Whenever
dummy functions would introduce fresh symbolic values, the test case refeeder intercepts
the call and returns the input value calculated by the mixed concrete and symbolic
execution tool. Meanwhile, a debugger is attached to the process to generate the trace.
The debugger steps through the software line by line and outputs each line into the
execution trace. Human analysts can then inspect the execution trace to determine
whether the execution path is indeed malicious or not.

4.3.4 Prototype implementation

We implemented our methodology as a prototype using the GNU and LLVM toolchains
using the tools summarized in Table 4.1. Automatic source code instrumentation was
implemented as a standalone tool using clang. Our prototype automatically generates
symbolic summary functions based on a list of function names and semantic data about
how to introduce fresh symbolic values. The following JSON document shows the se-
mantic data required to generate symbolic summary functions:

{
"function_name" : "recv",
"include_file" : "sys/socket.h",
"symbolic_return" : false,
"symbolic_return_size" : 0,
"symbolic_params" : [

{
"index" : 1,

4https://gcc.gnu.org/ (Last visited: Jan 4, 2021)
5https://www.gnu.org/software/gdb/ (Last visited: Jan 4, 2021)
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"has_fixed_length" : false,
"fixed_length" : 0,
"has_dynamic_length" : true,
"length_param_index" : 2

}
]

}

The JSON document contains the name of the original function and the header file from
which it is included. It also encodes whether the return value of the dummy function
should be made symbolic ("symbolic_return") and the size of the symbolic return
value ("symbolic_return_size"). There are function calls, however, that write the
environment-specific data into one of their parameters, such as recv(), which writes the
message from the socket into its second parameter, a buffer. Therefore, the structure
encodes whether any of the parameters should be made symbolic ("symbolic_params").
For each such parameter, its index is given (starting from 0) with additional information
about how to create the symbolic value. Some function calls, like pcap_next(), allocate
the buffer themselves based on the environment-specific data and return a pointer to it.
In such cases, our prototype implementation generates a symbolic value with fixed length
("has_fixed_length"). The fixed length is a numeric value, e.g., 35 ("fixed_length").
There are function calls, however, which also expect a numeric parameter giving the
upper limit of data size the buffer can hold. In such cases, our prototype generates a
symbolic value with dynamic length ("has_dynamic_length") using the index of the
parameter holding the size limit ("length_param_index").

Our prototype uses KLEE as a mixed concrete and symbolic execution tool, because
KLEE satisfies the two feature requirements mentioned in Section 4.3.2. Our implemen-
tation signals KLEE to output highlighted test cases using the klee_assert() function.
The function takes a logical formula as input and is intended for sanity checks. Failing
sanity checks result in the termination of the current execution path and KLEE out-
puts the uncovered path condition with its solution (if it can be computed). We signal
potentially dangerous program points by giving the function an always failing logical for-
mula, thereby forcing KLEE to calculate and output the potential trigger inputs. The
klee_assert() call is placed in the source code before the following functions:

• system() and exec(), as they can be used to give commands to the operating
system, and

• send(), as it can be used to leak information about the system.

The list can be extended to include more potential malicious functions, for example,
from unistd.h and socket.h headers.

The instrumented source code is compiled with gcc and fed to klee-replay, a replay
library provided by KLEE. The replay library also takes as input the test cases generated
by KLEE, which have the KTEST extension. Sanity check failures result in outputting not
only the generated test case and the path condition, but also a text-based file named
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test<numerical ID>.external.err. This special file extension highlights potential
trigger inputs. The contents of the binary file can be read with the ktest-tool utility,
which lists the concrete values deducted from the path condition:

object 1: name: ’arg0’
object 1: size: 11
object 1: data: ’-X\x00\x00\x00\x00\x00\x00\x00\x00\x00’

During replay, gdb is connected to the process in which the instrumented software is
executed. Using the step and next gdb commands, the source code lines executed are
outputted into a file for further inspection.

4.3.5 Evaluation

To evaluate our approach, we collected open-source software from GitHub using keyword
search for the terms “backdoor”, “logic bomb”, “time bomb” and “portknock”. All
collected samples were written in C and implement some form of trigger-based behavior.
For the evaluation, we used a virtual machine with 4 CPUs and 10 GB memory. The
virtual machine ran Ubuntu 14.04.5 LTS. We set the maximum memory available to
KLEE to 8 Gb and used its default path selection strategy.

Table 4.2: Results for uncovering hidden malicious behavior in open-source software

Sample Name Completed paths Generated test cases Detected
cd00r 1,299 5 (1 highlighted) Yes (1/1)
giardia 48 4 (1 highlighted) Yes (1/1)
osx-ping-backdoor 212,754 122 (2 highlighted) Yes (1/2)
portknockd 11,902,399 1 No
portknocking 39,077 8 No

Our results are summarized in Table 4.2. While KLEE explored many paths in
the samples, we configured it in such a way, that only test cases covering previously
uncovered code would be outputted. Hence the low number of test cases generated.

The cd00r project uses a filtered packet capture and starts an interactive shell af-
ter a successful portknock. This sample executes in an infinite loop and exits only, if
portknocking is successful. Because of the infinite loop, however, our analysis would
have taken an infinite amount of time as well. Therefore, we modified the code so that
unsuccessful attempts cause it to exit as well. With this modification, KLEE generated
5 test cases of which 1 was highlighted. The highlighted test case was a true positive
detection, and the only malicious path in the sample: no false negative test case was
generated.

The giardia project expects a password to be delivered to the correct port. The
password is configurable, in the original code, it is "s3cr3t", which we did not change.
In this case, KLEE generated 4 test cases with 1 highlighted. The highlighted test was
a true positive detection, and the tool did not miss any malicious paths.
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The project osx-ping-backdoor was written for the OSX operating system, while our
prototype implementation ran on Ubuntu. Therefore, we copied the malicious logic
from the OSX implementation and injected it into the Ubuntu-compatible source code
of the ping command. The malicious logic introduces two undocumented command line
parameters (-x and -X), both leading to the same code segment. 122 test cases were
generated with 1 highlighted. The highlighted test case was a true positive detection,
but KLEE missed the other command line parameter. After the creation of the first
successful highlighted test case, the second call to klee_assert() failed and the tool
abandoned the execution path without outputting any results.

Analysis of the portknockd project failed because the maximum of 8 GB memory
was not enough for KLEE. When the memory limit was exceeded, the tool abandoned
thousands of paths, including the one implementing the hidden behavior.

The portknocking functionality in the portknocking project is protected by time: a
portknocking attempt is considered successful only, if it happens within an small timing
window. The timing window is implemented in a different thread, i.e., the sample
executes concurrently. However, KLEE cannot analyze concurrent execution, leading to
a failed analysis.

4.4 Tackling the problem at the binary level
The experiments at the source code level show that the default path selection strategy
does not always yield positive results. Therefore, we need a path selection strategy
that guides symbolic execution towards specific program points of interest. We now
propose a new path selection strategy that fits this criteria and can be used to analyze
binaries. At the binary level, we assume that the analyzed program is deterministic and
interacts with the environment through the operating system and its API (system calls).
Therefore, we consider invoked library functions as part of the analyzed program.

We assume that the human analyst is interested in knowing the conditions required
to trigger a specific malicious behavior in the analyzed program. However, as we men-
tioned before, we assume no a priori information about whether the behavior in ques-
tion exists in the binary, and if it does, where it could be located in the binary. To
guide our search, we require the human analyst to provide a description of the ma-
licious behavior in the form of a sequence of system calls with associated predicates:
(s0, p0), (s1, p1), . . . , (sn, pn). Throughout the chapter, we refer to this sequence as the
target system call pattern of the malicious behavior.

Modeling malicious behaviors using a sequence of system calls is a widely used ap-
proach in the malware analysis domain for a number of reasons. First, system calls con-
stitute the primary communication channel between programs and the operating system.
First, system calls constitute the primary communication channel between programs and
the operating system. Many functionalities necessary for a program’s execution are pro-
vided as services by the operating system which can be required via system calls. Second,
the semantics of each system call are documented and available for interested parties.
However, system calls alone are often insufficient to describe a particular behavior with
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enough granularity [19]. Therefore, we allow users to specify additional requirements for
the invocation of system calls with predicates. Such requirements may include specifying
what arguments should be passed to system calls, what the contents of the execution
state’s memory and/or registers should have, etc. For example, if analysis focused on
checking whether the analyzed program spoofs the source IP address of outgoing pack-
ets during a denial-of-service attack, the target system call pattern could contain the
following:

(socket, type=SOCK_RAW),
(sendto, sockfd=raw_sock_fd ∧ buf[SRC]= x),
(sendto, sockfd=raw_sock_fd ∧ buf[SRC]6= x),

1. socket: The socket system call6 is used to create sockets for network communica-
tion, including denial-of-service attacks. In order to spoof the source IP address in
the IP header, the program would need to create a raw socket. Raw sockets expect
the IP header and transport layer header to be constructed by their callers7. As
a result, the associated predicate would check whether the type argument of the
system call requests a raw socket.

2. sendto at least twice: The sendto system call8 can be used to send data over
sockets, including the payload during denial-of-service attacks. The associated
predicate would need to perform two checks: 1) determine whether the data is sent
over the previously created raw socket, and 2) check whether the bytes representing
the source IP address have different values across system call invocations.

While specifying target system call patterns requires expert knowledge, they need to
be defined only once and can be reused later for many samples. In this regard, they
are similar to other knowledge bases related to malware analysis, e.g. YARA rules9.
In addition, individual low-level target system call patterns could be combined to build
higher-level behavioral specifications similarly to the work of Lorenzo et al. [79].

The goal of our analysis is to find an execution path that reaches the specified system
calls in the same order as specified in the target system call pattern and whose execution
states at the system call invocations satisfy the associated predicates. The execution path
may contain other system calls between the elements of the target system call pattern.
In order to find such an execution path, we use mixed concrete and symbolic execution
guided by Algorithm 3. Our approach consists of three techniques:

1. a path selection strategy, executed at line 7, consisting of three levels to prioritize
available execution paths,

2. symbolic summary functions, used at line 9, capturing the behavior of invoked
system calls in order to introduce a model of environmental data to the analysis,
and

6http://man7.org/linux/man-pages/man2/socket.2.html (Last visited: Jun 8, 2020)
7http://man7.org/linux/man-pages/man7/raw.7.html (Last visited: Jun 8, 2020)
8http://man7.org/linux/man-pages/man2/sendto.2.html (Last visited: Jun 8, 2020)
9https://virustotal.github.io/yara/ (Last visited: Mar 5, 2021
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Algorithm 3 Determining Trigger Conditions
Input:

icfg: interprocedural CFG of program
summaries: symbolic summary functions

pattern: ordered list of system calls and predicates (s0, p0), (s1, p1), . . . , (sn, pn)
Output:

path_conds: triggering execution paths’ path conditions
1: begin
2: path_conds ← []
3: st0 ← execution state at program’s entry
4: states ← []
5: append(states, st0 )
6: while states is not empty do
7: to_step ← PathSelection(states, icfg, pattern)
8: remove(states, to_step)
9: successors ← Step(to_step, summaries)
10: for all st in successors do
11: UpdateICFG(st, icfg)
12: . PatternCheck() saves triggering path condition in path_conds
13: path_conds ← PatternCheck(st, icfg, pattern, path_conds)
14: insert(st, states)
15: end for
16: . Some of successors may have triggered pattern
17: if path_conds contains path condition(s) then
18: return path_conds
19: end if
20: end while
21: return null
22: end

3. a mechanism for automatically finding target program points that can advance the
execution path’s progress in the target system call pattern, invoked at line 13.

We start analysis from the entry point of the program and while there are execution states
to be analyzed, we select the most promising state(s) according to the path selection
strategy discussed in Section 4.4.1, see lines 2 to 7. The selected state(s) are symbolically
analyzed by invoking mixed concrete and symbolic execution. In order to model the
environment, we also supply custom symbolic summary functions, discussed in Section
4.4.2, at line 9. After each Step, we check whether the target system call pattern has
been triggered in the procedure PatternCheck (line 13), and select control-flow graph
nodes to be reached depending on the results. The inner working of this procedure is
discussed in Section 4.4.3.
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4.4.1 Path selection strategy

Symbolic summary functions introduce only the model of environmental data in the form
of fresh symbolic variables. The actual conditions required to trigger a specific behavior
in the analyzed program are encoded in its instructions. In order to calculate the correct
environmental values, we need to recover and solve these conditions. To this end, we
use mixed concrete and symbolic execution, capable of both recovering these conditions
as path conditions and solving them using Satisfiability Modulo Theory solvers.

In order to overcome the path explosion problem, we employ a path selection strategy
with three levels. At the first level, we prioritize execution states based on how far they
have progressed in the target system call pattern, i.e., how many system calls with correct
predicate they have already executed. This is a greedy strategy as we analyze execution
paths closer to completing the target system call pattern first. If there is exactly one
execution state which has progressed further than all others, we select that state for
further analysis.

