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1 Introduction
Embedded devices are special-purpose devices developed to perform specific tasks. They
are present in many modern-day application domains, including healthcare, transporta-
tion and agriculture. A recent advancement in the field of developing embedded devices
is their connection to the Internet, which leads to what is known as the Internet of
Things (IoT for short). Internet connection has enabled a wide range of new and in-
novative applications for these devices, which we commonly call embedded IoT devices.
For example, houses equipped with smart meters can automatically report water and
energy use. Smart traffic lights in cities can sense the flow of traffic and adjust accord-
ingly to reduce traffic jams. Medical experts can monitor certain implanted healthcare
devices, e.g. pacemakers, remotely.

Internet connection, however, has also opened the way for attackers to target and
compromise embedded IoT devices. Attacking these devices is a rational choice from
the attackers’ point of view. Embedded IoT devices, especially in the healthcare and
smart home application domains, handle sensitive and personal data worth stealing. In
addition, even though the computational power of individual embedded IoT devices is
small, it is non-negligible when considering these devices combined. From the technical
point of view, the hardware and software components of embedded IoT devices are not
very different from those found in traditional computers. Their insecure configuration,
e.g., accessible open ports without proper authentication, as well as default or hard-
coded passwords, allow easy access the device. It is also technically possible to exploit
vulnerabilities in software components running on IoT devices, including their firmware

1Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support provided from the
National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP
funding scheme.

1



New Results

and operating system (OS), which is often based on some embedded Linux variant.
Consequently, the security community has observed a rise in the number of viruses,
worms, Trojans and other types of malware targeting embedded IoT devices. One of the
most infamous examples is Mirai [2], which infected hundreds of thousands of IoT devices
and launched one of the largest distributed denial of service attacks ever recorded against
popular Internet-based services in 2016. The IoT threat landscape, however, includes
other malware as well, for example, Gafgyt, Tsunami, and Dnsamp [10].

In my dissertation, I explore the security of embedded IoT devices. Specifically, I
review the threat landscape of IoT devices with a new taxonomy for attack scenarios
and highlight several areas in which improvements to the security of embedded devices
are necessary. One of the key insights gained from applying my proposed taxonomy to
existing vulnerability data is that malware is a major threat to embedded IoT devices.
Therefore, I focus my attention on this threat and study the issue of malware from two
aspects. First, I address the problem of malware clustering. Malware clustering allows
for focusing malware analysis on only those samples that have not been analyzed before
and are not similar to any known malware. Second, I address the problem of stealthy
malware. There exists a class of malware that perform malicious actions only when
specific inputs, e.g., commands from the attacker, are received. This behavior is known
as trigger-based behavior and is a great challenge for analysts. In order to overcome
this challenge, I propose a new analysis method to uncover environmental constraints
guarding malicious behavior. Finally, I propose a new mode of operation, RoViM, which
allows embedded IoT devices to restore themselves periodically to a known compromise-
free state, while keeping their functionality/services continuously available.

2 New Results
This section is a short summary of the results that are discussed in details in my disser-
tation.

2.1 The threat landscape of embedded IoT devices

Having a comprehensive view and understanding of an attacker’s capability, i.e., know-
ing the enemy, is a prerequisite for security engineering embedded IoT systems. Secu-
rity analysis, secure design, and secure development must all take into account the full
spectrum of the threat landscape in order to identify security requirements, as well as
innovate and apply security controls within the boundary of constraints. Understand-
ing the threat landscape requires identifying the main causes of successful attacks, the
attacks’ commonalities, and the main vulnerabilities.
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THESIS 1: I reviewed the threat landscape of embedded IoT devices and proposed
a new attack taxonomy to systematically identify and classify common
attacks in [C1]. I evaluated the proposed attack taxonomy on relevant
records from the CVE database in [C2]2 and highlighted several impor-
tant aspects of the security of embedded devices.

Due to researchers’ specific interests, the cost incurred in security testings, and the non-
disclosure agreement forced by the vendors or asset owners, the published attacks/hacks
only reflect a fraction of the whole threat landscape. To gain a comprehensive view, we
must study the information on vulnerabilities related to embedded systems. The main
information source is the Common Vulnerabilities and Exposures (CVE) database3, the
most comprehensive aggregation of security vulnerabilities. Each entry in the CVE
database is assigned a standardized identifier, which can be used to share vulnerabil-
ity information across different organizations. At the time of my research (2015), the
database contained more than 60,000 entries, not all related to embedded systems. I
improvised several techniques on-the-fly-to filter and extract relevant entries from the
general vulnerability data, and manually analyzed the selected entries. The result of the
analysis was a set of attack classification criteria that served as a basis for the attack
taxonomy.

