
Budapest University of Technology and Economics
Department of Networked Systems and Services

New Methods for Security and Privacy of
CAN Bus Communication

Ph.D. Dissertation
of

András Gazdag

Supervisor: Levente Buttyán, PhD, DSc

w w w . c r y s y s . h u

Budapest, Hungary
2023

Abstract

The last decades of the automotive industry have seen a significant change with the adoption of
embedded controllers. Digital circuits and software components have taken control of processes
previously controlled by analog methods. In addition to supporting more integrated functions
and services, the primary motivation for this change was to reduce manufacturing costs. While
delivering the expected results, this shift also created an undesirable problem: vehicles inherited
the cybersecurity weaknesses of computers.

The emergence of cyber-physical systems (including vehicles) has brought new threats. If
an attacker can take control of a computer-controlled physical process in an attack, it can cause
physical damage by logical means. In the transportation industry, such an attack could endanger
human lives or cause significant financial loss.

Fortunately, we are not yet aware any such attack happened in real life. However, the seri-
ousness of the problem is illustrated by the millions of vehicles that manufacturers have recalled
on several occasions to repair vulnerabilities found by security experts at considerable cost. The
importance of the problem is further shown by the fact that several new regulations and stan-
dards, such as ISO/SAE 21434:2021 or UN Regulation No. 155, have been introduced in the
European Union and elsewhere in the world to make cyber security a priority for new vehicles.
Under UN Regulation No. 155, from 2024, only new vehicle types that meet cybersecurity
requirements will be type-approved.

Researchers have also been working for years to address emerging cybersecurity issues. In
this dissertation, we also address some of these challenges. We examine the entire cybersecurity
problem set from several perspectives. We have conducted research to prevent and detect attacks
and worked on testing new defensive solutions. In addition to security threats, we have also
worked on the privacy issues of vehicular data release.

A specific feature of cyber attacks is that there can be a significant time lag between the
execution of an attack and its discovery or the signs of the damage it causes. With this in mind,
the first area where we have achieved new results relates to recording data on the internal network
of vehicles. We propose a new compression algorithm to facilitate efficient data storage over a
long period, thus allowing its analysis long after the attack. Our proposed method achieves
significantly better results than widely used alternative compression methods.

We have also developed new attack detection methods. First, we show that the previously
mentioned compression algorithm is suitable for detecting message injection attacks. This re-
sult further enhances the value of the compression method, as it allows us to identify a subset
of attacks on compressed data, saving significant computational resources. Our following pro-

i

posed detection method exploits correlations between transmitted signals and proves that attacks
against significant signals can be efficiently detected using models built on correlations. Finally,
we propose a third detection method that can be applied to signals individually. The latter
method uses machine learning to predict for each signal an expected value. Measured values
can be continuously compared to their prediction to identify any unexpected change caused by
an attack.

The dissertation’s final chapter focuses on the privacy issues of vehicular data release. We
show that the data transmitted over the internal network can also be used to reconstruct the
movement of vehicles for short and long distances. This result supports the assumption that the
captured data can only be used with due care in order to avoid legal and ethical problems.

ii

Kivonat

A járműipar utóbbi évtizedeiben jelentős változást hozott a beágyazott vezérlők elterjedése. A
korábban analóg módszerekkel vezérelt folyamatok felett digitális logikák, és szoftver kompo-
nensek vették át az irányítást. A változás fő motívációja, az össztettebb funkciók és szolgáltatá-
sok támogatása mellett a gyártási költségek csökkentése volt. Ez az átállás bár meghozta a várt
eredményeket, egy nem kívánatos probléma megjelenését is okozta: a járművek megörökölték
a számítógépek gyengeségeit is.

A kiber-fizikai rendszerek (amelyek közé a járművek is sorolhatóak) új veszélyek megje-
lenésével jártak. Amennyiben egy támadás során egy számítógéppel vezérelt folyamat felett át
tudja venni a támadó az irányítás, akkor azzal a valós életben okozhat már kárt. A közlekedés
területén egy ilyen támadás könnyen emberéleteket veszélyeztethet, vagy jelentős anyagi kárt
okozhat.

Szerencsére, egyenlőre nincs tudomásunk arról, hogy ilyen támadás történt volna, azonban
a probléma súlyosságát jól mutatja, hogy a szakértők által talált sérülékenységek javítása miatt
több alkalommal is járművek millióit kellett már gyártóknak visszahívniuk, ezzel jelentős költ-
ségeket vállalva. A problémát jól illusztrálja az is, hogy az Európai Unióban és világ egyéb
területein is több új szabályozás jelent meg az elmúlt években, amelyek célja, hogy az újonnan
tervezett gépjárművekben a kiberbiztonságra is kiemelt területként kelljen figyelni. Az ENSZ
155.-ös számú előírása alapján 2024-től csak azok az új járműtípusok kaphatnak típusengedélyt,
amelyek a kiberbiztonsági előírásoknak is megfelelnek.

A felmerülő kiberbiztonsági problémák megoldásán a kutatók is évek óta dolgoznak. Ebben
a disszertációban is a kihívások egy részére adunk megoldást. A kiberbiztonság javításáért a
teljes problémakört több szempontból is vizsgáljuk. Végeztünk kutatást, amely célja a támadá-
sok megállítása, illetve felderítése, valamint dolgoztunk azon is, hogy a védelmi megoldásokat
jobban lehessen tesztelni. A rendszerek támadásokkal kapcsolatos vizsgálatán túl a privátszféra
védelmében felmerülő kérdéseket is vizsgáltuk.