If prioritization based on progress in the target system call pattern yielded multiple
execution states, we move on to the second level. At this level, we further prioritize
between the states with the same priority based on the expected calling context in
which they are likely to reach the next element of the target system call pattern. Note
that different execution states progress differently with respect to the target system call
pattern and as such, available execution states may aim to reach different invocation
instances of system calls. Because we have no information about the calling contexts
of system calls necessary to trigger the target system call pattern, we aim to explore as
many calling contexts as possible. Execution states that are expected to reach invocation
instances in previously unseen calling context are analyzed first. The rationale behind
this strategy is that invocation instances in unseen calling contexts can reveal a wider
range of behaviors implemented in the program, especially, if no invocation instance
uncovered so far could satisfy the associated predicate. If there is exactly one execution
state which is expected to produce a new calling context, we select that state for further
analysis.

If path selection based on expected calling context yielded multiple execution states
to follow, we move on to the third and last level. At this level, we employ shortest-
distance symbolic execution (SDSE) [77], designed to prioritize execution paths which
are closer to a selected target according to some metric. There may be scenarios, in
which multiple states share are equally close to a selected target. In such cases, we
analyze all such execution states in parallel. SDSE was originally proposed to solve the
line reachability problem: how to reach a target line in the source code? It requires
the interprocedural control-flow graph in order to guide symbolic execution towards the
targeted line. The strategy first translates execution paths to control-flow graph nodes,
and then computes the shortest distance from said nodes to the node corresponding to
the target line. The computed metric is used as scores to prioritize execution paths.
At branches, SDSE selects the execution path with the lowest score among all available
paths for analysis.

Our scenario is similar to the one SDSE was developed for in the sense that we need
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Figure 4.4: Example scenario for our proposed path selection strategy

a solution for the reachability problem in order to reach invocation instances of system
calls and check the associated predicates. However, there are key differences as well.
First, SDSE was originally proposed and implemented at the source code level, while
we apply it at the binary level. As a result, instead of a target line, we aim to reach
a target binary instruction. Secondly, as stated in [77], SDSE can only work correctly,
if the recovered interprocedural control-flow graph does not have mismatching calls and
returns. Otherwise, semantically incorrect or infeasible paths may be computed as short-
est paths, resulting in incorrect scores and priorities. In order to generate a semantically
correct control-flow graph whose structure properly captures function calls and returns
encountered during execution, the generator algorithm has to consider a lot of context-
related information, including call sites, return sites and the call stack. There exist
algorithms capable of handling that information [21, 111], however, their usage in prac-
tice poses a challenge. The more context-related information is taken into consideration,
the more time and space are required to generate and store the resulting control-flow
graph, the increase is exponential. Therefore, we implemented a heuristic algorithm that
can discard those edges of an approximate interprocedural control-flow graph whose in-
clusion in the shortest path calculation might result in incorrect paths. We do this by
simulating changes to the call stack during shortest path calculation wherever edges
representing function calls and returns are encountered. Our heuristic is also capable of
adding missing edges and nodes to the control-flow graph based on the execution states
mixed concrete and symbolic execution produces (procedure UpdateICFG at line 11
of Algorithm 3). As a result, we can keep the required contextual information and we
can employ generic shortest-path calculation algorithms to generate semantically correct
shortest paths. We discuss implementation of the heuristic in Section 4.5.

Figure 4.4 shows an example interprocedural control-flow graph in order to demon-
strate our path selection strategy. Let us assume that mixed concrete and symbolic exe-
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cution has produced states s1, s2 and s3, which are translated to the black control-flow
graph nodes. Let us also assume that the grey node represents an invocation instance of
the first system call in the target system call pattern and that no previous calling context
has been observed for this system call. Our path selection strategy would narrow down
the states to analyze as follows. First, as no state has satisfied the grey node’s associ-
ated predicate, the first level determines that all available states are progressing towards
the first element in the target system call pattern. As a result, prioritization based on
progress in the target system call pattern does not eliminate states. Then, prioritization
based on expected calling context removes s1 from the set of available states, because
it cannot produce an expected calling context (it cannot reach the grey node). At last,
s2 is selected because its translated control-flow graph node is closer to the grey node
(2 steps), than the node representing s3 (3 steps).

4.4.2 Symbolic summary functions

As mentioned previously, the environment is represented by operating system services,
and the environment manifests itself as the result of invoking system calls. Therefore, we
need symbolic summaries of system calls, which model their effects. Such summary func-
tions allow us to simulate the environment for the analyzed program and enable mixed
concrete and symbolic execution to analyze how returned data influences execution.

Our summaries are semantically equivalent to the system calls they replace with
two major exceptions. First, if the system call writes into the environment (e.g., sends
packets or writes in a file), the summary always returns with success. This allows us
to contain the path explosion problem: if we simulated both success and failure, we
would need to simulate the various conditions for failure, which would further increase
the number of execution paths to analyze. We acknowledge the possibility of system
call failures being used as triggers. Should the analysis infrastructure be strong enough
to handle the increased number of execution states, system call failures could also be
modeled using symbolic summary functions. Secondly, if the system call returns data
from the environment (e.g., assigned process ID, system time, network messages), the
summary function returns fresh symbolic variables instead. Using the fresh symbolic
variables, the influence of the environment on the program can be analyzed.

Symbolic summaries can be written based on the semantic information available
about the system calls in the operating system’s documentation. While expertise is
required to write them, they need to be written only once for a particular platform.
As an example, let us consider the Linux system call fork, responsible for duplicating
processes. On success, fork returns the PID of the child process in the parent and
0 in the child. On failure, it returns -1 to the parent, creates no child process and
sets the global variable errno appropriately. In order to explore how the invocation of
fork influences the analyzed program, we need to replace its return value with a fresh
symbolic variable. According to its manpage10, its return value has the type pid_t, a
signed integer. On the ARM platform, a signed integer is 32 bits long; therefore, the

10http://man7.org/linux/man-pages/man2/fork.2.html (Last visited: Jun 8, 2020)
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model of this system call must return a 32-bit long symbolic variable for that particular
platform. The variable must be constrained as written in the documentation: it can
be a positive number, 0 or -1. Two further constraints must be added to the model
to capture its behavior faithfully. First, if the return value is greater than 0, then
semantically, analysis continues in the child process, and the PID, as well as the parent
PID of the execution state must be updated accordingly. Secondly, if the return value
is -1, then semantically, the system call failed and a new symbolic variable is required
to represent the error condition whose value must be constrained to one of the potential
error codes.

4.4.3 Selecting control-flow graph nodes of interest

As mentioned before, different execution states at any given point in the analysis progress
differently with respect to the target system call pattern. Each system call in the target
system call pattern can have multiple invocation instances in the analyzed program;
therefore, many combinations of invocation instances are available for analysis. However,
only certain combinations can satisfy the associated predicates.

When an execution state reaches the invocation instance of a system call, the associ-
ated predicate must be checked. There are two possible outcomes to consider depending
on the result as described by Algorithm 4. If the associated predicate cannot be satis-
fied, a different invocation instance or a different path to the same invocation instance
must be selected. Therefore, we backtrack to an execution state (line 6 of Algorithm
4) at which the previous system call’s associated predicate was satisfied and select an-
other invocation instance of the currently targeted system call (line 7 of Algorithm 4).
If the associated predicate of the first element in the target system call pattern cannot
be satisfied, the execution state must be backtracked to the analyzed program’s entry
point.

If the associated predicate can be satisfied, the execution state is one step closer to
completing the target system call pattern, potentially even completing it. If the target
system call pattern is completed, we can stop analysis and output the path condition
and a satisfying assignment to the analyst. Therefore, we save the path condition to
path_conds in line 12 of Algorithm 4. If the target system call pattern is not completed,
we must select an invocation instance of the next system call in the target system call
pattern. We also save a copy of the execution state in order to support the previously
discussed backtracking with respect to the target system call pattern, see lines 15 and
16 of Algorithm 4.

When selecting an invocation instance of any system call, we need to take into
consideration the context sensitivity of the interprocedural control-flow graph. If its
context sensitivity is high enough, the graph can include multiple nodes that represent
the invocation of the same system call in different calling contexts. However, if its
context sensitivity is low, different invocations of the same system call can be captured
in the same node. Given the system call target and the set of control-flow graph nodes
representing said system call, we choose between the control-flow graph nodes using the
following strategy:
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Algorithm 4 PatternCheck

Input:
st: execution state (successor after ivoking Step)
icfg: interprocedural CFG of program

pattern: ordered list of system calls and predicates (s0, p0), (s1, p1), . . . , (sn, pn)
path_conds: list of triggering execution paths’ path conditions

Output:
path_conds: modified with st’s path condition, if st completes pattern

1: begin
2: if st at si then
3: call_sites ← null
4: pred ← CheckPredicate(st, pi)
5: if pred is False then
6: st ← GetCopy(si−1 )
7: call_sites ← GetInvocationSites(si)
8: else
9: if si = sn then
10: . PatternCheck is invoked for all successors generated by Step
11: . → Multiple successors may trigger pattern
12: append(path_conds, st.path_cond)
13: return
14: else
15: SaveCopy(st, si)
16: call_sites ← GetInvocationSites(si+1 )
17: end if
18: end if
19: SetupTargetNodes(st, call_sites)
20: end if
21: end

• If there exists a control-flow graph node representing the invocation of said system
call which has not been visited before, then that node represents a previously
unseen calling context for said system call. We select that node to be reached
using SDSE.

• If only visited nodes are available, we construct semantically correct shortest paths
in the control-flow graph which end with the visited nodes, and check whether
following those paths yield an as yet unseen calling context. We achieve this by
simulating changes to the call stack along the generated paths.

We check semantically correct shortest paths in the following order. First, we check the
expected calling contexts along the shortest paths between the control-flow graph node
representing the current execution state and the visited nodes. If all result in expected
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calling contexts previously observed, we iterate over the call sites of the visited nodes,
forcibly including them in the semantically correct shortest paths and checking their
expected calling contexts. If no unseen expected calling context is found, we include the
call sites of the forcibly included call sites in the semantically correct shortest paths and
recheck them as before. We iterate over the call sites of previously analyzed call sites
until an unseen expected calling context is discovered. Then, we select the visited node,
as well as all control-flow graph nodes representing the beginning of the functions in the
expected calling context as nodes to be reached and calculate the priority of the state
with respect to this path during path selection.

4.5 Prototype implementation for the binary level
We implemented our approach in angr (version 7.8.2.21), an open-source binary analysis
tool written in Python, capable of analyzing binary formats of major operating systems,
such as ELF, PE and Mach-0 files. The tool implements many analyses for binary code,
including mixed concrete and symbolic execution, constraint solving, control-flow graph
generation, program slicing, dependency analysis, etc. These analyses are performed over
the intermediate representation (IR) of valgrind [88], called VEX, to provide platform
independence. VEX translates a sequence of binary instructions into a block of IR
instructions. As a result, most analyses are not performed on a per instruction basis,
but rather on a per IR block basis. Our implementation uses the following features of
angr:

1. mixed concrete and symbolic execution engine with a constraint solver,

2. control-flow graph generation, and

3. model of execution states, including registers, memory, and elements from POSIX,
such as files and sockets.

To implement our methods described in the previous section, we modified the workflow
and execution of angr at certain places. We discuss these modifications in this section.

4.5.1 Symbolic summaries for system calls

angr supports system call invocations during mixed concrete and symbolic execution.
However, developers focus more on defining the environment at the library level and
therefore, the tool has more symbolic summaries for standard libc functions than it has
for system calls. As a result, many system calls invoked during our tests were missing
and had to be added to the tool manually. The list of 41 system calls we had to create
symbolic summaries for is shown in Table 4.3. In order to contain the path explosion
problem, our symbolic summaries for read and recv have a configurable upper limit set
for the length of returned data.
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Table 4.3: System calls on Linux for which symbolic summaries were created

_newselect arm_set_tls brk
clone close connect
dup2 execve exit

exit_group fcntl fcntl64
fork futex geteuid32

getgid32 getpid getppid
gettimeofday getuid32 ioctl

kill mmap2 nanosleep
open pipe read
recv rt_sigaction rt_sigprocmask
sendto setrlimit setsockopt
socket sysinfo time

ugetrlimit uname vfork
wait4 write

4.5.2 Extending the interprocedural control-flow graph

There are two algorithms to recover the interprocedural control-flow graph in angr.
The first algorithm is CFGFast and it relies on heuristics and assumptions to greatly
decrease the time required for generation. The second algorithm is called CFGAccurate
(CFGEmulated in later versions) and it performs lightweight symbolic execution for
control-flow recovery, increasing accuracy. In our implementation, we used CFGAccurate
as accuracy is important for using SDSE.