Based on my analysis of the CVE records and prior work on attack taxonomies, I
defined 5 dimensions along which attacks against embedded systems can be classified: (1)
precondition, (2) vulnerability, (3) target, (4) attack method, and (5) effect of the attack.
The precondition dimension contains possible conditions that are needed to be satisfied
in order for the attacker to be able to carry out the attack. The vulnerability dimension
contains different types of vulnerabilities that can be exploited by the attacker. The
target dimension contains possible attack targets by which I mean a specific layer of the
system architecture or the embedded device as such if no specific layer can be identified
as a target. The attack method dimension contains various exploitation techniques that
the attacker can use. The effect dimension contains possible impacts of an attack.

I evaluated the proposed taxonomy on 3,826 CVE entries related to embedded sys-
tems. Figure 1 shows the results on a parallel coordinates diagram. Each path on the
diagram is an attack scenario derived from individual CVE results, the categories the
path touches in each dimension show a different aspect of the attack. The thicker a path
is, the more CVE entries mention it as a possible scenario. Given the recent trends in
machine-to-machine communication and the growing number of embedded IoT devices,
I expect Internet facing devices to continue to suffer the majority of attacks. These
attacks can come in various forms; however, based on Figure 1, malware and exploits
are the most common approaches which have to be dealt with.

2In the case of both papers, Zhendong Ma supervised my work for AIT Austrian Institute of Tech-
nology GmbH.

3https://cve.mitre.org/ (Last visited: Jan 8, 2020)
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Figure 1: Common attack scenarios for embedded IoT devices

2.2 Malware clustering using binary similarity hashes

Based on results presented in Section 2.1, the security of embedded IoT devices could
be improved significantly with better protection from malware, such as Mirai [2]. Anti-
virus companies rely on malware classification methods [27, 26, 12] to identify relating
malware samples. Clustering malware into families makes sense, as members of the same
family, while being different at the binary level, exhibit similar behavior. Ultimately,
such clustering reduces the load on analysts by allowing them to focus on samples that
are not similar to any known sample.

THESIS 2.1: I studied the possibility of clustering malware samples based on their
binary similarity hashes, specifically, their TLSH [23] similarity score
in [C3]4. I showed that existing clustering algorithms, k-medoid and
OPTICS, have unacceptable performance on a large corpus of IoT
malware.

k-medoid [15] is a PAM-based algorithm in which clusters can have only valid data
points as their centers (also called medoids). The algorithm has one input parameter, k,
which determines how many clusters will be present in the output of the algorithm. The
algorithm first selects k medoids, then tries to fit all data points to the nearest cluster
head. Medoid selection and re-clustering is repeated iteratively until an optimum is
reached. The measure of goodness for the algorithm is s(k), which measures the gain in
assigning data points to specific clusters based on distance. The closer the metric is to
1, the better the setup.

4Márton Bak implemented to data collection methodology and clustering algorithm. Csongor Tamás
provided the empirical TLSH threshold for detecting variants of malware families.
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Table 1: Best s(k) values for different k-medoid cluster configurations

k s(k)
318 0.962
625 0.959
232 0.955
925 0.950
396 0.948

Table 2: Statistics of k-medoid cluster configuration with k = 17

s(k) 0.405
Maximum diameter 1,038
Minimum diameter 180
Mean diameter 467.824
Largest cluster size 1,110
Smallest cluster size 35
Mean cluster size 573.294

There are several rationales behind choosing k-medoid as the clustering algorithm.
It is unsupervised, ie. there is no need to supply any additional data, only the similarity
measurements between samples. In addition, the algorithm only selects existing data
points as cluster heads. This is useful for malware clustering, because cluster heads can
represent other malware samples in the same cluster. The disadvantage of this algorithm
is that the input k has to be specified manually.

Unfortunately, I do not know how many variants there are in the data set (the col-
lection methodology is detailed in Section 3.2 in my dissertation), therefore, I calculated
cluster configurations for all potential k values. I computed the s(k) metric for all cluster
configurations in order to rank the different setups. As shown in Table 1, the best s(k)
values of the calculated cluster configurations barely differ, however, the corresponding
k values have a wide range, making it unclear which setup to choose. I also observed
that several cluster heads have small TLSH differences when compared to other cluster
heads, which suggests that clusters could be merged. As variants have a TLSH differ-
ence lower then 48 (the details of deriving this number can be found in Section 3.2.3 of
my dissertation), cluster heads of different clusters should have a TLSH difference score
higher than 48. With this requirement in mind, I looked at the cluster configurations
and found that with TLSH thresholds ranging from 30 to 70, k = 17 achieves the best
s(k) value.

