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Introduction

1 Introduction
The last decades of the automotive industry have seen a significant change with the
adoption of embedded controllers. Digital circuits and software components have taken
control of processes previously controlled by analog methods. In addition to supporting
more integrated functions and services, the primary motivation for this change was to
reduce manufacturing costs. While delivering the expected results, this shift also created
an undesirable problem: vehicles inherited the cybersecurity weaknesses of computers.

The emergence of cyber-physical systems (including vehicles) has brought new threats.
If an attacker can take control of a computer-controlled process in an attack, it can cause
physical damage. In the transportation industry, such an attack could endanger human
lives or cause significant financial loss.

Fortunately, we are not yet aware any such attack happened in real life. However, the
seriousness of the problem is illustrated by the millions of vehicles that manufacturers
have recalled on several occasions to repair vulnerabilities found by security experts at
considerable cost. The importance of the problem is further shown by the fact that
several new regulations and standards, such as ISO/SAE 21434:2021 or UN Regulation
No. 155, have been introduced in the European Union and elsewhere in the world to
make cyber security a priority for new vehicles. Under UN Regulation No. 155, from
2024, only new vehicle types that meet cybersecurity requirements will be type-approved.

Researchers have also been working for years to address emerging cybersecurity is-
sues. In my dissertation, I also address some of these challenges. I examine the entire
cybersecurity problem set from several perspectives. I have conducted research on sup-
porting long-term efficient traffic log storage and on attack detection. In addition to
security threats, I have also worked on the privacy issues of vehicular data release.

A specific feature of cyber attacks is that there can be a significant time lag between
the execution of an attack and its discovery or the signs of the damage it causes. With
this in mind, the first area where I have achieved new results relates to recording data
on the internal network of vehicles. I propose a new compression algorithm to facilitate
efficient data storage over a long period, thus allowing its analysis long after the attack.
My proposed method achieves significantly better compression ratio than widely used
alternative compression methods.

I have also achieved new results in attack detection. First, I show that the previously
described compression algorithm is suitable for detecting message injection attacks. This
result further enhances the value of the compression method, as it allows us to investigate
a subset of attacks on compressed data, saving significant computational resources. My
following proposed detection method exploits correlations between transmitted signals
and proves that attacks can be efficiently detected using models built on correlations.
Finally, I propose a third detection method that can be applied to signals individu-
ally. The method uses machine learning to predict for each signal an expected future
value. Measured values can be continuously compared to their prediction to identify any
unexpected change caused by an attack.
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The dissertation’s final chapter focuses on the privacy issues of CAN data release.
I show that the data transmitted over the bus can also be used to reconstruct the
movement of vehicles for short and long distances. This result supports the assumption
that the captured data can only be used with due care in order to avoid legal and ethical
problems.

This document is a summary of the results that are discussed in details in my dis-
sertation.
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2 New Results

2.1 Semantic compression of CAN traffic

Historical analysis of CAN bus traffic logs, is only possible if data storage is solved effi-
ciently. There are two possible approaches: (1) storing traffic logs locally or (2) offloading
captured traffic to a remote server. Whichever option the manufacturer chooses, traffic
compression can significantly improve the efficiency of the process. In this dissertation,
I propose a compression method that allows for the lossless, yet efficient storage of data.
I achieve this by performing semantic compression on the CAN traffic logs, rather than
simple syntactic compression. The compression ratio that I achieve is better than the
compression ratio of the state-of-the-art syntactic compression methods, such as zip.

THESIS 1.1: I proposed a semantic compression method for compressing
CAN traffic and measured that this alone compresses data to
10% of the original size in [C2]. I showed that combining se-
mantic and syntactic compression can reduce the required stor-
age space to 5% of the original size in [J1]. This approach
thus provides a significantly more efficient result than syntac-
tic compression alone, which only reduces the size to 30% of
the original.