There are program constructs that pose a challenge during control-flow graph gener-
ation, e.g., indirect jumps. We encountered scenarios where CFGAccurate detected the
indirect jumps but it was unable to determine the address the analyzed code jumped to
accurately. The limitation is caused by the lightweight nature of its symbolic execution:
if a read or write operation involves an operand which could be assigned multiple values,
that operand is skipped and a fresh, unconstrained symbolic variable is used instead.
However, angr’s symbolic execution has an upper limit on the number of successor states
it generates when analyzing an execution state. If the instruction pointer of the analyzed
execution state has more than 256 solutions (by default), then the tool assumes that the
instruction pointer was overwritten with unconstrained data, and flags the execution
state as one producing unconstrained successors.11 As a result, CFGAccurate may fail
to analyze certain parts of the program due to the inaccurate execution state used during
construction. This scenario is illustrated with the following two instructions:

; load function address from memory
ldr r4, [r3, #4]

11This assumption is included in angr’s documentation together with the fact that it is not sound in
general.

54



Uncovering environmental requirements of malware

; call function
blx r4

The code includes a call to the address contained in r4, whose value is loaded from
memory. The address from where the value is to be loaded is influenced by r3. If r3 holds
an operand with multiple potential values while control-flow recovery analyzes this code
segment, then analysis has to read a multi-valued operand from the register. However, as
discussed before, instead of performing the read, the recovery algorithm creates a fresh,
unconstrained symbolic variable to represent the result of the read operations. As a
result, r4 will also hold an unconstrained symbolic variable when the recovery algorithm
tries to determine the jump address. Because the unconstrained symbolic variable has
more than 256 solutions, the state is flagged as one producing unconstrained successors
and address resolution fails.

Normal mixed concrete and symbolic execution, however, never skips operands and is
less likely to run into such a scenario. Execution states have operands with semantically
correct values and correct path constraints. When control-flow recovery is resumed from
such a state, CFGAccurate can accurately identify the indirect jump addresses, if the
value of r4 has less than 256 solutions. Therefore, during control-flow recovery, we take
note of addresses where unconstrained successors were computed as potential extension
points of the control-flow graph. When mixed concrete and symbolic execution reaches
such an address, we use the accurate execution state to extend the control-flow graph
on the fly.

angr includes other performance-increasing heuristics which affect the accuracy of
the generated control-flow graph, including limits on the number of times a block of
instructions must be analyzed during control-flow graph generation. This setting affects
the recovery of loops as well as function return addresses. The latter is also affected
by the configured context sensitivity: if a function is encountered in a calling context
in which it has been analyzed before, it will not be analyzed again. As a result, return
edges may be missing from the control-flow graph. In order to address this challenge,
each time mixed concrete and symbolic execution descends into a function, we statically
check whether the control-flow graph contains the correct return edge. If the edge is
missing, we extend the control-flow graph by adding it.

4.5.3 Shortest path calculation in the control-flow graph

The level of context-sensitivity influences the accuracy of CFGAccurate. This parameter
captures how deep the call stack is taken into consideration when determining the calling
context of any given control-flow graph node. By default, the algorithm analyzes each
address only once per distinct calling context. As a result, different levels of context
sensitivity result in different graph structures, which in turn influence the available paths
computed by generic shortest path algorithms. Figure 4.5 shows the different contexts
in which functions are analyzed at different levels of context sensitivity. Because of the
different contexts, functions may be replicated multiple times in the control-flow graph.
Note, that we demonstrate the effect of context sensitivity at the source code level only
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0-context
sensitivity

1-context
sensitivity

2-context
sensitivity

a a main→a (lib init)→main→a
b b main→b (lib init)→main→b

c c a→c
b→c

main→a→c
main→b→c

printf printf
a→printf
b→printf
c→printf

main→a→printf
main→b→printf
a→c→printf
b→c→printf

Figure 4.5: Different contexts of functions during control-flow graph generation

for ease of understanding, but our techniques work at the binary level.
In order for generic shortest path algorithms to compute semantically correct paths

in the interprocedural control-flow graph, edges connecting mismatched call sites and
return sites must be discarded. CFGAccurate annotates edges with attributes recovered
by VEX during lightweight symbolic execution, including the semantics of the jump at
the end of each IR block (e.g., function call, return, etc.). It also saves some of the
frames of the call stack in which the control-flow graph node was originally recovered.
The depth of the saved stack is specified by the context sensitivity level: at context
sensitivity level 1, the upper most frame is saved, at context sensitivity level 2, the two
upper most frames are saved, etc. Inspired by the control-flow graph model of Babić
et al. [7], a visibly push-down automaton, which keeps track of the calling context of
functions, we simulate the call stack along a given execution path using the following
heuristics:

1. Initially, the simulated call stack is equivalent to the execution state’s call stack.

2. If along the path, an edge’s attributes suggest a function call, we simulate it by
pushing a new frame upon the simulated call stack, saving the call site’s address,
the called address and the address where the function is supposed to return (return
target).

3. If along the path, an edge’s attributes suggest a function return, we check whether
the address of the edge’s destination control-flow graph node matches the recorded
return target and whether the saved call stack frames at the edge’s destination
control-flow graph node match those of the simulated call stack. If either of the
checks fails, we discard the edge as semantically incorrect.

4. If the edge’s source and destination control-flow graph nodes have the same saved
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Figure 4.6: Fake return edges in an interprocedural control-flow graph

call stack frames and the edge’s attributes suggest neither a function call, nor a
function return, no changes are made to the simulated call stack.

Thanks to the above rules, we are able to generate semantically correct, context-aware
shortest paths using generic shortest path algorithms.

Another important feature of angr’s control-flow graph recovery is the use of the so-
called fake return edges. These edges are directed edges connecting a function’s call site
to its return site and are automatically added by angr whenever a call is encountered.
Fake return edges essentially represent the execution of a function, abstracting the actual
nodes and edges of the function away. Figure 4.6 depicts the fake return edges in
the interprocedural control-flow graph of the source code shown in Figure 4.5 when
context sensitivity level is set to 0. For the sake of clarity, the actual instructions
responsible for setting up the execution state for calling functions were omitted. By
default, CFGAccurate analyzes each IR block once per distinct calling context. At
context sensitivity level 0, the calling context is limited solely to the currently analyzed
function, which leads to each function being present in the graph exactly once. For each
analyzed block, angr adds a call edge to the called function and a fake return edge to
the return site. These special edges mainly serve the purpose of ensuring connectivity
in the graph. Because each block is analyzed once per distinct calling context, each
function has only 1 return edge. For example, consider the printf function in Figure
4.6. Even though it is called from a, b and c, it is analyzed only once, the first time it
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is encountered when called from a. As a result, printf has only 1 return edge, leading
to its return site in a. Without fake return edges, printf’s call site in b would not be
connected to its return site in b.

Without fake return edges, our edge discarding heuristic would be unable to calculate
certain paths in the control-flow graph. For example, our heuristic discards the return
edge between printf and its return target in a, if the execution state is executing in b
at the time of shortest path calculation. Because the semantically correct return edge
connecting printf to its return site in b is missing from the graph and the available
return edge is discarded, generic shortest path algorithms must rely on the fake return
edge to calculate shortest paths. In reality, however, the execution of the actual function
(printf in this case) must be simulated. In order to faithfully capture the cost of calling
a function, we assign weights to fake return edges equal to smallest number of IR blocks
simulated between the call and return sites throughout analysis, i.e., the shortest path
mixed concrete and symbolic execution uncovered. We also assign the same weight to call
edges as well, causing shortest path calculation to favor fake return edges. If call edges
were not weighted, shortest path calculation would prefer descending into the function
and using the shortest path inside the function, which may not correspond to its real
simulation cost because of, for example, loops. Our weighting technique, allows us to
consider the actual simulation cost of functions based on previous traversals. Thanks to
this heuristic, we can keep context sensitivity at level 1.

4.5.4 Call stack management

During our work, we discovered mismatches between how the call stack is managed in
CFGAccurate and how it is managed during mixed concrete and symbolic execution.
The discrepancies between the algorithms initially hindered us in translating execution
states into control-flow graph nodes.

In case of mixed concrete and symbolic execution, function calls are detected by
statically looking at the semantic information about the jump at the end of the analyzed
IR block. Function returns, on the other hand, are detected by looking at the stack
pointer. The function returns if either the stack pointer has a lower value than it had at
the call (which is the convention e.g., on Intel platforms), or execution has reached the
return address recorded at the call and the stack pointer has the same value as it had
at the call (which is the convention in platforms like ARM where the return address is
stored in the link register).

CFGAccurate uses the same method with an additional feature. For each IR block
address encountered during CFG construction, it checks with angr’s loader whether the
address corresponds to a symbol. If it does, it forcefully simulates a call to that symbol.
This method has the advantage of providing more meaningful nodes in the control-flow
graph. However, it hinders us from accurately matching execution states to control-flow
graph nodes as the calling contexts are different. As an example, consider the following
instructions:

000105a4 <getspoof>:
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...
105bc: eb0022aa bl 1906c <rand>
...

0001906c <rand>:
1906c: ea000065 b 19208 <__GI_random>
...

00019208 <__GI_random>:
...

The getspoof function at 0x105bc calls rand, which immediately jumps to __GI_random.
In case of symbolic execution, the execution state at 0x19208 has the calling context
getspoof→rand, while the control-flow graph node representing 0x19208 has the con-
text getspoof→rand→__GI_random, because 0x19208 corresponds to a symbol. Due to
the different calling contexts, the execution state cannot be translated to the control-flow
graph node. Thus, we removed the forceful simulation of function calls from CFGAccu-
rate.

We have also encountered call stack management issues in scenarios where mixed
concrete and symbolic execution forks in functions with only one of the paths returning.
The issues are caused by angr running its call stack management code before adding
path constraints to the state. We illustrate the problem with an example. Consider the
following snippet from the strcasecmp_l function.

; ip points to next character in string1
179b8: e5dc3000 ldrb r3, [ip]
; r1 points to next character in string2
179bc: e5d10000 ldrb r0, [r1]
; case-insensitive comparison -> transform characters
; transformation depends on current locale (r2)
179c0: e592e004 ldr lr, [r2, #4]
179c4: e1a03083 lsl r3, r3, #1
179c8: e1a00080 lsl r0, r0, #1
179cc: e19e30f3 ldrsh r3, [lr, r3]
179d0: e19e00f0 ldrsh r0, [lr, r0]
; lower-case character comparison and conditional return
179d4: e0530000 subs r0, r3, r0
179d8: 149df004 popne {pc} ; (ldrne pc, [sp], #4)
179dc: e4dc3001 ldrb r3, [ip], #1

The function iterates over two strings character by to check whether they are equal
(case insensitive). The comparison between two characters is implemented using sub-
traction. If the result of the subtraction is 0, i.e., the characters are the same, then the
function continues, otherwise, it returns. If any of the input strings consists of symbolic
variables as characters, the comparison has two outcomes: equals and not equals. At
the end of simulating the block at 0x179b8, angr forks and creates the two successor
states, one at 0x179dc and another at the return site. It then proceeds to check whether
any of these states returned from strcasecmp_l. However, the path condition has not
been added to the successors at the point yet, therefore, the stack pointer of the state
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at the return site is a symbolic expression encoding both staying in the function and
returning. As a result, the call stack management code cannot deduce the return and
fails to pop strcasecmp_l from the call stack. To overcome this issue, we concretize the
stack pointer after forks and re-run the call stack management code to get correct call
stacks.

4.5.5 Model of the execution state

In order to model the side effects of system calls and any additional data they might
return, we extended the original execution state model provided by angr. The extended
model includes additional POSIX elements on a per-path basis, such as group ID, thread
ID and parent process ID.

We also modified how system time is tracked throughout mixed concrete and symbolic
execution. Originally, angr used a monotonically increasing, global symbolic variable to
model system time which is suitable for the default breadth-first exploration strategy.
However, SDSE’s prioritization strategy can backtrack to an earlier execution state,
which semantically means taking us “back in time”. In order to support such a backward
flow of time, we model system time on a per-path basis with local symbolic variables.

Throughout mixed concrete and symbolic execution, we also monitor the execution
state to detect whether branches are the result of references to uninitialized memory
addresses. This scenario could be the result of a bug in the analyzed program, but
might also signal missing side effects of system call models. Therefore, we do not pursue
such paths any further, but keep them separated from the rest of execution states for
further analysis.

4.5.6 Keeping track of execution states’ progress

In order to track each execution state’s progress with respect to the target system call
pattern and the selected control-flow graph nodes they have to reach, we use the execu-
tion history feature of angr. The execution history is an ordered list of events happened
and actions performed during mixed concrete and symbolic execution. It acts as a log
and records information such as when and which symbolic variables have been created
for the state, which addresses have been traversed, what symbolic constraints have been
placed on the state, etc. We insert special events into each execution state’s execution
history to record target control-flow graph nodes, as well as related events such as reach-
ing those target control-flow graph nodes and satisfying the associated predicate of a
system call.