Statistics of the cluster configuration k = 17 is shown in Table 2. In this configura-
tion, the calculated cluster diameters range from 180 to 1,038, the mean being 468. In
the scenario of malware clustering based on TLSH similarity score, cluster diameter is
interpreted as the largest TLSH difference between any two samples in the same cluster.
Taking the TLSH difference threshold for variants of 48 into consideration, we can con-
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clude that clusters in this setup contain very different samples; clusters should be split
into smaller clusters.

OPTICS [1] identifies sparse and dense regions in the data set in order to create
clusters. It takes two parameters, εmax and minPts. ε describes the radius of an area,
while minPts is the minimum number of data points in that area. The algorithm
dynamically calculates an ε ≤ εmax values for data points such that data points have
at least minPts − 1 samples in their ε radius. The algorithm also takes as input a
precomputed distance matrix. OPTICS also has a built-in clustering algorithm, ξ, which
clusters data points by detecting abrupt changes in the ε-values. This characteristic
makes it favorable in my scenario as my data set has malware families with only a few
samples, as well as families with thousands of samples.

We can specify an upper bound for εmax as the maximum TLSH difference in the
data set. However, selectingminPts is a challenge without knowledge about the internal
structure of the data set. To gain this knowledge, I ran OPTICS with different parameter
setups: εmax values were set to be 40, 50, 60 and 70, while minPts was set to be 1, 2,
5, 10, 20, 40, 50, 70, 100, 150 and 200.

The resulting cluster configurations were again unsatisfactory. In all configurations,
the number of unclassified samples is very high. Different values of εmax do not seem
affect this trait: setting minPts to 2, εmax = 40 yielded 1,800 unclassified samples, while
εmax = 70 resulted in 1,721 unclassified samples. The more I increased minPts, the
more unclassified samples were returned. The configuration εmax = 70, minPts = 200
resulted in 6,934 unclassified samples, which is 68% of the data set. Such a high number
of unclassified samples is disadvantageous in malware clustering because many samples
would require additional analysis.

THESIS 2.2: In response to the unacceptable performance of k-medoid and OP-
TICS, I proposed a new malware clustering algorithm in [C3] and
showed its superior performance to both k-medoid and OPTICS.

My proposed clustering algorithm was developed with the following requirements
in mind. First, it has to cluster samples based on their binary similarity expressed
as TLSH differences. Second, it has to be able to find even the smallest clusters in a
varying density data set. The input data set may contain singleton clusters, i.e. samples
dissimilar to every other sample; however, these must not be treated as noise because
these are the most interesting samples for malware analysis. The resulting algorithm is
discussed in Section 3.4 of my dissertation.

In order to evaluate the efficiency of the proposed clustering algorithm, I compared
it against the results of both k-medoid and OPTICS. During evaluation, I took into
consideration cluster diameters, the number of singleton clusters generated and two new
measures of goodness.

The number of generated clusters and singleton clusters are shown in Table 3. k-
medoid and OPTICS both generate considerably fewer clusters than my algorithm does,
more in line with the number of malware families the data set contains. My algorithm
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Table 3: Comparison of the clustering methods

k-medoid OPTICS My algorithm
Number of clusters 17 13 392
Number of singletons 0 6,058 353

Figure 2: Cluster diameters produced by different clustering algorithms

generates 745 clusters, of which 353 are singletons, a negligible amount compared to
OPTICS’s performance.

The diameters of cluster configurations from all three algorithms are shown in Fig-
ure 2. Because my algorithm produced much more clusters than k-medoid and OPTICS,
I use a different scale for the number of clusters in its case. The experiments detailed in
my dissertation have shown that in order to detect variants of malware families, cluster
diameters must be below 48. The figure shows that both k-medoid’s and OPTICS’s clus-
ter diameters are too large to denote variants. The cluster configuration of my algorithm,
however, is much closer to this threshold with 93.69% of my clusters having diameters
below 50. As a result, my clusters are more likely to represent malware variants.

The first measure of goodness I present shows how “pure” a cluster is, i.e. how many
samples of the cluster are of the family with the most samples in that cluster. This
metric can only be computed for non-singleton clusters as clusters containing only a
single sample automatically achieve the measure of 1. Figure 3 shows the algorithms’
performance with respect to this measure of goodness. Cluster configurations of both
k-medoid and OPTICS typically achieve ratios between 0.56 and 0.63. By contrast, of
the 392 non-singleton clusters produced by my algorithm, 185 have ratios over 0.6, of
which 103 outperform both OPTICS and k-medoid.