I propose a compression algorithm that takes advantage of the largely periodic nature
of the CAN traffic. The high level approach of my algorithm is to separate the traffic into
message flows, containing only messages that have the same ID, and then, compressing
each message flow separately leveraging the regular repetition times and repeating data
contents of the communication. Algorithm 1 shows the pseudo code of my compression
algorithm.

I defined two output formats for my algorithm. One is a text-based (ASCII) repre-
sentation of the traffic log, while the other is a binary format. Both formats contain the
same lossless information.

My algorithm significantly outperforms state-of-the-art syntactic compression meth-
ods (see Table 1 and Table 2). I was able to achieve compression ratios of less than 20%
using an ASCII representation of the output of my algorithm. The binary representa-
tion shows an even more efficient compression with the results being around 10% of the
original file size.

If I applied, as a hybrid approach, an additional syntactic compression to my semantic
compression it resulted in the smallest file sizes I was able to achieve. In the ASCII
representation scenario the combined result shows an approximate 6% compression ratio
while the binary case shows an approximate 5% compression ratio.
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Algorithm 1: Semantic compression
Input: raw CAN log
Output: compressed CAN log

1 messages← read CAN traffic log;
2 flows← separate Messages into message groups;
3 for flow in flows do
4 calculate_average_inter_arrival_time(flow);
5 group_messages_with_identical_data(flow);
6 for message in flow.messages do
7 compress_timestamp(message);

8 for flow in flows do
9 write_compressed_flow_to_output(flow);

Table 1: Semantic compression ratio comparisons

Original trace Text format Binary format
Test case file size file size file size file size file size

(bytes) (bytes) percentage (bytes) percentage
1 10 095 971 1 710 920 16,94% 1 090 757 10,80%
2 7 040 165 1 334 902 18,96% 835 539 11,86%
3 19 143 383 3 747 229 19,57% 2 307 146 12,05%
4 21 936 245 4 233 994 19,30% 2 601 354 11,85%

Table 2: Semantic and Syntactic compression ratio comparisons

Test case

Original trace Semantic and Syntactic compression combined
zip compressed Text format Binary format

file size file size file size file size file size
(bytes) (bytes) percentage (bytes) percentage

1 1 291 315 546 725 5,41% 499 998 4,95%
2 937 319 429 234 6,09% 390 467 5,54%
3 2 569 118 1 194 758 6,24% 1 092 183 5,70%
4 2 895 039 1 332 585 6,07% 1 223 677 5,57%
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2.2 Attack detection in compressed CAN traffic

In order to support forensics investigations in vehicles, CAN traffic must be logged
continuously and stored efficiently for later analysis. My contribution to support this
effort is a novel anomaly detection method to identify message injection attacks that
works on compressed CAN traffic logs. The advantage of running anomaly detection
on the compressed logs is that smaller amount of data needs to be analyzed, hence, the
efficiency of forensic investigations can be increased.

THESIS 1.2: To support forensics analysis, I showed through measurements
on two datasets that the compressed format is suitable for high-
confidence identification of message injection attacks in [C4]1.
The previous results show that to implement a successful mes-
sage injection attack, at least five times the normal message
frequency is required during the attack. The proposed detec-
tion solution, on the other hand, can detect the anomaly from
as low as twice the normal frequency.

My anomaly detection algorithm is based on analyzing the average frequencies of
messages with given CAN IDs. The compression algorithm, presented in Section 2.1,
preserves the number of messages per unit time in an easily analyzable form in the com-
pressed CAN log, which makes it possible to use my anomaly detection algorithm on the
compressed logs. I demonstrated that this approach works reliably in a range of scenar-
ios, including using data sets captured in real vehicles and modified with synthetically
generated attacks as well as data sets captured in real vehicles under real attacks.

On synthetic data I used 100-100 normal and attacked samples for attacks with
different frequency. The histogram of the distribution of the attacks can be seen in
Figure 1. It demonstrates that the attacked traffic is efficiently distinguishable from the
normal traffic even when the attack frequency is as low as 2 times of the original.