4.6 Evaluation
We evaluate our approach on two malware samples. The first sample is an artifical mal-
ware sample we developed that is based on the features of the Kaiten, Aes.Ddos and
Amnesia families [36, 121]. It consists of 516 lines of C code. It first checks whether it exe-
cutes in a virtual environment by reading the contents of the /sys/call/dmi/id/sys_vendor
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file. If the content includes the string "QEMU", it exits. Amnesia samples are known to
use this trigger12, however, instead of exiting, they attempt to wipe the hard drive of
the machine.

If no virtual environment is detected, our piece of malware connects to its hard-
coded command and control server and leaks several parameters of the host, including
operating system and kernel versions, total and available memory, and the number of
running processes. The implementation of this feature relies on command execution
in a shell and the sysinfo13 system call, the latter of which is known to be used by
Aes.Ddos samples14. The results of the sysinfo system call are periodically resent to
the command and control server, thereby keeping the attacker up-to-date regarding the
state of the infected machine.

Our piece of malware also accepts commands from the command and control server.
The commands can cause it to launch a TCP PUSH+ACK-type denial-of-service attack
against the specified target, or to kill itself and all spawned child processes. We copied
the denial-of-service implementation from a publicly available Kaiten sample15.

The second sample is a slightly modified version of the previously mentioned Kaiten
sample. It implements its own IRC protocol parser and expects remote commands to
be delivered as IRC private messages. Some commands are used to launch denial-of-
service attacks, execute shell commands and download files. Others serve management
purposes such as enabling/disabling packet sending, changing IRC servers, etc.We chose
this sample because its execution relies heavily on its environment. In order to trigger
any malicious behavior, the sample must be able to communicate over the network.
It needs to connect to the IRC server at the preprogrammed address and log into the
preprogrammed IRC channel. The sample uses randomly generated strings as nick and
user name in the IRC communication; the seed is calculated from the system time, the
process ID and the parent process ID. Once connection to the IRC channel has been
established, the correct IRC private message must be received in order to trigger any
behavior implemented in the sample.

Both pieces of malware poses several challenges for analysis. First, due to our as-
sumptions and its implementation, a large number of execution paths are available for
analysis, the sources of which are the following:

1. Environmental data: Our piece of malware relies on the system time, process IDs
and communication over the network. As we assume no prior knowledge about its
functionality, our analysis has to analyze all those inputs using symbolic variables,
leading to many branches.

2. String handling: Our piece of malware processes network input using standard libc
functions such as strlen and strcasecmp. These functions typically loop over the

12https://unit42.paloaltonetworks.com/unit42-new-iotlinux-malware-targets-dvrs-forms-botnet/
(Last visited: Jun 8, 2020)

13https://www.man7.org/linux/man-pages/man2/sysinfo.2.html (Last visited: Jun 8, 2020)
14https://blog.syscall.party/post/aes-ddos-analysis-part-1/ (Last visited: Jun 8, 2020)
15https://packetstormsecurity.com/files/25575/kaiten.c.html (Last visited: Jun 8, 2020)
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string character by character. As their inputs are returned from the kernel, our
analysis must consider each of the characters a symbolic variable. Such loops are
known to contribute to the path explosion problem.

3. Infinite loop: Our piece of malware is implemented to run in an infinite loop,
continuously listening for messages from the command and control server and
trying to reconnect in case of communication failure. As a result, exploring all
execution paths cannot be done in a finite amount of time.

Another challenge is in the malware samples’ logic. In case of receiving a command in
a network message, they dispatch the message to the appropriate handler function via a
jump table. Jump tables are represented in the control-flow graph by nodes with multiple
call edges leading to different handler functions. The use of jump tables decreases the
accuracy of shortest path calculation: the shortest path is always to take the correct call
edge, even if said edge is infeasible.

4.6.1 Setting up the experiment for the artificial malware sample

We set the address of the command and control server to 127.0.0.1 and replaced
the gethostbyname function16 with a symbolic summary in order to avoid symbolically
analyzing a DNS lookup for the target of the denial-of-service attack (the sample accepts
both domain names and IP addresses). Our symbolic summary function returns an
unconstrained IPv4 address. Finally, we compiled the source code17 of our piece of
malware for the ARM platform and performed our analysis on the resulting binary.

We set up three target system call patterns of malicious behavior as targets for
our analysis: detection of virtual environment, system parameter leak and denial-of-
service attack. For each target system call pattern, we save the path conditions of
states that have reached all system calls in the target system call pattern and satisfied
each associated predicate. Note, that due to the large number of execution paths and
the previously mentioned challenges regarding shortest path calculation, there may be
multiple states that are analyzed at any given time. We save the path conditions of all
states that complete the target system call pattern in the same iteration of analysis.

The target system call pattern describing the detection of a virtualized environment
has two system calls with associated predicates. The first system call is open, which
opens a file at a given location. The associated predicate checks whether the file to be
opened is in the folder /sys/call/dmi/id/. This folder contains special files detailing
many aspects of the analyzer machine. The second system call is exit_group, which is
a system call used to terminate all threads associated with a process. This system call
is also used by libc functions, such as fopen and fgets, if certain reliability checks fail
(e.g., the system runs out of memory) and the process is forced to abort. As reliability
conditions are out of scope for our analysis, we did not allow analysis to pursue them.

16http://man7.org/linux/man-pages/man3/gethostbyname.3.html (Last visited: Jun 8, 2020)
17The source code used in this study is available at https://doi.org/10.5281/zenodo.3903492 under

the GNU Affero General Public License version 3.
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The associated predicate for exit_group checks whether the system call was invoked at
the correct location in our piece of malware.

The target system call pattern for system parameter leak consists of three system
calls. The sequence starts with socket and the associated predicate checks whether
the socket to be created is a TCP socket, i.e., the socket for communicating with the
command and control server in our piece of malware. The second system call is sysinfo,
which returns the system parameters of the infected machine. The associated predicate
always returns true because we simply require invocation. We note that there may be
programs in which system calls socket and sysinfo are in reverse order. The last system
call is write which can be used to write data to a file descriptor. If the file descriptor
denotes a socket, the system call causes the data to be sent. The associated predicate
checks whether the file descriptor is the previously created TCP socket and whether any
of the characters to be written is derived from the returned values of sysinfo.

The target system call pattern describing a denial-of-service attack consists of two
system calls. In order for a malware sample’s infected host not to be overloaded with
responses to the flood of packets sent during the denial-of-service attack, the source IP
address must be spoofed. Such spoofing requires the attacker to specify a specific address
in the IP header, which can be achieved using raw sockets. Therefore, the first system
call is socket and the associated predicate checks whether the socket to be created is
a raw socket. The second system call in the target system call pattern is sendto, used
to send messages via sockets, and the associated predicate checks whether the socket
through which the message should be sent is a raw socket.

We ran the analysis on a machine with two Xeon E5-2680 CPUs of 10 cores each,
running at 2.8 GHz. The machine has 378 Gb of RAM available. Note that angr is not
multithreaded and uses only a single core. We also restricted angr to 330 Gb of memory.

4.6.2 Results on the artificial malware sample

Unfortunately, while generating the control-flow graph with context sensitivity level 1,
angr did not flag the IR blocks implementing the jump table as producing unconstrained
successors. As a result, the jump table was not treated as a potential extension point,
forcing us to specify the missing edges manually.

An execution path that completes the target system call pattern for detecting a
virtualized environment was found in ca. 7 minutes (437.17 seconds) and required a total
of 5.96 Gb of RAM. The first system call, open, is located close to the beginning of our
piece of malware’s main function which allowed shortest distance symbolic execution to
quickly find an execution state which satisfies the associated predicate. Invocation of the
second system call, exit_group, can be found at multiple program points, the closest of
which is the one that is necessary to complete the target system call pattern. Therefore,
analysis did not need to select different invocation instances of exit_group in the target
system call pattern. In order to reach the necessary invocation instance, analysis had to
recover the conditions checking the characters in the opened file, generating a total of 71
execution paths before an execution path satisfying all predicates in the target system
call pattern was found. The path condition of this execution path contains constraints
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Table 4.4: Solutions to the symbolic characters that trigger the DoS attack

Character index Possible solutions
0 d or D
1 o or O
2 s or S
3 SPACE
4 any character
5 any character
6 any character
7 any character
8 SPACE
9 terminating NULL

which show the necessary ASCII values for the characters to be read from the opened
file: “Q”, “E”, “M” and “U”.

Finding an execution path which completes the target system call pattern for leaking
system parameters completed in ca. 9 minutes (568.09 seconds) and used 5.8 Gb of
RAM. Finding an execution path that first creates a TCP socket and then calls sysinfo
were completed with ease. However, the data returned by sysinfo is unconstrained
in our analysis as it is read from the operating system. As a result, leaking it requires
transforming it into a string representation, which in turn requires fixing its value. Thus,
mixed concrete and symbolic execution generated many execution paths in order to
complete the third phase. There were four execution paths for which shortest distance
calculations returned equal values; their analysis completed the target system call pattern
in the same iteration.

Our analysis was able to find an execution path, which completes our target system
call pattern for denial-of-service attack in ca. 5 hours (299 minutes) and required 41.4 Gb
of RAM. The first control-flow graph node for the socket system call to be selected did
not create a raw socket; therefore, analysis had to restore an execution state at the
entry point of our piece of malware. The next selected control-flow graph node was
located in the function implementing the denial-of-service attack. In order to reach
that invocation instance, analysis had to determine the correct command to be received
from the command and control server. Due to our piece of malware’s complexity, which
includes a jump table and several string handling functions, analysis spawned hundreds
of execution paths.

The path conditions of the three execution states which satisfy all predicates in the
target system call pattern shed light on the necessary trigger, as shown in Table 4.4.
We manually fed the concrete input returned by the solver to our piece of malware and
found that it indeed triggers the execution of the denial-of-service attack. Note, that
our piece of malware performs input validation before launching the denial-of-service
attack, requiring both the command and two parameters, separated by spaces. The first
parameter is the target to be attacked, the second is the duration of the attack. In
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our experiment, we hooked the gethostbyname function with a symbolic summary to
avoid symbolic DNS resolutions, therefore, characters 4-7 do not have any constraints
associated with them. The second parameter, on the other hand, appears to be missing
from the concrete input. This is caused by our piece of malware’s logic: it uses the
atol18 function to convert the second parameter from its string form to the numerical
representation. Behind the second space, the terminating NULL is interpreted as the
second parameter, for which atol returns 0. The 0 is treated as the duration for the
attack (0 seconds), causing our piece of malware to send a single packet.

4.6.3 Experiment setup for the real malware sample

Before we applied our prototype implementation to the publicly available Kaiten sample,
we made a few modifications to it, which we describe here. First, we downloaded its
publicly available source code19. Then, we shortened all strings in the jump tables of
the source code to contain only a single character and the terminating null. With this
modification, we can contain the path explosion of looping over strings to a certain
extent. Note, however, that the modified sample still includes multiple jump tables
organized into layers with each layer requiring multiple characters with specific values.
Therefore, even with this modification, the sample still requires a string with multiple
characters to invoke the necessary handler functions. We also set the address of the IRC
server to 127.0.0.1 in order to avoid symbolically analyzing a DNS lookup. Finally, we
recompiled the modified source code for the ARM platform and performed our analysis
on the resulting binary.

As the target behavior, we selected one of the functions launching denial-of-service
attacks (tsunami in the source code). The attack is executed in a child process and
sends spoofed packets to the target IP specified in the command. We inserted a call to
the kill libc function before the child process is created and set the underlying kill
system call as our target. Because there is only a single program point of interest to
be targeted globally, we only needed shortest distance symbolic execution as the path
selection strategy. Note, that the kill system call is used in other functions as well,
therefore, we only accept reaching it, if it is done via the tsunami function.

In order to reach this function, mixed concrete and symbolic execution has to simulate
the communication with the IRC server and “send” a specific string to the sample. The
string must meet the following requirements:

1. The sample must interpret its first part as an IRC private message, i.e., it must
start with the corresponding code from the jump table of IRC message-handling
functions (4 in our case).

2. It must contain the preprogrammed name of the IRC channel to which the sample
logged into (# in our modification).

18http://www.cplusplus.com/reference/cstdlib/atol/ (Last visited: Jun 8, 2020)
19https://packetstormsecurity.com/files/25575/kaiten.c.html

65

http://www.cplusplus.com/reference/cstdlib/atol/
https://packetstormsecurity.com/files/25575/kaiten.c.html


Uncovering environmental requirements of malware

Table 4.5: Runtime performance onreal malware

Stage Runtime (hh:mm:ss)
Control-flow graph generation and extension 0:10:42

Simulation of execution paths 19:08:54
Shortest distance calculation 8:05:44
Other management tasks 5:05:11

3. It must be intended for the sample, either by specifically mentioning the sample’s
IRC nick (randomly generated) or by using a wildcard character.