We also need to take into consideration that malware families share and/or copy
features from each other. In response, the relaxation of my measure of goodness considers
not only the family with the most samples in a given cluster but also families with
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Figure 3: Goodness ratios produced by different clustering algorithms

Figure 4: Relaxed goodness ratios produced by different clustering algorithms
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which it is known to share features. Singleton clusters can be included, since non-
singleton clusters have a chance of achieving the ratio 1. The relaxed measure of goodness
ratios achieved by the compared algorithms are shown in Figure 4. The figure shows
that even though both OPTICS and k-medoid achieve ratios above 0.95, my algorithm
outperforms both with almost all clusters achieving the measure of 1. However, my
algorithm produces clusters whose relaxed ratios are well below those achieved by k-
medoid and OPTICS, likely the result of poor anti-virus labels.

2.3 Uncovering environmental requirements of malware

There exist malware clustering approaches that rely on features executed during samples’
execution. However, attackers have developed malware in which the undocumented,
potentially malicious features are executed only when specific conditions are met, for
example, some inputs that satisfy pre-defined criteria are received. This behavior is
known as trigger-based behavior and such inputs are called to as trigger inputs. The
pre-defined criteria are hard-coded into the program in the form of checks and their
semantic meaning can encompass all sorts of external requirements, e.g. specific system
time or location, special text entered or messages received. Malware can evade in-depth
analysis by scanning its environment and ceasing malicious activities if it finds signs
of an analysis framework5. Trigger-based behavior also includes backdoors, a behavior
prevalent in embedded firmware images [9], in which case access is granted, if a specific
string is received as input.

Previous works in this field [5, 11, 17] have demonstrated the usefulness of symbolic
execution [3, 24] to determine the conditions necessary to trigger hidden behaviors.
Symbolic execution was originally developed to automate testing by analyzing execution
paths and generating test cases, which lead execution down the analyzed execution path.
In order to uncover the conditions related to trigger-based behavior, we need to analyze
the program’s interaction with its environment and the environment’s influence on the
program’s behavior. If data from the environment is replaced with symbolic variables,
symbolic execution can be used to analyze this interaction and obtain the hard-coded
conditions. Solving these conditions give analysts concrete values that can be used
for further analysis. However, using symbolic execution has a limitation: the more
symbolic variables are introduced into the analysis, the more execution paths must be
analyzed, leading to the path explosion problem. Previous work addressed this problem
by considering only a subset of potential trigger condition types.

5https://www.fireeye.com/blog/threat-research/2011/01/the-dead-giveaways-of-vm-aware-malware.
html Last visited: Jun 8, 2020
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THESIS 3.1: I presented a general approach for uncovering environmental condi-
tions posed by stealthy malware. This approach is capable of con-
sidering all external data sources as trigger input types. I validated
the applicability of the general idea at the source code level using real-
world, open-source software samples in [C4]6. The results demonstrate
that if symbolic execution succeeds, environmental conditions guarding
hidden behaviors can be extracted from programs. However, the path
explosion problem remains a challenge.

I improved upon existing work by considering all potential trigger condition types
automatically. In order to deal with the greater number of symbolic variables and the
resulting path explosion problem, my approach focuses on specific instances of malicious
behavior. Therefore, my method requires the human analyst to provide a description
of the malicious behavior in the form of a sequence of system calls with associated
predicates: (s0, p0), (s1, p1), . . . , (sn, pn). Throughout the booklet, I refer to this sequence
as the target system call pattern of the malicious behavior.

Modeling malicious behaviors using a sequence of system calls is a widely used ap-
proach in the malware analysis domain [19, 28, 14, 8, 13, 18] for a number of reasons.
First, system calls constitute the primary communication channel between programs and
the operating system. Many functionalities necessary for a program’s execution are pro-
vided as services by the operating system which can be required via system calls. Second,
the semantics of each system call are documented and available for interested parties.
However, system calls alone are often insufficient to describe a particular behavior with
enough granularity [7]. Therefore, I allow users to specify additional requirements for
the invocation of system calls with predicates. Such requirements may include specifying
what arguments should be passed to system calls, what the contents of the execution
state’s memory and/or registers should have, etc. While specifying target system call
patterns requires expert knowledge, they need to be defined only once and can be reused
later for many samples. In this regard, they are similar to other knowledge bases related
to malware analysis, e.g., YARA rules7. In addition, individual low-level target system
call patterns could be combined to build higher-level behavioral specifications similarly
to the work of Lorenzo et al. [22].