On the data from the real world attacks I performed the same calculations. Figure 2
shows that my algorithm achieves the same reliable results in the real life scenarios.

1Dóra Neubrandt implemented the measurement algorithm.
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Figure 1: Comparison of the number of messages feature for 100 - 100 benign and
synthetically attacked samples.
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Figure 2: Comparison of the number of messages in normal and attacked scenarios during
real attacks.

6



New Results

2.3 Correlation-based anomaly detection

While the majority of attacks on the CAN bus relies on message injection[5, 8], this
is not the only technique to achieve malicious goals. The predictability of message ID
frequencies alone is not sufficient for detecting attacks that do not inject new messages
on the CAN bus, also called message modification attacks.

I propose an anomaly detection algorithm that uses the correlation between signals
encoded in CAN messages. Under normal conditions, the correlation between different
signal pairs stays within a (signal pair specific) interval. In case of an attack where the
attacker modifies only one member of a correlating signal pair, the resulting correlation
may no longer stay within the interval, and this can be detected as an anomaly.

THESIS 2.1: I showed in [C6]2 that our model, built on the correlation mea-
surements between CAN signals, can successfully detect mes-
sage modification attacks. I tested the accuracy of the pro-
posed method against seven different attack strategies. The
results show that for attacks targetting signals strongly corre-
lating with other signals, the accuracy of our detection is ∼90%
with a 0% false positive rate due to applying a double threshold
system. It is worth highlighting that for the RANDOM, ADD-
INCR, and ADD-DECR attacks modifying at least 8 bits of
a signal, we were able to achieve 95% accuracy. Similarly, for
all attacks modifying at least 12 bits of a signal, the detection
accuracy is 95%.

In the training phase, the correlation values between signals has to be determined. I
measured multiple times the pairwise Pearson correlation between every signal pair in a
one minute long time window and in a three minutes long time window. Next, based on
these measurements, I decided whether the values are produced by an actual correlation.
I achieved this by fitting different continuous probability distribution functions onto
the measured correlation values. When I found a proper fit, I added the signal pair
to my model. For every signal pair, I also calculated four thresholds to identify the
boundaries of normal behaviour: (1) two thresholds define a narrow normal interval, such
that measurement outside of this interval are considered potential anomalies for further
analysis; (2) and another two thresholds define a wider interval, such that measurements
outside of this interval are considered anomalies immediately.

In the detection phase, correlation values are determined in both a one minute long
and a three minutes long window. Then the measured values are compared to the
previously defined threshold for anomaly detection.

2György Lupták implemented the correlation calculation and statistical testing.
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In order to evaluate the performance of the algorithm in more details, I divided
the CAN signals into three different groups and validated the algorithm in each group
separately. The first group contain signals that strongly correlate with multiple other
signals. Typically, the most important signals of a vehicle belong to this group. The
second group contains signals that have a strong correlation with one other signal, and
the third group contains signals with only weak correlation values.

Figure 3: Testing results for 16 bit long signal with strong correlations.

Figure 3 shows detailed results for a signal with strong correlations. The 16 bit long
signal was attacked with all attack types. For each type, 3 attacks were performed where
the affected number of bits increase from 8 to 16. The two colors of the columns indicate
which time window was successful for the attack detection. The detection rate varies
between 55% and 100% with an above 90% result for attacks modifying more than 12
bits.

The results found in the others groups, as expected, are less accurate. The average
detection accuracy of attacks of signals with one strong correlation is 58% while this
falls to ∼20% for the third group where the signals only have weak correlations.
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2.4 Signal anomaly detection with TCN

Detecting message modification attacks is a difficult task. Building any model of the
CAN traffic based only on the message data is particularly challenging, as one does not
know how to interpret the data[7]; therefore, one cannot exploit any semantic informa-
tion. As I showed in Section 2.3, exploiting data correlations between messages can
be a powerful detection mechanism. However, not every signal correlates strongly with
others, so that approach is limited. In this section, I propose a new detection method
that works on a signal-by-signal base to supplement my previous solutions.