A kibertámadások sajátossága, hogy egy támadás végrehajtása, és annak a felfedezése,
vagy az az által okozott kár megjelenése között jelentős idő is eltelhet. Ezt a szempontot fi-
gyelembe véve, az első terület, ahol új eredményt értünk el, a járművek belső hálózatának
adatrögzítéséhez kapcsolódik. Javasoltunk egy új tömörítési eljárást, amely elősegíti az ada-
tok hosszútávú hatékony tárolását, ezzel lehetővé téve egy esetleges támadás után hosszú idő
elteltével is az elemzését. Megmutattuk, hogy a javasolt eljárásunk jelentősen jobb eredményt ér
el, mint a széles körben elterjedt alternatív tömörítési eljárások. A módszer alkalmazása számos
előnnyel jár az adatok helyben tárolása, vagy távoli szerverre feltöltése szempontjából is.

iii

A támadások felismerése területén is értünk el új eredményeket. Először a korábban is-
mertetett tömörítési eljárásról mutatjuk be, hogy üzenetbeszúrásos támadások detektálására al-
kalmas. Ez az eredmény tovább növeli a tömörítési eljárás értékét, mivel így a támadások egy
részét már a tömörített adatokon is tudjuk vizsgálni, ezzel jelentős erőforrásokat spórolva. A
következő javasolt detekciós módszerünk az átvitt jelek közötti korrelációt használja ki, és be-
bizonyítja, hogy a legfontosabb jelek elleni támadások a korrelációkra épített modellek segít-
ségével hatékonyan detektálhatóak. Végezetül, egy harmadik detekciós eljárást is javaslunk,
amely a jelekre egyesével alkalmazható. A módszer gépi tanulás segítségével minden jelre képes
előrejelezni, hogy várhatóan milyen értéket kell érzékelnünk, így ha egy tamadás hatására egy
jel nem várt módon változna, az ezzel a technikával detektálhatóvá válik.

A disszertációban vizsgált utolsó terület a jármű adatok érzékenységét vizsgálja a személyes
adatok biztonsága szempontjából. Megmutatjuk, hogy a hálózaton átküldött adatok segítségével
a járművek mozgása rövid, illetve hosszabb távon is rekonstruálható. Ez az eredmény alátá-
masztja azt a feltételezést, hogy a rögzített adatok csak megfelelő körültekintéssel használhatók
fel jogi és etikai problémák nélkül.

iv

Dedicated to my Grandfather.
Who showed me the beauty of engineering.

Acknowledgement

This thesis would not have seen daylight without the help and support of many people, for which
I cannot be grateful enough.

First of all, I would like to express my deep and sincere gratitude to my supervisor, Professor
Levente Buttyán, whose unquestionable dedication to quality has not only had an impact on me
but on every member of our Lab.

I am thankful to Árpád Török and Zhendong Ma, the reviewers of this thesis, for the time
and effort that they have invested in judging my work. Their questions and comments helped me
a lot to improve this thesis.

I want to thank all my past and present colleagues in the CrySyS Lab not only for the pleasant
atmosphere but also for that I could learn something from all of them. I am happy to have had
the opportunity to attend Márk Félegyházi’s class, which grabbed my attention from the very
first moment and led to me getting to know the Lab. Many thanks also go to the infra team,
which I’m happy to be a part of. During the countless hours of debugging, I have learned a lot.

I am grateful to all the colleagues with whom I could collaborate on papers or research
projects, in particular, Tamás Holczer, Gergely Biczók, Gergely Ács, Szilvia Lestyán, Mina
Remeli, Irina Chiscop, Joost Bosman, Rudolf Ferenc, and Zsolt Szalay.

I look back with pleasure on many of my former students. Many excellent quality theses and
research papers were written with them during our years together, from which not only they but
I, too, learned a lot. I am particularly grateful to those with whom I have co-authored scientific
papers: Dóra Neubrandt, Csongor Ferenczi, György Lupták, and Ákos Boros.

I also owe a special thanks to Beatrix Koltai. The discussions with her have made me a better
lecturer, supervisor, and researcher. I cannot wait to see her succeed in the future. I hope I will
be able to give her the support I have received.

I am thankful to my colleagues at the Department of Automotive Technologies for allowing
us to use their test vehicles and vehicle simulators for research purposes. I can finally say with
relief that no cars were harmed during our research.

Last but definitely not least, I am grateful to my family. To my Mom, who has supported
me with unwavering faith in achieving my goals since the day I was born. And to my Grandma,
whose many hours spent with me on the tennis court were not in vain. Without the discipline
and perseverance I learned there, I certainly would not have made it this far.

And...Anett, I am grateful for your love and for standing by me through whatever life
brought. I hope you know that since splitting that KitKat, you have become an inseparable
part of my future.

vi

Finally, I would also like to acknowledge the financial support of the following research
agencies and grants for their kind support that allowed me to focus on my work:

• National Research, Development and Innovation Office (NKFIH) of Hungary 1,2,3,4,5,6

• ECSEL7

• Innovative Mobility Program of KTI8

1The research presented here have been supported by the NRDI Office, Ministry of Innovation and Technology,
Hungary, within the framework of the Artificial Intelligence National Laboratory Program, and the NRDI Fund based
on the charter of bolster issued by the NRDI Office.

2The research presented here have been supported by the NRDI Office, Ministry of Innovation and Technology,
Hungary, within the framework of the Autonomous Systems National Laboratory Program, and the NRDI Fund based
on the charter of bolster issued by the NRDI Office.

3The work presented here was partially supported from the grant GINOP-2.1.1-15. The project has been supported
by the European Union, co-financed by the European Social Fund. EFOP-3.6.2-16-2017-00002.