The overview of the main idea is shown in Figure 5. I assume that the analyzed
program is deterministic and interacts with the environment through either libraries or
the operating system and its API (system calls). In real-life execution, the program
would invoke multiple calls and a subset of the return values would be matched against
the pre-defined criteria hard-coded into its logic. Only if the result of the comparison(s)
were a match, would the program execute the potentially malicious behavior. In order to
analyze this interaction, the return values of those calls that return data from external
sources must be replaced with fresh symbolic variables.

I implemented this methodology as a prototype using the GNU and LLVM toolchains.
6Thorsten Tarrach supervised my work for AIT Austrian Institute of Technology GmbH.
7https://virustotal.github.io/yara/ (Last visited: Mar 5, 2021
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Figure 5: Using symbolic execution for recovering environmental conditions guarding
malicious behavior

Table 4: Results for uncovering hidden malicious behavior in open-source software

Sample Name Completed paths Generated test cases Detected
cd00r 1,299 5 (1 highlighted) Yes (1/1)
giardia 48 4 (1 highlighted) Yes (1/1)
osx-ping-backdoor 212,754 122 (2 highlighted) Yes (1/2)
portknockd 11,902,399 1 No
portknocking 39,077 8 No

My prototype automatically generates symbolic summary functions based on a list of
function names and semantic data about how to introduce fresh symbolic values. The
prototype uses KLEE [6] as a mixed concrete and symbolic execution tool. My im-
plementation signals KLEE to output highlighted test cases at potentially malicious
instructions using the klee_assert() function.

To evaluate my proposed approach, I collected open-source software from GitHub
using keyword search for the terms “backdoor”, “logic bomb”, “time bomb” and “port-
knock”. All collected samples are written in C and implement some form of trigger-based
behavior. For the evaluation, I used a virtual machine with 4 CPUs and 10 GB memory.
The virtual machine ran Ubuntu 14.04.5 LTS. I set the maximum memory available to
KLEE to 8 Gb and used its default path selection strategy.

The results are summarized in Table 4. While KLEE explored many paths in the
samples, I configured it in such a way, that only test cases covering previously uncovered
code would be outputted. Hence the low number of test cases generated. In three out of
five projects, KLEE generated true positive test cases, i.e., trigger inputs for malicious
execution paths. In the remaining cases, the limitations of KLEE lead to unsuccessful
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experiments. The results also shows that my proposed approach suffers heavily from the
path explosion problem.

THESIS 3.2: In order to tackle the path explosion problem, I proposed a new analy-
sis method relying on directed symbolic execution [21] to guide analy-
sis towards selected program points, for example, potentially malicious
behaviors in binaries. I implemented the proposed analysis method in
angr [25] and evaluated it on both artificial and real malware samples
in [C5]8. My experiments proved that it is possible to obtain the en-
vironmental conditions required to trigger specific program points. In
addition, analysis has a reasonable performance considering the com-
plexity of the analyzed samples and the generality of my approach.

The pseudocode of the proposed path selection strategy can found as Algorithm 2 in
my dissertation. The details of the algorithm are discussed in Section 4.4. My proposed
analysis consists of three techniques:

1. a path selection strategy consisting of three levels to prioritize available execution
paths,

2. symbolic summary functions capturing the behavior of invoked system calls in
order to introduce a model of environmental data to the analysis, and

3. a mechanism for automatically finding target program points that can advance the
execution path’s progress.

Analysis starts from the entry point of the program and while there are execution states
to be analyzed, we select the most promising state(s) according to the path selection
strategy. The selected state(s) are symbolically analyzed using mixed concrete and
symbolic execution. In order to model the environment, custom symbolic summary
functions must be supplied.

I implemented a prototype in angr and evaluated the performance of the prototype
on two malware samples. Both pieces of malware poses several challenges for analysis.
First, due to my assumptions and their implementations, a large number of execution
paths are available for analysis, the sources of which are the following:

1. Environmental data: My pieces of malware relies on the system time, process IDs
and communication over the network. As I assume no prior knowledge about its
functionality, my analysis has to analyze all those inputs using symbolic variables,
leading to many branches.

2. String handling: My pieces of malware processes network input using standard libc
functions such as strlen and strcasecmp. These functions typically loop over the
string character by character. As their inputs are returned from the kernel, my
analysis must consider each of the characters a symbolic variable. Such loops are
known to contribute to the path explosion problem.

8Thorsten Tarrach supervised my work for AIT Austrian Institute of Technology GmbH.
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Table 5: Solutions to the symbolic characters which trigger the DoS attack

Character index Possible solutions
0 d or D
1 o or O
2 s or S
3 SPACE
4 any character
5 any character
6 any character
7 any character
8 SPACE
9 terminating NULL

3. Infinite loop: My pieces of malware is implemented to run in an infinite loop,
continuously listening for messages from the command and control server and
trying to reconnect in case of communication failure. As a result, exploring all
execution paths cannot be done in a finite amount of time.