THESIS 2.2: I proposed a TCN-based detection model that can detect CAN
message modification attacks by predicting future values to
CAN signals and then comparing the prediction with the actual
values in [C7]3. Based on measurements from two datasets, I
demonstrated that my TCN-based detection method detects
attacks with an accuracy between 83% and 99% while keep-
ing a false positive rate below 0.2%. I compared the proposed
method to the previously best-performing solution and showed
that my detection algorithm performs better in 27 out of 30
cases.

I propose a TCN-based approach for detecting modified CAN bus messages. I con-
struct and train the TCN in an unsupervised fashion, since, in practice, labelling CAN
bus messages is a difficult task. In the training process, the TCN will learn to accurately
reconstruct the individual signals of CAN bus messages through its causal convolution
layers, which allows for information retention from past data samples. Finally, the clas-
sification of new data samples will resume to setting an appropriate threshold on their
reconstruction loss value. The core idea here is that signals whose data have been altered
will be poorly reconstructed by the model, and thus be easy to recognize. Note, that
it is not a prerequisite for me to know CAN bus signal semantics which is usually kept
confidential [7].

Table 3: Accuracy of the models on SynCAN dataset.

Model Data Normal Cont. Playb. Flood. Suppress Plateau
TCN ID 2 0.9977 0.8660 0.8674 0.7678 0.8402 0.8336

INDRA 0.9811 0.8584 0.8660 0.7600 0.8347 0.8133
TCN ID 3 0.9992 0.8664 0.8680 0.6422 0.8390 0.8394

INDRA 0.9965 0.8653 0.8672 0.6420 0.8377 0.8386
TCN ID 10 0.9977 0.8637 0.8577 0.7399 0.8446 0.8282

INDRA 0.9858 0.8546 0.8638 0.7923 0.8370 0.8100

3Irina Chiscop implemented the TCN network architecture.
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Table 4: Results for the CrySyS dataset.

Model Data Acc. FPR Precision
TCN ID 280 0.8833 0.0426 0.7766

INDRA 0.7989 0.0000 0.0000
TCN ID 290 0.9159 0.0687 0.7701

INDRA 0.8617 0.0378 0.7755

To evaluate the performance of my proposed model, I compared its performance to
the previously best-performing result from the literature. To the best of my knowledge,
the most recent and suitable candidate is the INDRA framework [6]. It proposes a
recurrent autoencoder network that is able to detect CAN messages in which signals have
been tampered with. For each message ID one such recurrent autoencoder is trained
such that it learns to reconstruct the signals within that particular message ID. This
approach is shown to outperform other recent unsupervised methods such as Predictor
LSTM [9], Replicator Neural Network [10], and CANet [4], on most attack classes of the
SynCAN dataset, in terms of accuracy and false positive rate.

I first assessed the performance of my model and the INDRA model on the SynCAN
dataset. The accuracy values, calculated for the normal test set and for each attack
class, are shown in Table 3. A first observation is that TCN achieves a higher accuracy
than INDRA in most cases, with the exception of playback and flooding attacks on ID
10. Moreover, the false positive rates are quite low for both models. Overall, there are
large variations in the precision values across different message IDs which may be related
to how the attacks were performed (target signals chosen, attack duration, etc.) and
the different signal correlations. Also, the relatively low precision values show that the
models manage to capture only a limited set of temporal characteristics of the SynCAN
data. This is a direct consequence of the stopping mechanism implemented during
training, and in the case of TCN, of the choices made to keep a lightweight architecture.