4Project no. 138903 has been implemented with the support provided by the Ministry of Innovation and Technol-
ogy from the NRDI Fund, financed under the FK_21 funding scheme.

5Project no. 2019-1.3.1-KK-2019-00004 has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the 2019-1.3.1-KK funding scheme.

6Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.

7This work has been funded by the European Commission via the H2020-ECSEL-2017 project SECREDAS
(Grant Agreement no. 783119).

8The presented work was carried out within the MASPOV Project (KTI KVIG 4-1 2021), which has been imple-
mented with support provided by the Government of Hungary in the context of the Innovative Mobility Program of
KTI.

vii

Contents

Introduction 1

1 CAN bus 4
1.1 Physical properties . 4
1.2 Traffic capture . 6
1.3 Signals . 7
1.4 Security shortcomings . 7

2 Attacks against the CAN bus 10
2.1 Denial of Service attack . 10
2.2 Message injection attack . 11
2.3 Message modification attacks . 11

2.3.1 Malicious CAN gateway . 12
2.3.2 Evaluation . 15
2.3.3 Summary . 18

2.4 CrySyS dataset of CAN traffic logs . 19
2.4.1 Methods . 19
2.4.2 Data Records . 22
2.4.3 Technical Validation . 22
2.4.4 Usage Notes . 23

2.5 Summary . 24

3 Semantic compression of CAN traffic 25
3.1 Related work . 26
3.2 Traffic log compression algorithm . 28
3.3 Evaluation . 32

3.3.1 Run-time complexity . 32
3.3.2 Compression ratio . 32
3.3.3 Correctness . 33

3.4 The forensic use of the compressed format . 33
3.5 Summary . 34

viii

CONTENTS

4 Anomaly detection 35
4.1 Approaches to increasing the security of the CAN bus 35
4.2 Attack detection in compressed CAN traffic 38

4.2.1 Related Work . 39
4.2.2 Realized CAN injection attacks . 39
4.2.3 Anomaly detection algorithm . 44
4.2.4 Results . 44
4.2.5 Summary . 45

4.3 Correlation-based anomaly detection . 46
4.3.1 Related work . 47
4.3.2 Anomaly detection algorithm . 48
4.3.3 Evaluation of the algorithm . 52
4.3.4 Summary . 54

4.4 Signal anomaly detection with TCN . 54
4.4.1 Related work . 55
4.4.2 Anomaly detection algorithm . 56
4.4.3 Experiment design . 58
4.4.4 Results . 63
4.4.5 Summary . 64

4.5 Summary . 65

5 Privacy problems 66
5.1 Related Work . 69
5.2 Adversary model . 70
5.3 Trajectory reconstruction . 71

5.3.1 Microtracking . 71
5.3.2 Macrotracking . 72

5.4 Potential defenses . 77
5.4.1 Smoothing . 77
5.4.2 Low pass filtering . 79

5.5 Summary . 81

Conclusion 82

List of own publications 85

Bibliography 87

Appendix 96

ix

List of Figures

1.1 The four segments of the bit time. 5
1.2 Signals encoded in a CAN communication. 9

2.1 The concept of a MitM attack in the automotive industry. 12
2.2 High-level architecture of the CAN gateway. 13
2.3 The top view of the proof-of-concept CAN gateway board. 14
2.4 The graphical web configuration interface of the CAN gateway. 15
2.5 The CAN gateway testbed using a Raspberry Pi and a NodeMCU ESP32s. . . . 16
2.6 Simultaneous message transmission in both direction. 17
2.7 The Citroen C5 test bench. 18
2.8 The attack of the tachometer displays different rpm than the real one. 18

4.1 Speed indicator attack with 1x frequency caused oscillation of the indicator needle. 42
4.2 Speed indicator attack with 10x frequency. The indicator shows 28 km/h while

the real speed was 0 km/h. 43
4.3 Original state of the transmission display. 43
4.4 Attack on the transmission display. The engine was not running but the indicator

showed gear 1. The control lights were switched off and the fuel level was
increased. 44

4.5 Comparison of the number of messages feature for 100 - 100 benign and syn-
thetically attacked samples. 45

4.6 Comparison of the number of messages in normal and attacked scenarios during
real attacks. 45

4.7 Visualization of the function used to score the normal min-max threshold intervals. 50
4.8 One example of a signal pair with a fitted ’loggamma’ probability distribution . 51
4.9 Testing results for 16 bit long signal with strong correlations. 53
4.10 Detection accuracy of high priority signals. 54
4.11 A dilated causal convolutional neural network with two hidden layers, dilation

factors d = 1,2,4 and filter size k = 3 [BKK18]. 57
4.12 Our TCN architecture with three residual blocks with convolutional dilations

and filter size of k = 2. 58
4.13 Training loss (continuous lines) and validation loss (dashed lines) of the two

models on message ID 290 of the CrySyS dataset. 62

x

LIST OF FIGURES

5.1 Computation of the radius as R = L/sin(β), where L and β denote the vehicle
length and wheel position, respectively. 71

5.2 C1 test trajectories. Map-corrected trajectories (right) follow the roads more
faithfully than only model-based trajectories produced by microtracking (left). . 73