4. The sample must interpret its last part as a command for launching the DoS
attack implemented in tsunami, i.e., it must contain the corresponding code from
the jump table of command-handling functions (0 in our case).

Unfortunately, while generating the control-flow graph with context sensitivity level
1, angr did not flag the IR blocks implementing the jump tables as producing uncon-
strained successors. As a result, jump tables were not treated as potential extension
points, forcing us to specify the missing edges manually.

We ran our analysis on the same machine as before: a machine with two Xeon E5-
2680 CPUs of 10 cores each, running at 2.8 GHz. The machine has 378 Gb of RAM
available. We restricted angr to run with 100 Gb of memory.

4.6.4 Results on the real malware sample

Table 4.5 shows the performance of our prototype implementation on the modified Kaiten
binary sample. The execution time of a single run consists of four components:

1. generation and extension of the control-flow graph,

2. simulating execution paths,

3. ranking execution states, and

4. other management tasks, e.g., concretizing stack pointers when necessary, logging
events, checking if our target was reached, etc.

The measured execution time of our analysis was 32.5 hours. Most of the time was spent
with either simulating execution paths or calculating shortest distances.

The execution time of simulating execution paths can be accredited to the logic of the
sample. During our tests, analysis encountered addresses, whose simulation took hours
for mixed concrete and symbolic execution. These addresses were part of libc, including
rand and multiple string manipulating functions whose simulation involved computations
with complex symbolic values. rand is used by the modified sample to generate random
1-character-long strings for communication with the IRC server. While the generated
string for the nick has to be analyzed in order to reach the target system call, its value
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does not matter: the symbolic string representing network input either matches it, or it
does not. Therefore, we replaced rand with angr’s built-in symbolic summary and used
a fresh, unconstrained symbolic variable to represent its result. However, the results
of string manipulations contribute directly to the execution path leading towards the
selected target behavior: they affect how long the symbolic string representing network
input is and what constraints are placed on its characters. Therefore, we did not influence
the execution of string manipulations and settled for the increased execution time.

4.7 Discussion
The path conditions of execution states reaching the targeted (sequence of) program
points have constraints associated with them whose interpretation is of varying difficulty.
Constraints like <Bool socket_retval_23127_32 == 0x3> are easy to interpret with
knowledge about the semantics of the system call whose model created them. As its
name suggest, socket_retval_23127_32 is the symbolic variable introduced when the
socket system call is invoked. The two numbers are appended by angr: the first is a
unique identifier, while the second is the length of the variable in bits. The return value
of socket in case of success is a file descriptor (positive integer) and in case of failure,
it is -1. Given that the right-hand side of the equation is positive, we can deduce that
the socket system call had to be completed successfully.

The human interpretation of other constraints, however, is quite challenging due to
their complexity. For example, our piece of malware sets an upper limit of 4096 on the
number of characters it reads from a socket with one call. As our symbolic summary of
recv has an upper bound of 10 for the number of characters to be returned, it returns
a string with at most 10 characters. Our piece of malware then invokes multiple string
manipulating functions, which loop over the string character by character. The corre-
sponding binary instructions are conditional in many cases, which means that in real
life, the CPU would execute them only if necessary. During simulation, however, one of
their operands is a symbolic character and therefore, they cannot be skipped. Instead,
when possible, their results are encoded into If-Then-Else structures in the path con-
dition: if the flag evaluates to true, then the result is the Then value, else the Else value.
These structures can be nested into each other, leading to constraints whose evaluation
is tedious manually. In such cases, the constraint solver can be used to calculate satisfy-
ing value assignments, giving concrete inputs to trigger the targeted behavior. Another
challenge in interpreting constraints related to input strings is that the constraint does
not include characters. Instead, (in)equality checks use the characters’ numeric ASCII
values. However, our naming convention regarding symbolic variables tells analysts at
which system call a variable was introduced to analysis. Thereby analysts gains semantic
information that the symbolic variable’s value can be interpreted as characters.
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4.8 Conclusion
In this chapter, we proposed an approach to determine what inputs must be provided
and what environmental conditions must be met in order to trigger undocumented, hid-
den behaviors in binary programs. Our proposed approach represents hidden, malicious
behaviors as a sequence of system calls with associated predicates, which we refer to as
the target system call pattern. In order to find execution paths that correspond such
behavior, our approach consists of three techniques. First, we model the environment
at the operating system level by providing symbolic summary functions of system calls.
Our summary functions have the same number and type of arguments as their real-
world counterparts, but introduce fresh symbolic variables in order to model the effects
of system calls. Second, we use mixed concrete and symbolic execution and prioritize be-
tween available execution paths using a multi-level path selection strategy. Our strategy
takes into consideration how far execution paths have advanced in the target system call
pattern, whether they can reach interesting program points in new contexts, as well as
shortest distance symbolic execution. The last prioritization technique relies on a seman-
tically correct, complete inter-procedural control-flow graph, which is often unavailable
for binary programs due to indirect jumps. Therefore, our approach is designed to allow
for incorrect/missing edges and/or nodes, as well as actively adding missing edges to the
control-flow graph based on existing execution states. Third, we deploy a mechanism
for automatically finding program points that can advance an execution path’s progress
in the target system call pattern.

We implemented our approach using angr and evaluated it on two malware samples:
an artificially created sample which incorporates ideas from the Kaiten, Aes.Ddos and
Amnesia malware families, as well as on a slightly modified version of a publicly available
sample from the Kaiten family. The artificial sample checks whether it is executed in
a virtualized environment and executes malicious behaviors only if no such sign has
been found. It leaks system parameters to the attacker and accepts remote commands
to, for example, launch a denial-of-service attack. The slightly modified Kaiten variant
implements its own IRC protocol parser and implements various types of denial-of-service
attacks which it launches when instructed to do so via the IRC command and control
server. Both samples have logic the pose additional challenges because many of their
implementation details are known to be hard to analyze symbolically. Nevertheless,
our approach successfully found feasible paths for all targeted program points within
reasonable time. The path conditions of these paths gave additional insight as to what
kind of environment is needed to trigger a specific malicious behavior. However, their
manual interpretation can be tedious and further automation would be beneficial. These
results have also been published in [C4, C5].
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Chapter 5

Proactive security for embedded
IoT devices

The threat landscape discussed in Chapter 2 demonstrates that malware infected em-
bedded IoT devices can endanger various application domains. Therefore, these devices
must conform to security requirements, which is achieved using security controls and
mechanisms. However, as also shown in Chapter 2, there is a wide range of vulnerabili-
ties that needs the be addressed. Doing so individually for each vulnerability is a tedious
task, unfortunately, which does not scale well.

Therefore, in this chapter, we turn our attention to proactive security. In contrast
to reactive security, which has the goal of detecting and reacting to attacks and compro-
mises, proactive security mechanisms anticipate attacks and put measures in place to
prevent compromises from happening. More specifically, we design a new mode of op-
eration for embedded IoT devices, which increases redundancy in addition to satisfying
security, reachability, liveness, and safety requirements. We call this mode of operation
RoViM afúter its core concept: rotating virtual machines. There is a new emerging trend
of virtualization with a large impact on the embedded market [104, 78]. We leverage
the isolation feature inherent to virtualization to increase the security of embedded IoT
devices by periodically restoring them to a compromise-free state. While one virtual
machine is being restored, another takes its place to increase availability. We present
a prototype implementation, where we realize an IPsec [62] gateway using our RoViM
approach. RoViM’s design is evaluated with formal verification and the experiments
with our prototype implementation shows no significant change to the use-experience.

The chapter is structured as follows. Section 5.1 provides background information
on Self-Cleansing Intrusion Tolerance (SCIT), our inspiration for RoViM. The main
difference between SCIT and RoViM is that SCIT is a centralized approach, while RoViM
is decentralized to increase fault tolerance. Section 5.2 presents the high-level overview
of RoViM, the details of which are presented in Section 5.3. Section 5.4 discusses the
formal verification of RoViM’s design. We present a prototype implementation in Section
5.5 and conduct experiments to measure its performance in Section 5.6. Section 5.7
concludes this chapter.
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5.1 Background
RoViM was inspired by the concept of Self-Cleansing Intrusion Tolerance (SCIT) [10].
Instead of using reactive approaches to security, SCIT is a proactive risk management
approach that uses virtual machines. A device implementing SCIT enjoys deletion of
malware in every minute, restoration to a pristine state, recovery from software deletion
attacks and cooperation with reactive approaches to security. SCIT has been imple-
mented in prototypes for several use-cases in the traditional IT environment, including
Single Sign On [54] and Service-Oriented Architecture [89].

The SCIT architecture consists of three main components. First, a virtualization
platform is needed for the virtual machines but the architecture remains independent of
the chosen platform. Second, the SCIT controller is tasked with controlling the rotation
of the virtual machines. It is installed on a secure machine within the internal network
and acts as a central component. Third, a short-term persistent memory is required for
processing data.

To our knowledge, the design principles of SCIT have never been studied in the
context of embedded systems. The domain poses interesting challenges for the original
concept because devices run smaller applications that are more limited compared to
standard PCs and servers. In addition, many devices are not located inside a protected
internal network but are deployed out in the field. This renders the usage of a central
component inefficient in this context. Therefore, in this chapter, we replace the central
controller with a distributed solution. Handling persistent data in SCIT is also a chal-
lenge. The difficulty in the original concept arises from the practice of destroying the
virtual machine exposed to the network and replacing it with a new one. This process
destroys the memory of the virtual machine, therefore, another solution is needed to
keep data that need to be persistent. The authors overcame this problem by using a
Network Attached Memory, which acts as a shared memory between virtual machines.
However, a shared memory can be used as a stepping stone for the attacker from one
virtual machine to another. In this chapter, we present another solution to data prop-
agation between virtual machines that enables the close monitoring of persistent data
and can be used to efficiently detect possible compromises.

The idea of using multiple virtual machines that provide the same service is also
present in the field of state machine replication [108]. However, there is a key difference
between state machine replication and RoViM. In the case of state machine replication,
multiple virtual machines are used in parallel to process requests, thereby providing
fault tolerance to the system. In the case of RoViM, however, there is only one virtual
machine that communicates with external entities. Other virtual machines are on cold
standby, isolated from the environment, including attackers.

5.2 RoViM’s design
Our designed system, RoViM, follows the principles presented by Bangalore and Sood [10]
and provides proactive security for embedded devices. However, the design of RoViM
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Figure 5.1: High-level overview of RoViM

takes into account not only security, but the potentially high availability requirements
of the embedded device as well. The system consists of multiple virtual machines, each
of which is capable of performing the same task as the embedded device. The usage
of multiple virtual machines provides redundancy and thus contributes to the overall
availability of the embedded device.

Before the high-level overview of the system and our assumptions can be discussed,
some definitions must be introduced. The virtual machine that is connected to and com-
municating with the outside world, and that performs the task of the embedded device
will be called active virtual machine. Standby virtual machine(s) provide redundancy
and are on cold standby, waiting to replace the active virtual machine. The standby
virtual machine that will become the active virtual machine in the rotation is called the
next active virtual machine. The cleansing virtual machine previously acted as the ac-
tive virtual machine and is being restored to its compromise-free state. In practice, the
compromise-free state can be a snapshot taken before the deployment of the embedded
device. Rotations between virtual machines happen periodically.

Our assumptions are as follows. We assume that the virtual machines communicate
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via internal communication channels (e.g., virtual LANs), which is not accessible outside
of the embedded device. We anticipate communication failures between virtual machines
but require the communication channel to notify the system about such a failure. In
our threat model, the attacker can interact with the system and compromise the active
virtual machine just as he could compromise the embedded device. However, we expect
rotations to happen frequently enough that the attacker is unable to compromise standby
and cleansing virtual machines via the internal communication channel.

The rotation of virtual machines should be as transparent as possible to outside enti-
ties and services. However, devices on the network must know or at least must be notified
about the changes in the address of the active virtual machine. Otherwise, packets on
the network would not be received by the next active virtual machine. Therefore, we
require nodes on the network to accept updates to the network address of the embedded
device. For example, in case of Address Resolution Protocol (ARP) on the data link
layer, all devices in the local network must process unsolicited ARP replies - which acts
as the notification of a rotation - and update their ARP caches.

Figure 5.1 shows one rotation with the high-level interaction needed for a single
cycle to complete. The unnumbered arrow between the active virtual machine and the
outside world highlights that the communication between the active virtual machine and
the outside world is not disrupted by the rotations. Rotations are triggered periodically
by the cleansing virtual machine after it is restored to a compromise-free state. The
trigger itself is a broadcast message to all standby virtual machines, instructing them to
begin the second phase of the rotation.