The message IDs in the SynCAN dataset contains signals that are physically interde-
pendent, but are very weakly correlated; this also increases the difficulty of the detection
task. In order to assess how the two models perform in a different setting, I evaluated
the models on two message IDs of the CrySyS dataset which contains more signals with
a strong correlation. Here, similarly to SynCAN, only one signal was attacked. The
results are shown in Table 4. I notice that both models still achieve high accuracy and a
low false positive rate, with TCN showing a high precision for both attacks, as opposed
to INDRA, failing to detect the attack in message 280.

In conclusion, the simple TCN architecture achieves a slightly better accuracy com-
pared to the INDRA model on both datasets. A remarkable achievement of TCN is
the significant reduction of false positives (by a factor of 10) in nearly all cases: this
translates to a more reliable detector in practice. Further advantages of the TCN are
that it is quick to train, has a much smaller resource need, and achieves in general lower
training and validation loss.
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2.5 Privacy threat: macrotracking

Data is constantly being generated in vehicles. In cars with more and more controllers,
the signal values measured while driving provide more detailed information about the
vehicle and its driver. I have argued in previous sections that storing and processing
this data is an important task in the future for identifying attacks. However, one can
also realize that the same data can have a different value: it can be used in data-
driven services. Some of those new services may raise concerns about the protection
of personal data [1]. The manufacturer could use the data available in the vehicle to
recommend services for the owner continuously. Furthermore, many companies could
use the behavioral and location information of the driver to offer other services. Such
use of data is only acceptable if the relevant laws are obeyed in the process.

In this section, I show that by releasing CAN data, vehicles and thus drivers become
traceable. The tracing of the vehicle is achieved in two steps. In my dissertation, first,
I show how a vehicle can be traced accurately over short distances based exclusively on
CAN messages (microtracking). Second, I show how to extend tracing for longer trips
using additional, publicly available information (macrotracking).

THESIS 3.1: I proposed a (macrotracking) algorithm that can reliably re-
construct the trajectory of a vehicle over longer trips only from
raw CAN data and publicly available map information in [J2].
I have verified the method’s accuracy with measurements: the
algorithm was able to reconstruct all several kilometers-long
test cases, consisting of at least 20 intersections, with just a
few meters of inaccuracy.

To achieve the goal, I use some auxiliary information in order to mitigate the problem
of error accumulation encountered in microtracking. The speed and steering wheel angle
values extracted from the CAN messages are required for the reconstruction. Addition-
ally, the starting position and the initial heading are also a prerequisite for my algorithm.
Provided with these input data, I show that the trajectory of a vehicle can be effectively
reconstructed revealing the destination of the drive, which constitutes a privacy breach
with respect to the driver. This implies that CAN logs have to be handled or processed
carefully to avoid this privacy issue and comply with data protection regulations.

The pseudo code to reconstruct the movement of a vehicle is presented in Algorithm 2.
First, the next state is always predicted from the previous state with model-based pre-
diction as in microtracking (Line 5-8), and then map-based correction (Line 9-14) is only
performed if the distance from the last correction is sufficiently large (Line 10 in Alg. 2).

The accuracy of my algorithm depends on the correctness of model-based prediction
and the density of the road network. On one hand, areas with many intersections does
not allow the map based corrections to improve the model prediction as much, therefore
the reconstruction error will dominate over longer distances. On the other hand, if the
trajectory of the drive follows long sections without intersections, my algorithm will
hardly suffer from any errors.
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Algorithm 2: Macrotracking for CAN logs
Input: starting position and heading value, CAN log
Output: Reconstructed trajectory T

1 initialize current state to starting position and heading;
2 load data from CAN log;
3 filter relevant messages;
4 while there is message to process do
5 Model-based prediction:
6 extract speed and steering wheel position from messages;
7 compute heading from axle distance and steering wheel position;
8 calculate next state from current state using heading and speed;
9 Map-based correction:

10 if distance from last correction > minimum required then
11 find nearest road segment on map;
12 project current position and heading to selected road segment;
13 update map weight w based on distance from closest intersection;
14 update next state using the projected state with map weight w;

15 append next state to reconstructed trajectory T;
16 update current state to next state;

Table 5 shows data about my test cases. In these tests, I drove along different circular
trajectories to show the result of my algorithm. For example, during the C3 test case, I
drove deliberatly with frequent movements of the steering wheel even on straight road
segments to make the reconstruction harder. The corresponding row in the table shows
that my algorithm was able to reconstruct the trajectory with only small errors in this
case as well. Figure 4 shows the reconstructed trajectory.

Table 5: Summary of macrotracking test cases

Test case

Average
trajectory

reconstruction
error (meter)

Std.
deviation
of error
(meter)

Endpoint
reconstruction
error (meter)

Total
distance
travelled
(meter)

Number of
decision

points on
map

C1 without map 30.2 25.13 9.3 2025.17 20
with map 9.37 8.99 4.2 2039.11 20

C2 without map 39.37 34.02 35.58 2139.03 18
with map 9.13 8.74 41.12 2158.48 18

C3 without map 55.04 36.07 82.17 1751.07 19
with map 7.45 6.05 6.05 1817.81 19
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(a) C3 reconstruction without map (b) C3 reconstruction with map

Figure 4: C3 test trajectories

2.6 Mitigation options

Next, I considered some well established signal processing techniques including smooth-
ing and low pass filtering which might be employed by a data controller or processor
in order to distort CAN data so that unique features of traces are no longer recogniz-
able. However, as I showed in my dissertation, such techniques fail to provide strong
privacy guarantees, or introduce so much distortion to counter my attacks that renders
the anonymized data practically useless.

THESIS 3.2: I have showed that the proposed macrotracking algorithm is ro-
bust to typical signal distortion techniques for protecting pri-
vacy in [J2]. The method’s robustness has been verified by
several measurements: even after applying a low-pass filter to
achieve a 20% distortion, the inaccuracy remained below 8 me-
ters. In the case of smoothing, the algorithm is even more
robust: it accurately restored the original trajectory even after
applying a 6.4s long smoothing window.

Smoothing

Smoothing is a type of downsampling technique. It is used to remove short-term fluc-
tuations and highlight longer-term trends in the signal (or time-series). It has many
variations, the main idea is to shift a fixed-size moving window through the signal and
apply a transformation on each window, then publish the transformed signal. I apply a
time-based moving window, i.e. the average of the data points that is in a fixed time
frame (called smoothing window), whose size in time is given as a parameter w, is cal-
culated and used as a single replacement of all points within the given time frame. As
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(a) Smoothing window: 0.2s (b) Smoothing window: 1.6s (c) Smoothing window: 6.4s

Figure 5: C1 test case macrotracking result on smoothed data without map

(a) Smoothing window: 0.2s (b) Smoothing window: 1.6s (c) Smoothing window: 6.4s

Figure 6: C3 test case macrotracking result on smoothed data with map

the mean is reported per window, consecutive windows do not overlap. This technique
is expected to smooth out local variations of every signal within w seconds. Therefore,
as long as such local variations correspond to unique features of a trace, the transformed
signal should mitigate tracking.

Figure 5 shows the effect of smoothing on the model-based trajectory reconstruction
without map correction (i.e., microtracking) for the C3 case. Although smoothing nega-
tively impacts reconstruction, applying smoothing even with the largest window size still
allows a relatively accurate reconstruction of many parts of the trajectory. Interestingly,
due to an encoding of the steering wheel value in the messages, applying smoothing on
this signal has an inverse effect: it results in sharper turns than in the original trace.