5.3 C2 test trajectories . 76
5.4 C3 test trajectories . 76
5.5 C1 test case macrotracking result on smoothed data without map 78
5.6 C1 test case macrotracking result on smoothed data with map 78
5.7 C1 test case macrotracking results on low pass filtered data without map 80
5.8 C1 test case macrotracking results on low pass filtered data with map 80
A.9 CAN testbed schematics . 96
A.10 Example benign CAN signal (S-1-4) . 96
A.11 Single signal injection attacks (S-1-4) . 99
A.12 Single signal modification attacks (S-1-4) . 100
A.13 Double signal injection attacks (S-1-4) . 101
A.14 Double signal modification attacks (S-1-4) . 102
A.15 C2 test case macrotracking results on smoothed data without map 103
A.16 C2 test case macrotracking results on smoothed data with map 103
A.17 C3 test case macrotracking results on smoothed data without map 104
A.18 C3 test case macrotracking results on smoothed data with map 104
A.19 C2 test case macrotracking results on low pass filtered data without map 105
A.20 C2 test case macrotracking results on low pass filtered data with map 105
A.21 C3 test case macrotracking results on low pass filtered data without map 106
A.22 C3 test case macrotracking results on low pass filtered data with map 106

xi

List of Tables

3.1 Semantic compression ratio comparisons . 31
3.2 Semantic and Syntactic compression ratio comparisons 32

4.1 Overview of datasets used in the numerical experiments. 61
4.2 Accuracy of the models on SynCAN dataset. 62
4.3 False positive rate of the models on SynCAN dataset. 63
4.4 Precision of the models on SynCAN dataset. 64
4.5 Results for the CrySyS dataset. 64

5.1 Summary of macrotracking test cases . 76
5.2 Effects of smoothing on the location tracking algorithm. 78
5.3 Effects of low pass filtering on the location tracking algorithm. 80
A.6 CAN trace capture scenarios. 97
A.7 Identified CAN signals. 98

xii

Introduction

The automotive industry has undergone several significant changes over the past 150 years.
The first major innovation was the advent of the internal combustion engine. Nicolaus Otto’s
invention in 1876 fundamentally changed how cars were powered and thus their potential per-
formance. From the introduction of the Ford Model T in 1908, there was also a steady increase
in production, eventually leading to the vehicle industry becoming a driving force in modern
economies. As the twentieth century progressed, cars became increasingly sophisticated, with
the introduction of features such as automatic gearboxes (1939), air conditioning (1940), and
electric fuel injection (1966). As the number of vehicles and the speed of transportation in-
creased, so did the need for safety. The first seatbelt (1968) and the first airbag (1970) were
signs of this.9 These technological changes have always had a positive impact on society in the
long term, but in the early stages, new technologies also brought new problems.10

Since the 1990s, Electronic Control Units (ECUs) connected together with a Controller Area
Netword (CAN) have become common in cars. Embedded controllers and software running on
them took control of processes previously controlled by analog control functions. This change
was complemented in the 2000s by adding various smart functions to vehicles that required an
internet connection. Overall, industry evolutions have led to a situation where modern cars are
now better viewed as a network of computers on wheels. Indeed, a modern vehicle now has
at least 50 but frequently far beyond 100 embedded controllers, and the amount of software
running on these controllers is typically more than 100 million lines11.

This latest change has also had negative side effects like the previous ones. The poten-
tial threats were first highlighted by Koscher et al. Their work [KCR+10] contributed to the
emergence of a whole new field of research. They reviewed the communication interfaces and
protocols used in vehicles and examined their level of exposure to external attacks. Their work
was initially criticized on the grounds that the threats they raised were not a real problem, as
they required physical access; thus, the physical protections built into cars would also prevent
cyber attacks. In their subsequent paper, however, the authors showed that this no longer holds in
practice. Remote access connections built into vehicles have rendered vulnerabilities remotely
exploitable.

9https://www.britannica.com/technology/automotive-industry/Growth-in-Europe (Last accessed: Oct 1, 2023)
10https://www.qad.com/blog/2019/12/the-biggest-milestones-in-the-history-of-automotive-manufacturing (Last

accessed: Oct 1, 2023)
11https://medium.com/next-level-german-engineering/porsche-future-of-code-526eb3de3bbe (Last accessed: Oct

1, 2023)

1

Introduction

In addition to the researchers’ attention, society became aware of the problem through the
work of Miller and Valasek [MV15]. They have demonstrated that cars are at real risk by exploit-
ing actual vulnerabilities. First, their research enabled them to take control of simple systems
such as the multimedia system and air conditioning. Then, they demonstrated that controls crit-
ical to the operation of vehicles, such as the engine control unit, are also vulnerable to similar
attacks. The research results were made available to the broader audience via an article in Wired
magazine.12

When it comes to manufacturers, they put a great emphasis on the safety of the cars. There
are ABS, ESP, crash avoidance systems, or even better and better crumple zones in every car.
The inter-component communication channels are protected against errors caused by the high
noise environment, but security seems to be lagging behind these other fields. Even today, the
design process of internal components may still fail to apply basic cybersecurity principles to
make them secure against a potential attacker, e.g., it is not unthinkable that a malicious de-
vice could be installed into a car and do some harm. It only takes one mechanic to plug such
a device into an On-Board Diagnostics (OBD) port of a targeted car, to have access to the ve-
hicle’s CAN bus, should the network architecture allow such communication. Moreover, with
the spread of Bluetooth OBD debugging probes, which can connect to the owner’s smartphone,
users themselves connect more and more, potentially compromised, devices onto the CAN bus.
The statistics illustrate the situation: according to Upstream Security’s 2023 report, 40% of
cyber attacks against the automotive industry targeted vehicles’ internal systems, and 60% tar-
geted transport-related infrastructure. 20% of attacks on internal systems targeted infotainment
systems, 35% ECUs, and 45% the remote keyless entry subsystems13.