In the second phase, a standby virtual machine becomes the next active virtual
machine. Depending on the number of standby virtual machines used, two cases must
be considered. If there is only one standby virtual machine (apart from the previously
cleansed virtual machine), that virtual machine will automatically be the next active
virtual machine. If there are multiple standby virtual machines, they must agree on
which standby virtual machine should become the next active virtual machine. This
problem translates to the well-known leader election problem [76].

To become the active virtual machine, a three-subphase interaction is necessary be-
tween the active and the next active virtual machines. A high-level description of the
three subphases is presented here and more details are discussed in Section 5.3.

1. The next active virtual machine must acquire all required data to perform the
task of the embedded device correctly. As the active virtual machine is connected
to the outside and may contain malware, the data on it may become corrupted
and malware may be installed. Our designed system can be extended to ensure
that no malicious content is propagated to other virtual machines via validation of
the application data. In addition, while the data from the active virtual machine
is being transmitted, the active virtual machine must make no changes to the
application data. Otherwise, the application running on the next active virtual
machine and the entities in the outside world would lose synchronization. In a
sense, time must freeze for the application but this may be against the availability
requirements of the application. Therefore, the implementation must specify a
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Figure 5.2: Interaction of existing applications and RoViM’s API

time limit during which the next active virtual machine can take the place of the
active virtual machine. If the next active virtual machine does not succeed within
that time limit, the rotation should be aborted.

2. The next active virtual machine must notify all nodes on the local network to route
packets currently destined to the active virtual machine to the next active virtual
machine instead.

3. The next active virtual machine must initiate the restoration of the active virtual
machine into a compromise-free state. The active virtual machine is connected
to the outside world and may be compromised. We can assume that restoration
to a compromise-free state is against the interests of the attacker. Therefore, the
procedure of cleansing must be forced by the next active virtual machine. One
such cleansing procedure can be reverting the active virtual machine to a snapshot
taken before the deployment of the embedded device.

5.2.1 Stateful applications and RoViM

To complete the three-subphase protocol of replacing the active virtual machine, the
running application on the active virtual machine must provide all data necessary for its
correct functioning in a serialized form that can be transmitted to other virtual machines.
It is also required to be able to restore that data when prompted. As a result, existing
applications require some kind of adaptation or extension to work in this paradigm.

We propose making applications aware of the rotation. New applications can be
developed with the rotation in mind and existing applications can also be tailored to the
rotating environment with little effort from developers. As shown in Figure 5.2, the rota-
tion is implemented by a software layer we refer to as the API. The API should control all
resources the application uses to be able to freeze time for the application. In Figure 5.2,
FIFO buffers are shown for all network interfaces the application communicates through
in order to delay receiving packets. The API communicates with the application via
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events to signal different phases of the rotation. When data used by the application is to
be copied to the next active virtual machine, the application should provide the data in
a serialized form, for example, a file. The data may consists of variables, configuration
files, etc. The serialized form is transmitted to the next active virtual machine where
the application reads the serialized form and restores the contents. The serialized form
of the data used by the application can also be subjected to input validation and be
used to efficiently detect compromises. This approach is advantageous from the security
point of view as the API does not interact with the possibly compromised memory of
the application.

5.3 The three-subphase interaction
As mentioned before, the active and the next active virtual machines must complete
a three-subphase interaction before the cleansing procedure. The interaction can be
achieved by the following protocol of three subphases.

5.3.1 Subphase 1 - Transferring the application state

During subphase 1, the next active virtual machine receives the data of the application
running on the active virtual machine. The subphase starts with a trigger message
from the next active virtual machine and acts as a request for the application data in
serialized form. The trigger causes the active virtual machine to transmit the requested
data to the next active virtual machine. Note that the transmission relies on no specific
protocol, the details of transmitting the serialized form is left to the implementation.
After receiving the trigger message, the active virtual machine must not process incoming
packets. A processed packet at this time could change the application data, rendering
the transmitted serialized state out-of-date. Instead, to avoid packet loss, packets are
put on hold in buffers until one of the two virtual machines is ready to process them. We
note, that a compromised active virtual machine could actively obstruct this subphase
by continually refusing to communicate. However, this scenario is out of scope due to
our assumption that the attacker cannot use the internal communication channel as an
attack interface.

As we anticipate communication failures between virtual machines, virtual machines
set a timeout during which messages must arrive. If a message is not received within
the time limit, it is considered lost. After suffering a specific amount of lost messages
at either virtual machine, that virtual machine assumes the channel to be broken and
aborts the protocol without further notice. The time limit and the maximum number of
lost messages should be configured with respect to the availability requirements of the
embedded device.

5.3.2 Subphase 2 - Configuration of network interfaces

Subphase 2 is attempted only if the application running on the next active virtual ma-
chine has the data to be restored. After all, the next active virtual machine has no means
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of performing the task of the embedded device, if it is unable to process packets because
of the absence of application data. During subphase 2, the active and next active virtual
machine configure their network interfaces and notify the networks about the change in
the address of the embedded device.

At the beginning of subphase 2, the next active virtual machine tries to bring its
interfaces up through which the application expects packets. If the process is successful,
the virtual machines continue the protocol; if unsuccessful, the parties need to abort the
protocol. In either case, the active virtual machine is notified about the outcome. In
case of success, the next active virtual machine notifies the network about the change
in the address of the embedded device and instructs the active virtual machine to bring
its interfaces down.

Virtual machines might experience communication failures during subphase 2 as
well. To recover from losing the message containing the outcome of bringing up the
interface of the next active virtual machine, the active virtual machine sets a time limit.
When the time limit is exceeded, the active virtual machine must poll the next active
virtual machine for the outcome. Why not abort the protocol? Let us assume for a
moment that after a specified amount of polling for status, the active virtual machine
deems the communication channel broken and aborts the protocol. At this point both
virtual machines are capable of processing incoming packets: both have the data for
the application, the correct networking configuration and are accepting packets from the
outside. Now, we have two virtual machines as the active virtual machine. Depending
on the timing of their packets sent, nodes in the network might repeatedly update the
address of the embedded device and transmit packets to one of the virtual machines.
However, the embedded device and the outside world would lose synchronization, as the
virtual machines would update their data based on different packet flows.

5.3.3 Subphase 3 - Optional buffering

During subphase 3, packets buffered during the interaction are relocated to the virtual
machine capable of processing them. If subphases 1 and 2 finished successfully, buffered
packets are transmitted to the next active virtual machine and processed there. Before
relocating the buffered packets, the next active virtual machine requests information
about the size of the buffer. Depending on the received size, it decides whether the
time necessary for processing the packets is within the availability requirements. If the
protocol was aborted, the buffered packets are processed by the active virtual machine.
Buffered packets suffer latency, which depends on the size of the application data, the
number of packets arriving to the active virtual machine during subphases 1 and 2, and
the network throughput between the two virtual machines. Depending on the availability
requirements, the introduced latency may or may not be acceptable. In some cases, where
packet loss is acceptable (e.g., communication using UDP), buffering packets should be
disabled and packets arriving during subphases 1 and 2 should be dropped.

Even though subphase 3 is optional, chance of recovery from possible communication
failures is added to the protocol. When the active virtual machine receives the command
to bring its interfaces down and subphase 3 is enabled, it sets a timeout during which the

75



Proactive security for embedded IoT devices

request for information about the buffered packets must arrive. If the request does not
arrive, the active virtual machine forcibly sends the information to the next active virtual
machine and waits for the decision. If the decision does not arrive in time, it is treated
as a refusal. At the next active virtual machine, after the request for information is sent,
a timeout is set during which the requested information has to arrive. If it does not
arrive, the next active virtual machine can retry and then ultimately abandon subphase
3, deeming minimizing latency more important than avoiding packet loss.

At the end of subphase 3, the active virtual machine must be cleansed. However,
it may have been corrupted during its interaction with the environment, therefore, it
cannot be trusted to perform its own the cleansing. Therefore, it is the next active
virtual machine that sends the notification to the hypervisor to revert the active virtual
machine back to a pre-defined snapshot (the known clean state).

5.4 Formal evaluation of RoViM’s design
The outcome of the three-phase interaction should be that the virtual machines reach a
global state in which either

• the switch happened without errors and the elected standby virtual machine re-
placed the active virtual machine, or

• the global state before the protocol is restored in case of errors and the active
virtual machine is still in the active role.

It is also important to check whether following the previously proposed protocol can
lead to virtual machines having inconsistent states and whether the protocol has any
deadlocks. To answer these questions, we subjected the protocol to formal verification
using Uppaal [13]. The formal verification was not aimed to finding security issues (these
are discussed in Section 5.7), but to check the correctness of the protocol with respect
to functionality. The models presented here were also not used as a specification of the
protocol and serve only the purpose of verification.

Uppaal is an integrated tool for modeling, verifying, and validating real-time sys-
tems using networks of timed automata, extended with data types. The tool has three
main components: a description language used to describe system behavior; a simulator,
which can validate possible dynamic executions and enables early fault detection; and a
model-checker, which explores the state-space of the system, and checks invariant and
reachability properties.

To verify our proposed protocol, all participants must be modeled as a network of
timed automata. We have three participants: the elected standby virtual machine (called
New), the active virtual machine (called Old) and a node on the local network (called
Network Node). The latter provides network connectivity to the embedded device and
can be, for example, a switch, a router, or a gateway. In Uppaal, participants are
called processes. Each process consists of locations (depicted by filled circles) and edges
between its locations (depicted by arrows). Edges are annotated with selections, guards,
synchronization and updates. The labels have the following meaning:
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urgent chan ack; // acknowledgement
urgent chan trigger ; // trigger state sync in old
urgent chan sync_state; // sync state with new
urgent chan status_up; // new’s interface is up
urgent chan status_down; // new’s interface is down
urgent chan invalid_arp ; // invalidating ARP cache
urgent chan bring_down; // bring down old’s interface
chan packet[5]; // transmitting packets:

// 0 − to old,
// 1 − to new,
// 2 − from old,
// 3 − from new,
// 4 − from old to new

chan status_poll ; // polling status of new�
Figure 5.3: Modeling communication channels in Uppaal

• Selection: non-deterministically bind a given identifier to a value in a given range,
e.g., i : int[0,1] binds either 0 or 1 to the identifier i. On the GUI, Selections
are shown with the color dark yellow.

• Guards: the edge is enabled in a state if and only if the guard evaluates to true,
e.g., i == 0. On the GUI, guards are shown with the color green.

• Synchronization: synchronize processes over channels. On the GUI, synchroniza-
tions are shown with the color light blue.

• Update: the expression is evaluated and, as a side-effect, the state of the system
is updated with the value, e.g., i += 1. On the GUI, updates are shown with the
color dark blue.

Communication between the participant is modeled with channels which can be
defined with the chan keyword, as shown in Figure 5.3. Channels can also be defined as
arrays. Uppaal also defines urgent channels, and no delay is allowed, when a transition
using urgent channels is enabled. In a real environment, this means that if a message
can be sent, it will be sent as soon as possible.

5.4.1 Network node

Figure 5.4 shows the model of a node on the network. The node has two locations
that correspond to which virtual machine packets are sent: in ToOld, it sends packets
to the active virtual machine (Old), while in ToNew, it send packets to the next active
virtual machine (New). Edges between the locations define transition: if the process is
a recipient during synchronization, the channel name is followed by a ?, if the process is
the sender, then an ! is written after the channel name. Changing locations happen only
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Figure 5.4: Model of a Network Node�
clock timer; // timer
int [0,1] hasError = 0; // whether an error happened
int [0,2] numErrors = 0; // how many errors happened
int [0,2] maxErrors = 2; // maximum number of errors allowed in a location�

Figure 5.5: Local variables in the model of active virtual machine

if a received packet has another source than the process expects (e.g., packet originates
from New, even though the network node would send packet to Old) or the change
is explicitly requested by the protocol with a notification about a change in network
address.

5.4.2 Active virtual machine (Old)

To create the model of the active virtual machine (Old), local variables are also needed.
The local variables are shown in Figure 5.5. To model time and timeouts, the variable
timer is used, which is of type clock. Uppaal uses a dense-time model where clock
variables evaluate to real numbers. Clocks in the system progress synchronously. Un-
fortunately, Uppaal does not model random communication failures, therefore, it has to
be introduced to the model manually. For this reason, the variable hasError of type
int is added as a local variable. Unless constraints are placed on a variable regarding
its value, Uppaal will verify the model using all possible values for each variable. In case
of int, it is both time and space consuming, and since hasError tells whether a com-
munication error happens, the values 0 and 1 are used as lower and upper constraints
respectively. While the variable could be defined as bool, it is not possible to select a
random boolean value on an edge, which would be needed to model random communi-
cation failures. The number of errors (numErrors) in a location must also be tracked
to know how many retries the system attempted and whether the maximum number of
allowed errors (maxErrors) has been reached (this causes the protocol to be aborted).