My artificial malware sample has multiple instances of trigger-based behavior. It
first checks whether it executes in a virtual environment and exits, if it determines it
does. If no virtual environment is detected, my piece of malware connects to its hard-
coded command and control server and leaks several parameters of the host, including
operating system and kernel versions, total and available memory, and the number of
running processes. It also accepts commands from the command and control server.
The commands can cause it to launch a TCP PUSH+ACK-type denial-of-service attack
against the specified target, or to kill itself and all spawned child processes.

An execution path, which detected a virtualized environment, was found in ca. 7
minutes (437.17 seconds) and required a total of 5.96 GB of RAM. In order to reach the
necessary system calls, analysis generated a total of 71 execution paths before finding
one that detects the virtual environment and exits. The path condition of this execution
path contains constraints which show the necessary ASCII values encoding the virtual
environment: “Q”, “E”, “M”, “U”.

Finding an execution path which leaks system parameters completed in ca. 9 minutes
(568.09 seconds) and used 5.8 GB of RAM. There were 4 execution paths to which my
path selection strategy assigned equal priorities; their analysis uncovered the necessary
behavior in the same iteration.

My analysis was able to find execution paths that executes a denial-of-service attack
in ca. 5 hours (299 minutes) and required 41.4 GB of RAM. The path conditions shed
light on the necessary trigger, as shown in Table 5. I manually fed the concrete input
returned by the solver to my piece of malware and found that it indeed triggers the
execution of the denial-of-service attack.
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Table 6: Runtime performance onreal malware

Stage Runtime (hh:mm:ss)
Control-flow graph generation and extension 0:10:42

Simulation of execution paths 19:08:54
Shortest distance calculation 8:05:44
Other management tasks 5:05:11

I also used a publicly available Kaiten sample9 during evaluation. I selected one of
the functions launching denial-of-service attacks (tsunami in the source code) as the
target behavior.

Table 6 shows the performance of the prototype implementation on the Kaiten binary
sample. The execution time of a single run consists of four components:

1. generation and extension of the control-flow graph,

2. simulating execution paths,

3. ranking execution states (based on shortest distance), and

4. other management tasks, e.g., logging events, checking if the target was reached,
etc.

The measured execution time of my analysis was 32.5 hours. Most of the time was spent
with either simulating execution paths or calculating shortest distances.

The execution time of analyzing execution paths can be accredited to the logic of
the sample. During the tests, there were addresses whose analysis took hours for mixed
concrete and symbolic execution. These addresses were part of libc, including rand and
multiple string manipulating functions whose analysis involved computations with com-
plex symbolic values. rand is used by the sample to generate random 1-character-long
strings for communication with the C&C server. While the generated string has to be
analyzed in order to reach the target system call, its value does not matter: the symbolic
string representing network input either matches it, or it does not. Therefore, I replaced
rand with angr’s built-in symbolic summary function and used a fresh, unconstrained
symbolic variable to represent its result. However, the results of string manipulations
contribute directly to the execution path leading towards the selected target behavior:
they affect how long the symbolic string representing network input is and what con-
straints are placed on its characters. Therefore, I did not influence the execution of
string manipulations and settled for the increased execution time.

All previous experiments were performed on a machine with two Xeon E5-2680 CPUs
of 10 cores each, running at 2.8 GHz. The machine has 378 GB of RAM available. Note
that angr is not multithreaded and uses only a single core. I also restricted angr to
330 GB of memory.

9https://packetstormsecurity.com/files/25575/kaiten.c.html (Last visited: Jan 8, 2021)
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The path conditions of execution states reaching the targeted (sequence of) program
points have constraints associated with them whose interpretation is of varying difficulty.
Constraints like <Bool socket_retval_23127_32 == 0x3> are easy to interpret with
knowledge about the semantics of the system call whose model created them. As its
name suggest, socket_retval_23127_32 is the symbolic variable introduced when the
socket system call is invoked. The two numbers are appended by angr: the first is a
unique identifier, while the second is the length of the variable in bits. The return value
of socket in case of success is a file descriptor (positive integer) and in case of failure,
it is -1. Given that the right-hand side of the equation is positive, we can deduce that
the socket system call had to be completed successfully.