In this dissertation, we focus on the security issues of CAN networks. Since security was
not considered during the initial design, the aim is to identify and at least partially solve the
missing features. As a first step, we recognized that a retrospective communication data analysis
is necessary for future cyber attack analysis, meaning the transmitted messages must be stored.
The long-term storage of data can cause serious capacity problems. To remedy this situation, we
propose a lossless compression technique that can store the information contained in the original
data in a significantly smaller space.

We then show that the compression method is suitable for identifying certain attacks. The
compression exploits the specific patterns of communication that can change during an attack,
thus allowing the identification of attacks without the need to decompress the data first.

Beyond simple attacks, we also propose solutions for detecting more complex attacks. Two
detection methods are proposed to model the characteristics of the internal vehicle processes.
The first can identify anomalies based on the changes in the measured correlation between sig-
nals. The second models the characteristics of signals and predicts them, which then can com-
pared to new values. Both methods allow the identification of deliberate signal modifications.

The last problem we have investigated is the privacy implications of CAN data release. New
services might build on data gathered from vehicles. For example, by monitoring the driver’s
style, an insurance company can better predict the probability of an accident, thus providing a
cheaper service for the more cautious drivers. However, this approach may also come with an

12https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway (Last accessed: Oct 1, 2023)
13https://upstream.auto/reports/global-automotive-cybersecurity-report (Last accessed: Oct 1, 2023)

2

Introduction

additional privacy cost. Using extracted data from the communication, we show that it is possible
to track the movement of vehicles in the short and long term. Short-term tracking helps restore
the circumstances of an accident; e.g., this method allows one to show the car’s movement in the
last 100 meters. Building on short-term tracking results, our following algorithm implements
long-distance tracking. By using map data, the inaccuracy of the method can be eliminated,
enabling route reconstruction for over several kilometers, e.g., during a cross-town drive.

This dissertation is structured as follows. Chapter 1 discusses the CAN protocol. It describes
the physical design as well as and the logical protocol. In Chapter 2, we introduce the attacker
model. We give a description of the possible attack approaches and explain our large dataset
created for the evaluation of defense mechanisms. Chapter 3 explains our proposed compression
algorithm, to allow efficient long term storage of CAN logs for analysis. Chapter 4 contains our
three newly proposed detection algorithms to identify different attack scenarios. In Chapter 5
we evaluate the privacy sensitivity of CAN data release. We show that it is possible to track a
vehicle’s movement in shorter and longer sections. Finally, in the last chapter, we summarize
this dissertation and review the presented results.

3

Chapter 1

CAN bus

The CAN bus [ISO15, ISO16] is a broadcast, serial communication protocol widely used in
vehicles. It was designed to be robust, withstand high external RF noise, while providing a
high-speed communication link between the ECUs. The CAN bus is a cost-effective solution,
because it enables the manufacturers to connect the ECUs to each other by connecting them to
the central bus with only a twisted pair cable .

1.1 Physical properties

The CAN bus uses two wires called CAN high (CAN_H) and CAN low (CAN_L), in order to
implement differential signalling. On each end of the cables, the wires are connected to each
other using a terminating resistor in order to achieve a nominal 120 Ohm impedance. The CAN
bus has two states, driven, and not driven. When it is not driven, the CAN_H and CAN_L
wires get pulled to about the same 2.5V nominal voltage using the passive pull resistors placed
in the CAN transceivers. This state is also called a “recessive” bit, which represents a logical
binary 1. When the CAN bus is driven, at least one CAN node pulls the CAN_H wire to 3.5V
and CAN_L wire to 1.5V nominal voltage. This state is also called a “dominant” bit, which
represents a logical binary 0.

Bit Timing

Every CAN bus has a nominal bitrate, which gets preconfigured in the ECUs by the car manu-
facturer. The maximum bitrate specified by the standard is 1 Mbps, but 500 kbps and 250 kbps
is also frequently used bitrates.

Every bit time can be divided into the following four segments (Figure 1.1):

• synchronization segment (Sync_Seg): This segment is used for synchronization. At the
SOF (Start of Frame), every receiving ECU synchronizes itself to the edge of the first bit,
which is called a “hard sync”. There is also another kind of synchronization called bit
resynchronization, which is performed at the synchronization segment of each bit, by the
ECU fine-tuning its inner clock based on the deviance between the expected time of a
potential edge, and the actual time of its detection.

4

CAN bus

• propagation time segment (Prop_Seg): This segment is used to compensate for physical
delay times within the network (e.g., signal propagation time, internal delay of the ECUs,
etc.)

• phase buffer segment 1 (Phase_Seg1) and Phase buffer segment 2 (Phase_Seg2): These
segments are used for edge phase error compensation. The sampling of the bus occurs
after the phase buffer segment 1. The length of these segments can be fine-tuned by
resynchronization, and thus, the sampling point can be moved backward or forward.

Sync_Seg Prop_Seg Phase_Seg1 Phase_Seg1

Nominal bit time

Sample point

Figure 1.1: The four segments of the bit time.

Frame timing

Messages can be transmitted based on events (e.g., receiving a remote frame, a sensor value
triggering a transmission) or by a trigger coming from an internal timer. The internal timer
method is called Time-Triggered Communication (TTC). During communication, after every
frame’s EOF (End of Frame) segment, there is a 3-bit long intermission period. After these 3
recessive bits, the bus is considered idle, and any following dominant is considered as the SOF
of the next frame. When the ECUs detects that the bus is idle, any of them may start to transmit.
If two or more ECUs happen to transmit at nearly the same time, the conflict between them is
resolved using contention-based arbitration.

ECUs communicate with each other mostly periodically using the TTC method. Regular
repetition times enable a quite accurate prediction of the upcoming pattern of messages. As
message transmission happen typically more often then changes in the vehicle state the content
of messages is often repeating.