Figure 5.6 shows subphase 1 of the three-subphase interaction from the active virtual
machine’s point of view. Initially, the active virtual machine is in the ActAsActive
location, in which it accepts and sends packets whenever needed. When it receives the
trigger message from the next active virtual machine, it transits to theInitiateSync
location. While the transition is underway, a random value is selected and is given to
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Figure 5.6: Modeling subphase 1 for the active virtual machine

the local variable hasError.
In Uppaal, a process is allowed to stay in a location infinitely, unless a clock spec-

ifies the maximum amount of time that can pass without using an enabled transition.
Therefore, a maximum amount of time is specified until the active virtual machine can
try to send the sync_state message, as well as for all other locations in the model.
The message gets across, if the randomly selected value of hasError is 0 and fails if
the value is 1, provided that the maximum amount of retries is not exceeded. Each
time sending fails, the counter numErrors is incremented, until it reaches the maximum
amount of allowed errors. If that value is reached, the protocol is aborted by transi-
tioning back to the location ActAsActive. Because switching to the next active virtual
machine is underway, no packets can be processed, instead, incoming packets may be
buffered. Therefore, incoming packets (packet[0]?) are accepted in this location (and
are buffered) as long as time at the location is within the specified limits and not too
many errors happened. Due to timing issues, it is possible to receive additional trigger
messages in this location. If that happens, the clock is reset and the virtual machine
continues to send the sync_state message.

When the sync_state message gets across to the next active virtual machine, the
active virtual machine enters the WaitingForAck location. In this location, it waits
for the acknowledgement that the next active virtual machine received the application
data. If the response does not arrive within the timeout, the active virtual machine
goes back to the location InitiateSync and retries, meanwhile also incrementing the
number of errors that happened. Due to timing issues, it is possible to get a trigger
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Figure 5.7: Modeling subphases 2 and 3 for the active virtual machine

message in this location. In this case again, the active virtual machine goes back to
the location InitiateSync. As in the previous locations, incoming packets are accepted
within timeout (and are buffered). When the acknowledgement arrives from the next
active virtual machine, the active virtual machine enters subphase 2.

For the active virtual machine’s point of view, subphase 2 starts when it enters the
location WaitingForStatus, as shown in Figure 5.7. In this location, the active virtual
machine is waiting for the next active virtual machine to notify the active virtual machine
about the status its network interfaces. As discussed in Section 5.3.2, if the protocol
reaches this point, it cannot be aborted because of timeouts. Instead, when a timeout
does occur, the active virtual machine must poll the next active virtual machine for the
required information. At this point, network nodes still send packets to the active virtual
machine, thus, incoming packets are accepted (and buffered). When the status message
of the next active virtual machine arrives, the active virtual machine transitions to the
corresponding location.

If the status message from the next active virtual machine is negative (status_down?),
i.e., the interfaces could not be brought up, the protocol is considered aborted and the
active virtual machine transits to the location Aborted. In this location, buffered pack-
ets are replayed in hopes of preventing packet loss. The location is urgent, i.e., no time
is allowed to pass in this location. In real life, as soon as buffered packets are retrans-
mitted, the location is left and the active virtual machine transits to the starting point
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�
clock timer;
int [0,1] hasError = 0; // whether some kind of error happened
int [0,2] maxErrors = 2; // maximum number of errors allowed
int [0,2] numErrors = 0; // number of errors happened
int [0,1] interfaceError = 0; // whether the interface can be brought up or not�

Figure 5.8: Local variables in the model of the next active virtual machine

ActAsActive.
If the status message is positive (status_up?), i.e., the interfaces are up and address

invalidation will happen, the active virtual machine transits to the state WaitingForCommand.
Because packets may still be sent to the active virtual machine in this location (it has
no knowledge about when the address invalidation happens), packets are accepted (and
buffered). The active virtual machine waits for a specified amount of time to get the
final bring down interface message (bring_down?). Irrespective of whether the mes-
sage arrived within timeout or not, the active virtual machine enters subphase 3 in the
location CleanUp. Because buffering is optional in the protocol, its messages are not
modeled. Instead, the simpler approach is to let the model decide: if buffering is on, the
synchronization edge packet[4]! is taken by the model, if not, the edge is not enabled.
Because the active virtual machine cannot wait for the bring down interface message,
the message may arrive when the virtual machine is in the location CleanUp.

5.4.3 Next active virtual machine (New)

The model of the next active virtual machine also needs local variables, as shown
in Figure 5.8. Most of the variables are the same as in the model of the active virtual
machine. The only new variable is called interfaceError and is of type int. It serves
a similar function as the variable hasError in the sense that it is used to model a
random error. However, the error is not in the communication but one that may occur
while bringing up the network interfaces of the virtual machine. If bringing the network
interfaces up is successful, the value is 0, and if not, it is 1. Similarly to hasError,
this variable could be defined as a boolean value but because boolean values cannot be
randomly selected in Uppaal, it is of type int and has a constraint on its value: 0 or 1.

The model of subphase 1 from the next active virtual machine’s point of view is
shown in Figure 5.9. Initially, the next active virtual machine is in the location Start
and is waiting for the leader election. Because the problem of leader election has been
discussed in literature many times, the leader election itself it not modeled and the
process is assumed to have won the election. As a result, it immediately transits to
the location LeaderElectionWon, while randomly selecting a value for the variables
representing communication failure. The location has an upper time limit on how long
the next active virtual machine should try to send its message. If sending is unsuccessful
(hasError == 1), or the time limit is reached (timer == 2) and the maximum number
of allowed errors is not yet reached, the counter for errors is incremented and the virtual
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Figure 5.9: Modeling subphase 1 for the next active virtual machine

machine tries again. However, if the maximum number of allowed errors is reached
(numErrors == maxErrors), the protocol is aborted by transitioning to the location
Aborted.

When sending the triggermessage to the active virtual machine, the next active vir-
tual machine waits for the serialized application state in the location WaitingForState.
If the time limit of waiting is reached, the error is recorded and the virtual machine
transitions back to the location LeaderElectionWon. When the sync_state message
from the active virtual machine arrives, the next active virtual machine transitions to
the location StateArrived and attempts to send the acknowledgement. If sending is
not possible (either because of communication failure or the time limit set on this loca-
tion), the error counter numErrors is incremented until the maximum number of allowed
errors is reached. If the maximum is reached, the protocol is aborted by transitioning
to the location Aborted. Due of timing issues, a sync_state message may arrive while
the virtual machine is in this location (e.g., because of a retry from the active virtual
machine). If the acknowledgement can be sent, the virtual machine enters subphase 2
of the protocol.

Figure 5.10 shows the models of subphase 2 and 3 from the next active virtual
machine’s point of view. When the next active virtual machine enters subphase 2 by
transitioning to the location BringUpNewInterface, a value is selected randomly for
interfaceError that indicates whether the interface could be brought up or some sort of
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Figure 5.10: Modeling subphases 2 and 3 for the next active virtual machine

error happened. If the interface cannot be brought down and the message status_down
can be sent, the protocol is aborted. If the interface is up and the message status_up
can be sent, the virtual machine transitions to location Invalidation. If no message
can be sent, the virtual machine retries. In this location, a status_poll message can
also be received, if the status message had not been sent in time.

In the location Invalidation, the next active virtual machine tries to send a mes-
sage to the network node informing it in the change in Layer 2. If sending fails, the
virtual machine retries immediately, if it is successful, it transitions to the location
BringDownOldInterface. Because the interface of the virtual machine is up and the se-
rialized application state is available, the next active virtual machine can process packets.
In this location, it tries to send the bring_down message to the active virtual machine
and moves to subphase 3, if sending succeeds. Because of the model of the active virtual
machine, the optional buffering part of the protocol is only modeled by receiving the
buffered packets in the location CleanUp.

5.4.4 System
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�
// Place template instantiations here.
Old = OldActive();
New = NewActive();
R = Router();

// List one or more processes to be composed into a system.
system Old, New, R;�

Figure 5.11: RoViM modelled as a system of timed automata

With the models ready, the system can be composed using the previously discussed
timed automata. First, for each model, an instance is created. Then, the system is
defined as the instances. The source code to define the system of timed automata is
shown in Figure 5.11.

5.4.5 Checking properties of the system

With the system ready, it is uploaded to the model-checker to test whether it satisfies
the requirements. The model-checker does not evaluate the behavior of the system but
instead its state-space. The state-space can be represented with a graph in which every
node contains a possible set of states of the system and directed edges are possible
changes is the state of the system. Queries to the model-checker are expressed using a
simplified version of Timed Computation Tree Logic. The query language consists of
path formalae and state formulae. A state formula is an expression, which is evaluated
by looking at the state-space. For example, the expression i == 0 evaluates to true in
all states in the state-space where in the system i = 0. The state of processes can also
be expressed with state formulae by using the syntax of ProcessName.LocationName.
In Uppaal, deadlock is expressed with a special state formula called deadlock which is
satisfied for all deadlock states.

Uppaal can be used to check three kinds of properties: reachability, safety and live-
ness. Reachability properties are satisfied when a path exists from the initial state, such
that the state formula φ is satisfied by any state along that path. Reachability proper-
ties are expressed using E<> φ. Safety properties are invariants, which are always true
in the system. If φ should be true in all reachable state, then the path formula is A[]
φ. The path formula E[] φ says that there should exist a maximal path such that φ is
always true. Liveness properties express that something will eventually happen, and are
expressed using the path formula A<> φ and φ --> ψ.

The protocol must have the following properties. First, the reachability property
requires that it should be possible for the protocol to end with the virtual machines in
consistent state. Two such ends exist: 1) both the active and the elected standby virtual
machines aborted the protocol and packets are sent to the active virtual machine, and
2) both the active and the next active virtual machines entered subphase 3 and packets
are sent to the next active virtual machine. The first requirement is formulated as
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Figure 5.12: Results of formal verification

E<> (New.Aborted and Old.ActAsActive and R.ToOld),

while the second is

E<> (New.CleanUp and Old.CleanUp and R.ToNew)}.

Second, there is a safety property the protcol has to conform with: there must be no
deadlock in the model. There must not be a state in which the system is unable to
transition to another state. This is formulated as

A[] not deadlock.

And third, the protocol also has a liveness property: from the moment the protocol is
started, the protocol must either be aborted and the starting state must be reached, or
it must reach subphase 3 eventually. This can be formulated as

(Old.ActAsActive and New.LeaderElectionWon and R.ToOld) -->
((Old.ActAsActive and New.LeaderElectionWon and R.ToOld) or
(Old.CleanUp and New.CleanUp and R.ToNew)).

Figure 5.12 shows the result of the formal verification. The green lights next to the
requirements show that each requirement is met, the model, and our proposed protocol
for the three-subphase interaction, has all the previously mentioned properties.

Additional liveness properties may be defined, for example, if the next active virtual
machine reaches subphase 3, eventually the active virtual machine must reach it too and
the network node must send packet to the new active virtual machine. The formula would
be New.CleanUp --> (Old.CleanUp and R.ToNew) Or, if the active virtual machine
aborts the protocol, eventually the next active virtual machine must abort it as well and
packets must be sent to the active virtual machine. This property would be formulated
as Old.Aborted --> (New.Aborted and R.ToOld). Both example properties are also
successfully verified by Uppaal.

5.5 Prototype implementation
We implemented a prototype of RoViM in the environment shown in Figure 5.13. The
prototype implementation is a RoViM-enabled IPsec gateway consisting of four virtual
machines (IPsecGatewayServer). IPsec [62] is a set of security services for traffic at the
IP layer, for both IPv4 and IPv6. These services include access control, connectionless
integrity, data origin authentication, protection against replays, and limited traffic flow
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Figure 5.13: Environment for the RoViM-capable IPsec gateway prototype

confidentiality. IPsec creates a boundary between protected and unprotected interfaces
(e.g., a host or a network). Traffic traversing through the boundary is subjected to access
control, which indicate whether packets should be allowed to traverse with or without
protection, or should be discarded.

IPsec relies heavily on the concept of Security Associations (SAs). An SA is a simplex
connection that provides security services to the traffic carried. To secure a typical, bi-
directional communication channel between to IPsec-enabled systems, a pair of SAs
is needed. SAs van be created automatically using the Internet Key Exchange (IKE)
protocol or manually by the system administrator.

While an SA is a management construct used to enforce security policy for traffic, the
policies that specify what services are to be offered to IP packets and in what fashion, are
the Security Policies stored in the Security Policy Database (SPD). When processing a
packet, the SPD must be consulted and it must provide three choices for traffic: discard,
bypass or protect. If the choice is discard, the traffic is not allowed to traverse the IPsec
boundary in the specified direction. In case of bypass, the traffic is allowed to traverse the
boundary, but no protection is provided. In case of protect, the traffic is afforded IPsec
protection and the SPD must specify the security protocols to be employed, including
their mode, security service options, and the necessary cryptographic algorithms.