The human interpretation of other constraints, however, is quite challenging due to
their complexity. For example, the Kaiten sample sets an upper limit of 4096 on the
number of characters it reads from a socket with one call. As my symbolic summary
function of recv has an upper bound of 10 for the number of characters to be returned, it
returns a string with at most 10 characters. The malware sample then invokes multiple
string manipulating functions, which loop over the string character by character. The
corresponding binary instructions are conditional in many cases, which means that in real
life, the CPU would execute them only if necessary. During analysis, however, one of their
operands is a symbolic character and therefore, they cannot be skipped. Instead, when
possible, their results are encoded into If-Then-Else structures in the path condition:
if the flag evaluates to true, then the result is the Then value, else the Else value. These
structures can be nested into each other, leading to constraints whose evaluation is
tedious manually. In such cases, the constraint solver can be used to calculate satisfying
value assignments, giving concrete inputs to trigger the targeted behavior. Another
challenge in interpreting constraints related to input strings is that the constraint does
not include characters. Instead, (in)equality checks use the characters’ numeric ASCII
values. However, the naming convention of symbolic variables tells the analysts at which
system call a variable was introduced to analysis. Thereby the analyst gains semantic
information that the symbolic variable’s value can be interpreted as characters.

2.4 Proactive security for embedded IoT devices

My results regarding the threat landscape demonstrate that malware infected embedded
IoT devices can endanger various application domains. Therefore, these devices must
conform to security requirements, which is achieved using security controls and mech-
anisms. However, there is a wide range of vulnerabilities that need to be addressed.
Doing so individually for each vulnerability is a tedious task, unfortunately, which does
not scale well. Therefore, I turned my attention to proactive security. In contrast to
reactive security, which has the goal of detecting and reacting to attacks and compro-
mises, proactive security mechanisms anticipate attacks and put measures in place to
prevent compromises from happening.
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Figure 6: High-level overview of RoViM

THESIS 4: I designed a new mode of operation, called RoViM, for embedded IoT
devices in [C6]10, which allows them to periodically restore themselves to
a compromise-free state. I formally verified the design using Uppaal [4]
and proved reachability, liveness, and safety properties. I also imple-
mented a prototype of RoViM as an IPsec [16] gateway and measured
its performance. My measurements showed that my proposed new mode
of operation does not have a significant impact on user experience.

The basic idea of RoViM is to have multiple virtual machines on an embedded device and
periodically rotate between these virtual machines. Before the high-level overview of the
system can be discussed, some definitions must be introduced. The virtual machine that
is connected to and communicating with the outside world, and that performs the task
of the embedded device will be called active virtual machine. Standby virtual machine(s)
provide redundancy and are on cold standby, waiting to replace the active virtual ma-
chine. The standby virtual machine that will become the active virtual machine in the
rotation is called the next active virtual machine. The cleansing virtual machine previ-
ously acted as the active virtual machine and is being restored to its compromise-free
state. In practice, the compromise-free state can be a snapshot taken before the deploy-
ment of the embedded device. Rotations between virtual machines happen periodically.

10Zhendong Ma supervised my work for AIT Austrian Institute of Technology GmbH.
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Figure 6 shows one rotation with the high-level interaction needed for a single cycle to
complete. The unnumbered arrow between the active virtual machine and the outside
world highlights that the communication between the active virtual machine and the
outside world is not disrupted by the rotations. Rotations are triggered periodically by
the cleansing virtual machine after it is restored to a compromise-free state. The trigger
itself is a broadcast message to all standby virtual machines, instructing them to begin
the second phase of the rotation.

In the second phase, a standby virtual machine becomes the next active virtual
machine. Depending on the number of standby virtual machines used, two cases must
be considered. If there is only one standby virtual machine (apart from the previously
cleansed virtual machine), that virtual machine will automatically be the next active
virtual machine. If there are multiple standby virtual machines, they must agree on
which standby virtual machine should become the next active virtual machine. This
problem translates to the well-known leader election problem [20].

To become the active virtual machine, a three-subphase interaction is needed between
the active and the next active virtual machines. A high-level description of the three
subphases is presented here, more details are discussed in Section 5.3 in my dissertation.

1. The next active virtual machine must acquire all required data to perform the task
of the embedded device correctly. As the active virtual machine is connected to
the outside and may be compromised, the data on it may become corrupted or
malware can be installed. The designed system can be extended to ensure that no
malicious content is propagated to other virtual machines via input validation of
the application data. In addition, while the data from the active virtual machine
is being transmitted, the active virtual machine must make no changes to the
application data. Otherwise, the application running on the next active virtual
machine and the entities in the outside world would lose synchronization. In a
sense, time must freeze for the application but this may be against the availability
requirements of the application. Therefore, the implementation must specify a
time limit during which the next active virtual machine can take the place of the
active virtual machine. If the next active virtual machine does not succeed within
that time limit, the rotation should be aborted.