Contention-based arbitration

When a node starts to transmit a frame, it monitors the bus during the arbitration segment of the
MAC frame in order to check whether the data on the bus is the same as it is transmitting. In
case it detects that despite transmitting a recessive bit, the bus is still in dominant state, it knows
that another ECU tries to transmit data, and it terminates the arbitration process and turns into a
receiver. This allows the other ECU to transmit its message as nothing happened, and the other

5

CAN bus

ECU that lost the arbitration, can retry sending its message at a later time. Using this method
requires the bus has to adhere to three key elements:

• The ID of the message types has to be unique.

• A data frame with a given ID and a non-zero Data Length Code (DLC) value may only be
sent by one ECU.

• The remote frame’s DLC value has to be the same as the data frame it requests.

Using this contention-based arbitration ensures that the ECU with the higher priority frame
will always win the arbitration, because its ID contains more dominant bits, than the other po-
tential transmitter ECU frame’s ID.

1.2 Traffic capture

The broadcast nature of the CAN bus allows easy traffic captures. Connecting to the bus at any
point gives access to all the messages transmitted in that segment. Modern vehicles typically
have multiple busses with different speeds installed to provide communication for all ECUs.

In a vehicle with multiple CAN segments, traffic capture has to be performed separately
in each segment, as the gateway connecting the different segments typically does not relay all
packets between segments. A segmented CAN architecture can limit the effectiveness of CAN
packet capture through the OBD port. In our test vehicles, we verified that only one CAN
segment exists. Therefore, we were able to capture the entirety of the communication.

In our work, we captured and transmitted CAN packets with a Raspberry Pi based recorder.
Using the PiCAN21 board, we were able to handle messages up to 1 Mbps speeds, the maximal
transmission speed of the CAN bus. We verified with measurements, using commercial tools,
that our device processes every CAN frame without packet loss.

We captured traffic in multiple formats supported by the Linux-CAN package2. Although
some details differ in the text based formats, the contents are essentially the same. Every mes-
sage has an ID which can be 11 or 29 bits long. The meaning and the range of the IDs are
manufacturer specific. The lower the value of the identifier field the more prior is the message.
After the ID comes the data length field then comes the data.

In Example 1.1 a CAN traffic log is shown. Each row corresponds to a message. The first
column is the arrival time of the message in a Unix timestamp (not part of the CAN messages,
only added during the capture process), the second column is the message ID, the third column
shows the length of the data in the message, and the last column is the data.

1https://www.skpang.co.uk/collections/hats/products/pican2-can-bus-board-for-raspberry-pi-2-3 (Last accessed:
Oct 1, 2023)

2https://github.com/linux-can/can-utils (Last accessed: Oct 1, 2023)

6

CAN bus

1481492674.734327 0x260 8 00 00 00 00 00 00 00 6a
1481492674.736055 0x2c4 8 05 c8 00 0f 00 00 92 3c
1481492674.738092 0x2c1 8 08 03 35 01 6a d9 00 4f
1481492674.754306 0x260 8 00 00 00 00 00 00 00 6a
1481492674.759605 0x2c4 8 05 c8 00 0f 00 00 92 3c
1481492674.769823 0x2c1 8 08 03 39 01 70 d9 00 59
1481492674.774302 0x260 8 00 00 00 00 00 00 00 6a
1481492674.783129 0x2c4 8 05 c2 00 0f 00 00 92 36
1481492674.794246 0x260 8 00 00 00 00 00 00 00 6a
1481492674.801541 0x2c1 8 08 03 3b 01 74 d9 00 5f

Example 1.1: Simplified CAN traffic log

1.3 Signals

ECUs continuously measure and transmit data of the vehicle’s physical processes. The data
field of CAN packets contain the signal values in an encoded format. However, the CAN matrix,
which describes the correspondence between the data bits and the signals is not published by
the manufacturers. Throughout this dissertation, we used a method proposed in [NGMK18] to
identify signals and the boundaries. In our research, we handled these signals without knowing
all of their exact meaning. An example plot of some decoded CAN signals can be seen in
Figure 1.2.

In the industry, the CAN matrix is typically stored in a dedicated file format called CAN
DBC files. These files facilitate the interpretation of data transmitted over a CAN bus. This
standardized ASCII-based file format emerged in the 1990s and has since become ubiquitous
across the automotive industry globally. These textual databases contain essential details for
converting raw CAN bus data into tangible physical values, effectively serving as a repository
of signals. However, as mentioned previously, the CAN matrix and the DBC files are vendor-
protected secrets. Therefore, they are not publicly available.

1.4 Security shortcomings

Unfortunately, the basic CAN bus has no security, only safety measures [SDK19]. It was orig-
inally designed to be a robust communication bus that can withstand a high amount of noise
while providing relatively high transfer speeds. At the end of every CAN message, a Cyclic
Redundancy Check (CRC) code ensures that if the content of the message changes during trans-
mission, the receiver will detect it. The CAN standard does not provide support for message
authentication. Thus, just by receiving a message with a given ID does not guarantee that the
source of the message was trustworthy. This leads to the issue that messages can be injected
onto the bus without the communication partners ever noticing that a message was not sent by
the correct device and could contain false data.

7

CAN bus

The CAN protocol was designed to be simple, causing only a small overhead in the com-
munication. Therefore, the protocol generally lacks security properties rendering it defenseless
against many attacks[MV13, MV14, MV15]. Some of the important properties and its conse-
quences are the following:

• CAN frames do not contain sender or receiver fields and in general lack any authentication.
This enables message spoofing.

• Access to the CAN bus is not restricted allowing eavesdropping or injection of messages.