The RoViM-enabled IPsec gateway prototype in our environment is an end-point of
an IPsec tunnel which establishes secure communication between two end-points, the
Client and the Server. Both the Client and the Server are implemented as virtual
machines, and the Server implements a file server accessible via HTTP. The Internet
itself is modeled as a network between two routers.

In our prototype implementation of IPsecGatewayServer, all virtual machines share
the same IP address to the outside world, which makes rotations transparent in Layer 3
and above. However, separate addresses are used in Layer 2 to differentiate between the
virtual machines. As a result, the destination address of the frame decides which virtual
machine receives the frame. It must be mentioned that this solution works only if the
Layer 2 address related to an IP address can be forcibly updated at nodes on the local
networks. Because we use ARP in the data link layer, notifications about the rotation
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Figure 5.14: Internal networks for managing rotation

are unsolicited ARP replies sent by the gateway.
The rotating virtual machines use two additional networks for internal communica-

tion, as shown in Figure 5.14. The Leader Election network is used by the standby
virtual machines to decide the next active virtual machine. The three-subphase in-
teraction between the active and next active virtual machines happens in the State
Exchange network. The separation of internal networks ensures that standby virtual
machines are separated from the exposed active virtual machine. Virtual machines keep
their unnecessary network interfaces down.

Our prototype implementation uses VMware ESXi1 as the virtualization platform.
The virtual machines all run the same operating system, Ubuntu 14.04 Server LTS.
Additional packages are installed for the implementation: openssh-server for transferring
the application state, ulogd2-pcap for implementing the FIFO buffers, arping for sending
unsolicited ARP replies, and python-pip, because the implementation was written in
Python.

5.6 Performance evaluation of prototype
We evaluate the performance of the IPsec gateway prototype with respect to packet
loss and user experience. We measure the extent of packet loss with the optional buffer
feature of subphase 3 enabled in Section 5.6.1 with a stream of ICMP requests and
replies. We also measure user experience with a continuous packet flow generated while
downloading a large file from the Server to the Client.

1https://www.vmware.com/products/esxi-and-esx.html (Last visited: Jan 5, 2021)
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Figure 5.15: Round-trip times of individual ICMP requests and corresponding replies

5.6.1 Measuring packet loss with ICMP packets

The first experiment is aimed at determining whether packet loss still occurs with the
optional buffering feature of subphase 3 enabled in the prototype implementation. The
packet flow necessary for the experiment must not have any mechanism built in to
protect against packet loss. Therefore, we chose ICMP requests and replies with which
to perform the experiment. We executed a ping command on the Client aimed at the
Server, thus sending ICMP requests and replies between them. Meanwhile, the virtual
machines in the IPsec gateway performed one cycle of rotation triggered manually.

The results of this experiment are shown in Figure 5.15. The rotation was triggered
when ICMP request #81 was sent from the Client. The round-trip times of individual
ICMP requests and replies show that no significant latency was introduced to the packet
flow. However, the Client suffered a packet loss for ICMP request #81. The log files on
the prototype implementation provided more insight into the issue. After the Security
Associations and the Security Policies of the IPsec tunnel had been transmitted to the
next active virtual machine, the active virtual machine and the next active virtual ma-
chine entered subphase 3. When the next active virtual machine requested information
about the buffered packets, ICMP request #81 had not yet been processed by ulogd2
and an empty pcap file was transmitted to the next active virtual machine. It was only
after subphase 3 that ICMP request #81 was processed at the active virtual machine
and the request appeared in the pcap file. Running the test multiple times resulted in
the same outcome.

5.6.2 Measuring user experience using continuous TCP packet flow

The second experiment we conducted was aimed at finding changes in the user-experience.
Therefore, we downloaded a 500 MB file from the Server to the Client. As in the pre-
vious test, the rotation at the RoViM-enabled IPsec gateway prototype was triggered
manually. The HTTP protocol used to download the file uses TCP in Layer 4, therefore,
the packet flow also provided insight into how the latency introduced by the three-phase
interaction influences TCP. We ran Wireshark at the Server to observe the packet flow
and gather statistics.

The results are shown in Table 5.1. The TCP connection between the Client and the
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Table 5.1: Continuous TCP packet flow statistics with and without rotation

Without rotation With rotation
Transmission time 23.680 s 23.684 s
Duplicate IP address configured (172.16.5.254) 0 2
Retransmissions 55 315
Out-of-order segments 32 39

Figure 5.16: Wireshark’s “Duplicate IP address configured” warning

Server did not break during the rotation. As expected, the rotation introduced latency
to the transmission, but the transmission time increased with only 0.004 s, which does
not influence the user-experience.

During subphase 2 of the three-subphase interaction, the next active virtual machine
brought up its network interface to the server. This interface had the same IP address
as the active virtual machine’s network interface. At the Server’s side, it seemed that
while the IP address of the gateway did not change, its MAC address did. Therefore,
Wireshark issued a Duplicate IP address configured warning. This warning was
present twice in the packet flow, once when the interface was brought up, and once
when the invalidation of the ARP caches in the 172.16.5.0/24 network happened.

The rotation introduced a significant increase in retransmissions for TCP. To un-
derstand the issue here, the retransmission mechanism of TCP must be discussed first.
For each segment sent, parties communicating via TCP expect an acknowledgement. If
this acknowledgment does not arrive within the retransmission timeout, the segment is
sent again. All TCP implementations must use two specific algorithms for computing
the retransmission timeout as dictated by RFC 1122 [15]. The algorithms combined
adjust the retransmission timeout to the capabilities of the connection link: connec-
tions with higher throughput have lower retransmission timeouts and connections with
lower throughput have higher timeouts. In our case, up until the optional buffering of
subphase 3, the network throughput in the test environment is very high. This is be-
cause first, there is no other source of traffic, and second, the test environment is also
virtual and the virtual machines are simply ports from the host’s point of view. Each
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packet in the virtual environment is passed from one port to another on the host. The
retransmission timeout calculated by Wireshark was 0.25 s before the rotation. Then,
the three-subphase interaction occurs and suddenly, all incoming packets are buffered
at the active virtual machine. The exact start of the rotation cannot be seen in the
packet flow as the protocol was designed to be transparent in Layer 3 and above. How-
ever, acknowledgement for packets 31328 to 31336 on Figure 5.16 does not arrive within
timeout, therefore, the Server retransmits packets 31328 to 31337, up until the next
active virtual machine sends the unsolicited ARP reply (packet 31338). The artificial
latency introduced by the rotation makes the TCP implementation of the Server be-
lieve that some kind of network error has occurred and all segments from packet 31328
to 31336 need to be retransmitted in smaller segments. Retransmissions took 6.556 ms
to complete.

The increase in out-of-order segments is also caused by subphase 3 in which previously
buffered packets are retransmitted by the next active virtual machine. As discussed in
Section 5.3.3, when the next active virtual machine has its interfaces up, new packets
are allowed to flow and the buffered ones are retransmitted. In case of this experiment,
this results in buffered acknowledgements for previous segments to be transmitted to the
Server while it is retransmitting, causing the segment flow to become out-of-order.

Based on the discussed issues, it seems that the optional buffering of subphase 3 only
hinder the performance of TCP. The experiment was repeated with subphase 3 disabled
and as a result, TCP needed only 5.113 ms to retransmit the buffered segments.

5.7 Conclusion
In this chapter, we introduced a new mode of operation for embedded IoT devices, which
we call RoViM. RoViM allows devices to cleanse themselves of compromises periodically.
The design of RoViM uses multiple virtual machines following the emerging trend of vir-
tualization in the field of embedded devices. We formally verified RoViM’s design to
prove reachability, liveness, and safety properties. We also developed a prototype imple-
mentation of a RoViM-enabled IPsec gateway and showed that the latency introduced
by the periodic cleansing does not have a significant impact on user experience. The
results presented in this chapter were published in [C6].

The threat model used for the design of RoViM assumes that the attacker does
not have enough time between rotations to use the internal communication channel
between the virtual machines to compromise the next active virtual machine. However,
there may be scenarios in which this assumption is broken. For example, the attacker
could compromise the next active virtual machine via the serialized application data
transmitted during subphase 1: the attacker could provide malicious content to exploit
a vulnerability in the application. The attacker can also send bogus data or he may
outright refuse to transmit any data at all. In these scenarios, the application is cut
from the data necessary to seamlessly execute the rotation and may become out-of-sync
with the outside world. While malicious content or bogus data can be detected with
extensive input validation, the denial of service situation arising from the missing data
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is not easily handled.
RoViM could also benefit from fault detection. In the current design, a fault in the

active virtual machine can render the system useless because the application state is lost.
What is more, the fault cannot even be detected before the start of subphase 1, because
there is no interaction between the next active virtual machine and the active virtual
machines before that point in time. With fault detection, standby virtual machines could
monitor the active virtual machine and determine when it experiences faults. They could
also save the current application state, if no fault is detected. Unfortunately, this would
increase the attack surface of standby virtual machines, therefore, further research is
necessary to fully understand the advantages and disadvantages.

The security of RoViM could be further enhanced with a diverse pool of virtual
machines. If all virtual machines in the system have the same configuration, the attacker
can easily compromise each rotated active virtual machine. In order to mitigate this
issue, two countermeasures could be deployed. First, the operating system of virtual
machines can be hardened using state-of-the-art techniques, e.g., address space layout
randomization (both for the kernel and for user-space applications) and the use of NX
bit. Second, if the application running on the embedded device can be ported to multiple
operating systems, virtual machines could have different operating systems to further
increase diversity.

At the time of writing, the prototype implementation runs in a virtualized environ-
ment. As the next step, the code should be ported to an embedded Linux operating
system running on a multi-core architecture. Experiments with a real RoViM-enabled
embedded IoT device would allow us to further investigate the impact RoViM has on
user experience.
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Chapter 6

Summary of new results

Embedded IoT devices are special-purpose devices with Internet connection. Internet
access provides a number of interesting and innovative application domains to these
devices in smart homes and cities, transportation, and healthcare. However, Internet
access is also a new attack surface, which needs adequate protection. I made the following
contributions in this dissertation to this field.

THESIS 1: I reviewed the threat landscape of embedded IoT devices and
proposed a new attack taxonomy to systematically identify and
classify common attacks in [C1]. I evaluated the proposed at-
tack taxonomy on relevant records from the CVE database
in [C2]1 and highlighted several important aspects of the se-
curity of embedded devices.

THESIS 2.1: I studied the possibility of clustering malware samples based on
their binary similarity hashes, specifically, their TLSH similar-
ity score in [C3]2. I showed that existing clustering algorithms,
k-medoid and OPTICS, have unacceptable performance on a
large corpus of IoT malware.

THESIS 2.2: In response to the unacceptable performance of k-medoid
and OPTICS, I proposed a new malware clustering algorithm
in [C3] and showed its superior performance to both k-medoid
and OPTICS.

1In the case of both papers, Zhendong Ma supervised my work for AIT Austrian Institute of Tech-
nology GmbH.

2Márton Bak implemented to data collection methodology and clustering algorithm. Csongor Tamás
provided the empirical TLSH threshold for detecting variants of malware families.
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THESIS 3.1: I presented a general approach for uncovering environmental
conditions posed by stealthy malware. This approach is ca-
pable of considering all external data sources as trigger input
types. I validated the applicability of the general idea at the
source code level using real-world, open-source software sam-
ples in [C4]3. The results demonstrate that if symbolic exe-
cution succeeds, environmental conditions guarding hidden be-
haviors can be extracted from programs. However, the path
explosion problem remains a challenge.

THESIS 3.2: In order to tackle the path explosion problem, I proposed a
new analysis method relying on directed symbolic execution to
guide analysis towards selected program points, for example,
potentially malicious behaviors in binaries. I implemented the
proposed analysis method in angr and evaluated it on both
artificial and real malware samples in [C5]4. Our experiments
proved that it is possible to obtain the environmental conditions
required to trigger specific program points. In addition, analy-
sis has a reasonable performance considering the complexity of
the analyzed samples and the generality of our approach.

THESIS 4: I designed a new mode of operation, RoViM, for embedded
IoT devices in [C6]5, which allows them to periodically restore
a compromise-free state. I formally verified the design using
Uppaal and proved reachability, liveness, and safety properties.
I also implemented a prototype of RoViM as an IPsec gateway
and also measured its performance. Our measurements showed
that the proposed new mode of operation does not have a sig-
nificant impact on user experience.

3Thorsten Tarrach supervised my work for AIT Austrian Institute of Technology GmbH.
4Thorsten Tarrach supervised my work for AIT Austrian Institute of Technology GmbH.
5Zhendong Ma supervised my work for AIT Austrian Institute of Technology GmbH.
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