2. The next active virtual machine must notify all nodes on the local network to route
packets currently destined to the active virtual machine to the next active virtual
machine instead.

3. The next active virtual machine must initiate the restoration of the active virtual
machine into a compromise-free state. The active virtual machine is connected to
the outside world and may be compromised. We can assume that restoration to a
compromise-free state is against the interests of the attacker. Therefore, the next
active virtual machine must force cleansing. One such cleansing procedure can be
reverting the active virtual machine to a snapshot taken before the deployment of
the embedded device.
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Figure 7: Round-trip times of individual ICMP requests and corresponding replies

In order to limit packet loss, packets can be buffered during the interaction and can be
later retransmitted.

The outcome of the three-phase interaction should be that the virtual machines reach
a global state in which either

• the switch happened without errors and the elected standby virtual machine re-
placed the active virtual machine, or

• the global state before the interaction is restored in case of errors and the active
virtual machine is still in the active role.

It is also important to check whether the proposed third phase can lead to virtual
machines having inconsistent states and whether the protocol implementing that phase
has any deadlocks. To answer these questions, I subjected the proposed protocol to
formal verification using Uppaal [4]. The formal verification was not aimed to finding
security issues, but to check the correctness of the protocol with respect to functionality.
Uppaal proved reachability, liveness, and safety properties of the protocol. The details
of this analysis can be found in Section 5.4 in my dissertation.

I evaluated the performance of the IPsec gateway prototype with respect to packet
loss and user experience. For the measurement concerning packet loss, I used ICMP
requests and replies: I executed a ping command on a Client virtual machine aimed at
a Server virtual machine (their secure communication is provided via an IPsec tunnel).
Meanwhile, I triggered one cycle of rotation in the IPsec gateway manually.

The results of this experiment are shown in Figure 7. The rotation was triggered
when ICMP request #81 was sent from the Client. The round-trip times of individual
ICMP requests and replies show that no significant latency was introduced to the packet
flow. However, the Client suffered a packet loss for ICMP request #81. The log files
on the prototype implementation provided more insight into the issue: the active virtual
machine could not process ICMP request #81 fast enough for the rotation, which was
not forwarded to the next active virtual machine. Running the measurement multiple
times resulted in the same outcome.

The second experiment I conducted aimed at finding changes in the user-experience.
Therefore, I downloaded a 500 MB file from the Server to the Client. As in the
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Table 7: Continuous TCP packet flow statistics with and without rotation

Without rotation With rotation
Transmission time 23.680 s 23.684 s
Duplicate IP address configured (172.16.5.254) 0 2
Retransmissions 55 315
Out-of-order segments 32 39

previous test, the rotation at the RoViM-enabled IPsec gateway prototype was triggered
manually. The HTTP protocol used to download the file uses TCP, therefore, the packet
flow also provided insight into how the latency introduced by the three-phase interaction
influences TCP. I ran Wireshark at the Server to observe the packet flow and gather
statistics.

The results are shown in Table 7. The TCP connection between the Client and the
Server did not break during the rotation. As expected, the rotation introduced latency
to the transmission, but the transmission time increased with only 4 ms, which does not
influence the user-experience.

The next active virtual machine’s network interface had the same IP address as the
active virtual machine’s network interface. At the Server’s side, it seemed that while the
IP address of the gateway did not change, its MAC address did. Therefore, Wireshark
issued a Duplicate IP address configured warning. This warning was present twice
in the packet flow due the IPsec gateway’s rotation.

The rotation introduced a significant increase in retransmissions for TCP. In my case,
the network throughput in the test environment was very high until rotation. This was
because, first, there is no other source of traffic, and second, the test environment is also
virtual and the virtual machines are simply ports from the host’s point of view. The
retransmission timeout calculated by Wireshark was 0.25 s before the rotation. Then,
the three-subphase interaction occured and suddenly, all incoming packets were buffered
at the active virtual machine. Acknowledgements for segments did not arrive within
timeout, making the Server believe that some kind of network error had occurred.
Retransmissions took a total of 6.556 ms to complete.

The increase in out-of-order segments was also caused by the rotation. When the
next active virtual machine had its interfaces up, new packets were allowed to flow and
buffered ones were retransmitted by the IPsec gateway. In case of this experiment, this
resulted in buffered acknowledgements for previous segments, causing the segment flow
to become out-of-order.

Based on the discussed issues, it seems that the optional buffering feature of the
rotation only hinder the performance of TCP. The experiment was repeated with the
feature disabled and as a result, TCP needed only 5.113 ms to retransmit the buffered
segments.
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