• The arbitration process is not protected against misuse easily allowing the exploitation of
the message priority for Denial of Service attacks.

8

CAN bus

0 2000 4000 6000 8000 10000 12000 14000 16000
0.345

0.350

0.355

0.360

0.365

0.370

_signal_0110_1

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.3600

0.3625

0.3650

0.3675

0.3700

0.3725

0.3750

0.3775

_signal_0120_3

original

0 2000 4000 6000 8000 10000 12000 14000 16000

1.45

1.50

1.55

1.60

1.65

1e 6 _signal_0110_2

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.3480

0.3485

0.3490

0.3495

0.3500

_signal_0120_0

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.3480

0.3485

0.3490

0.3495

0.3500

_signal_0120_1

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.26

0.28

0.30

0.32

0.34

0.36

0.38
_signal_0120_2

original

0 2000 4000 6000 8000 10000 12000 14000 16000
0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

_signal_0381_5

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.2350

0.2375

0.2400

0.2425

0.2450

0.2475

0.2500

0.2525
_signal_0280_0

original

0 2000 4000 6000 8000 10000 12000 14000 16000
0.2325

0.2350

0.2375

0.2400

0.2425

0.2450

0.2475

0.2500

_signal_0280_1

original

0 2000 4000 6000 8000 10000 12000 14000 16000
0.2325

0.2350

0.2375

0.2400

0.2425

0.2450

0.2475

0.2500

0.2525

_signal_0280_2

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.2325

0.2350

0.2375

0.2400

0.2425

0.2450

0.2475

0.2500

0.2525
_signal_0280_3

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.222

0.224

0.226

0.228

0.230

0.232

0.234

0.236

0.238
_signal_0410_1

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.0

0.1

0.2

0.3

0.4

0.5

_signal_0290_0

original

0 2000 4000 6000 8000 10000 12000 14000 16000

0.0

0.1

0.2

0.3

0.4

0.5

_signal_0290_1

original

Figure 1.2: Signals encoded in a CAN communication.

9

Chapter 2

Attacks against the CAN bus

In this Chapter, we present the potential attacks against the CAN bus. We summarize previous
results from the literature, and also demonstrate our capability to execute previously proposed
and new attacks. This is an important prerequisite for our detection results in Chapter 4. By
performing the attacks in practice, we demonstrate their executability and also capture a large
amount of data.

During our research, we kept extending our datasets. This is the reason why our results are
always tested on different data. Eventually, we have decided that our dataset can be consid-
ered sufficiently rich, as it contains enough benign and malicious traces to thoroughly test any
anomaly detection algorithm (see Section 2.4).

2.1 Denial of Service attack

In a Denial of Service (DoS) attack, the attacker’s goal is to render the CAN bus unusable, which
can be achieved in two ways: by adhering to the CAN standard or by breaking it.

The first option is to send as many messages to the CAN bus with the lowest possible ID as
physically possible. When the bus is idle, if two or more ECUs want to transmit at the same time,
the one with the lowest ID will have priority. Thus, since the zero ID has priority over every
other message ID, none of the regular messages will win the arbitration against the injected
message, which will lead to the starvation of the regular ECUs.

The second method is to force the CAN_H and CAN_L wires into dominant state and hold
it there as long as the attacker wants to. While the second method could be easier to implement,
it triggers the error detection in the ECUs; thus, the connected subsystem will detect that there
is an error with the CAN bus. On the other hand, the first solution does adhere to the rules of
the CAN, and the ECUs might only think that everything is okay with the CAN bus, except it is
busy at the moment. Nonetheless, using both solutions, an attacker can render a given CAN bus
unusable.

10

Attacks against the CAN bus

2.2 Message injection attack

Message injection (or Fabrication) attacks [KCR+10] are possible due to various properties of
the CAN bus. First of all, since the CAN bus is a broadcast channel, during operation, every ECU
connected to the CAN bus receives all of the messages. This cost-saving measure saves a lot of
money for the manufacturers, since they only have to wire a few twisted pair cables throughout
the whole car in order to connect the ECUs to each other. When receiving a message, the ECUs
decide whether they are interested in the given message based on its ID and process it or discard
it. On the other hand, this principle also makes it easy for an attacker to eavesdrop messages
on the bus, monitor the values of the sensors in real-time, or reverse engineer the messages and
their purposes for a given vehicle type.

The second issue with the standard, also contributing to the possibility of message injection
attacks, is that the basic CAN protocol does not include any kind of cryptographic message
authentication measures by default, only optional extensions detailed in Section 4.1. Any ECU
can create a message with an arbitrary ID and send it to the other ECUs via the CAN bus, and
the ECUs will not be able to differentiate on the protocol level the messages coming from two
different ECUs, if they have the same ID. This makes an attacker able to craft arbitrary messages
and send them to the ECUs via the CAN bus. An attacker can have multiple goals to exploit these
properties, for instance, overwriting values or forcing the network into a Denial of Service attack
state.

Message injection attacks have several drawbacks. First of all, both the rapidly changing
value behaviour and the at least doubled message periodicity is easily detectable, as it will be
demonstrated in Section 4.2.3. Upon detection, the targeted ECU might switch into a fallback
mode, where it ignores both the original and the injected values. Secondly, the ECU might have
safety margins built-in. For instance, most, if not all of the lane assist systems have a maximum
steering angle it is allowed to use in order to keep the car in the lane. If the attacker tries to induce
a higher steering angle than this maximum value, the lane assist system might just deactivate.

The technical execution of a message injection attack is easy. Simply, by connecting a new
device to the bus, the attacker can send messages. We performed a number of different message
injection attacks during our dataset generation, which is described in Section 2.4.