My macrotracking algorithm with map correction is significantly more accurate than
only model-based reconstruction and can successfully reconstruct the original traces even
after smoothing is applied. Although the C3 test case is driven with frequent steering
wheel changes, the effect of these changes are reduced by smoothing, and therefore the
reconstruction results are actually improved with a larger window size (Figure 6). Table
6 contains the trajectory reconstruction errors with their standard deviation and the
endpoint reconstruction error for all test cases with three different window sizes.
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Table 6: Effects of smoothing on the location tracking algorithm.

Test case
Smoothing

windows size
(second)

Average
trajectory

reconstruction
error (meter)

Std. deviation
of error
(meter)

Endpoint
reconstruction
error (meter)

C1
0.201 32.2 26.4 22.76
1.608 33.51 26.97 33.02
6.4 38.58 27.97 132.94

C2
0.201 37.75 28.68 75.74
1.608 38.92 32.83 76.72
6.4 42.22 32.47 126.84

C3
0.201 50.78 32.74 64.71
1.608 47.53 29.6 66.52
6.4 20.47 18.15 70.09

Low-pass filtering

Low pass filtering is a common technique not only to compress signals, but to reduce
noise, eliminate aliasing, or attenuate resonances [3] without heavily degrading utility.
Moreover, with the growing need for data privacy, low pass filtering has been used
for signal anonymization as well [2]. Low-pass filters attenuate or eliminate all signal
components above a specified frequency. By deleting these high frequency components,
one can get rid of the idiosyncrasies of the signal and end up with the more general parts.
Unlike smoothing, low pass filtering is expected to provide a finer-grained control over
utility loss, and the mean squared error is precisely quantifiable since the transformation
is orthonormal and therefore preserves the L2-norm of the signal.

I apply low-pass filtering as follows. First, the signal is transformed to its frequency
domain using orthonormal Discrete Cosine Transform (DCT). After DCT transforma-
tion, the number of removed high frequency components is determined. In general, the
more components is dropped from the signal the lower the utility becomes. The resulting
utility is measured by calculating the normalized euclidean distance between the original
and the low passed signal, i.e. I delete as many of the highest frequency components as
many needed to reach a predefined error distance (aka., reconstruction error) from the
original signal. For example, in order to have a reconstruction error of 10% at most, the
maximum number of the highest frequencies of the transformed signal are removed such
that the L2-norm of the removed components is not greater than the 10% of the total
L2-norm of the whole signal. Once the desired error rate is reached, the filtered signal
is transformed back to the time domain and published.

Figure 7 shows the result of trajectory reconstruction without map (i.e., only model-
based prediction) after low-pass filtering the C3 test case. In comparison with smoothing,
low-pass filtering with the chosen parameters distort the original traces more signifi-
cantly. The counter-intuitive changes of the turn angles can also be observed here.

Figure 8 shows that my macrotracking algorithm is capable of reconstructing the
original C3 trajectory if the prescribed error rate of low pass filtering is below 40%. The
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accuracy of the reconstruction for all cases with different amount of low-pass filtering are
depicted in Table 7. In summary, the reconstruction is prevented at a low pass filtering
error of 40%, however, at this point the utility of the data is significantly impacted.

(a) Filtering: 10% (b) Filtering: 20% (c) Filtering: 40%

Figure 7: C3 test case macrotracking results on low pass filtered data without map

(a) Filtering: 10% (b) Filtering: 20% (c) Filtering: 40%

Figure 8: C3 test case macrotracking results on low pass filtered data with map

Table 7: Effects of low pass filtering on the location tracking algorithm.

Test case
Allowed

reconstruction
error

Average
trajectory

reconstruction
error (meter)

Std. deviation
of error
(meter)

Endpoint
reconstruction
error (meter)

C1
10% 8.63 9.07 8.45
20% 8.25 7.33 12.9
40% 47.71 74.23 602.64

C2
10% 8.71 8.94 11.43
20% 10.98 11.9 13.37
40% 175.08 159.73 589.17

C3
10% 7.01 5.92 9.36
20% 7.58 5.93 8.16
40% 207.08 151.12 124.05
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