2.3 Message modification attacks

Besides injecting messages, an attacker could also modify the content of the message, but achiev-
ing this is much harder. There are several safety measures in the CAN standard that makes it
hard if not impossible to modify messages transmitted by another ECU on-the-fly (e.g., CRC,
bit stuffing, sender ECU monitoring the bus during transmission, etc.). With the current tech-
niques, there are two solutions to this problem. The first option is to compromise an ECU, and
to send messages with modified values with malicious code. The second option is to first force
an ECU into error mode, and then take its place in the communication[CS16]. Either way, this
attack produces no extra messages, nor highly deviating values; thus, it is much harder to detect
than simple message injection attacks. Until now, such a modification attack required a more
in-depth knowledge[MV14] to carry out than just plugging in a device to the OBD port.

11

Attacks against the CAN bus

In this section, we present a new Men-In-The-Middle (MitM) solution to modify CAN mes-
sages in real-time, without compromising any ECU. We have created a device, which is capable
of modifying ISO 11898 high-speed CAN messages in real-time. It can handle up to 100% bus
load with a bus speed of 500 kbps or less, and about 60-100% busload at 1 Mbps, which is the
maximum speed specified in the standard. It introduces a delay of 260 µs, which is even at
1 Mbps is well within the delay of re-sending a message due to high traffic or a transient error
on the bus. The device itself provides a wireless interface that can be used to remotely configure
the attack parameters. All this, while consisting of cheap, commonly available parts.

2.3.1 Malicious CAN gateway

Since the CAN standard does not support message authentication, if we manage to insert a
special device in the communication line between the two ECUs, then we can add, modify, or
even delete messages with an arbitrary ID. The visualization of the attack can be seen in Figure
2.1.

Figure 2.1: The concept of a MitM attack in the automotive industry.

Design

In order to create a CAN gateway, we used NodeMCU ESP32s microcontrollers. ESP32 is a
two-core, 240MHz versatile microcontroller, with a built-in CAN controller and Wi-Fi mod-
ule. It comes with the Espressif IoT Development Framework (ESP-IDF), which is based on
the popular Free Real-Time OS (FreeRTOS) platform. Using the ESP-IDF allows us to cre-
ate a hard-real-time device using its built-in scheduler, while providing convenient features, for
instance, a built-in web server, which is useful for device configuration.

There were several requirements for the proof-of-concept malicious CAN gateway:

• It shall be able to handle ISO 11898 High-Speed CAN messages, with any bus speed.

• It shall have as low introduced delay as possible, preferably low enough that it is not
significantly greater than a lost arbitration or a transient error.

12

Attacks against the CAN bus

• Despite being a proof-of-concept device:

– It shall be robust enough to be used later at least for research.
– It shall be easy to configure during testing, and configuration shall not require repro-

gramming of the device.
– It shall be as serviceable as possible, without requiring specific hardware knowledge.

The components shall be replaceable in case it is required.

Figure 2.2: High-level architecture of the CAN gateway.

The first step of the design process was to create a high-level architecture of the CAN gate-
way, which can be seen in Figure 2.2. The CAN gateway consists of two CAN transceivers, and
two ESP32s microcontrollers. One of the microcontrollers is the master, and the other one is the
slave. Each microcontroller handles one side of the CAN bus via its built-in CAN controller,
and the corresponding CAN transceiver. The communication between the microcontrollers is
realized via a UART line. The master provides a web interface for configuration through its
2.4GHz Wi-Fi module, working as an access point.

Implementation

After designing the schematics and verifying it on a breadboard, we have built a soldered ver-
sion of the circuit. We used a protoboard as the base of the device, which allowed us to apply
minor changes to the hardware design without having to rebuild the complete circuit again. The
components have been soldered onto the protoboard using sockets in order to make a poten-
tial component replacement easier to achieve. A picture of the finished proof-of-concept CAN
gateway board can be seen on Figure 2.3.

Operation

After powering up the device, it provides a web interface for configuration through its Wi-Fi
access point, as we mentioned before, which is a key element in making the device usable for

13

Attacks against the CAN bus

Figure 2.3: The top view of the proof-of-concept CAN gateway board.

research purposes. This web interface allows the user to configure it using a simple web browser,
or via direct POST request (e.g., using curl). The graphical web configuration interface of the
device can be seen on Figure 2.4. The configurable parameters are the following:

• Bitrate: This parameter can set the bitrate of the CAN bus.

• Id: The id of the CAN message to be attacked.

• Offset and AttackLength: The offset controls the position of the first byte to be attacked,
and the attackLength determines how many bytes will be attacked.

• ByteValue: Some of the attack types require an additional parameter, which will replace
the original or will be added or subtracted from the selected byte values.

• AttackType: There are several different attacks the device can perform:

– Passthrough: In this mode, the device relays the traffic without modifying any of
the messages.

– Replace-data-with-constant-values: In this mode, the device replaces the se-
lected bytes in the message with the given ByteValue parameter.

– Replace-data-with-random-values: In this mode, the device generates random
bytes for each of the selected bytes in the message, and replaces them.

14

Attacks against the CAN bus

– Add-delta-value-to-data: In this mode, we add the given ByteValue parameter
to each of the selected bytes in the message. In case the resulting values would
overflow, it gets capped at the maximum 255 value.

– Subtract-delta-value-from-data: Similar to the previous attack type, but the
byte ByteValue is subtracted instead of added. In case the resulting value would
underflow, it gets bounded at the minimum 0 value.

– Increase-data-until-max-value: In this mode, we take the lowest value from
the selected bytes, increase it by one and replace all of the selected bytes if the
increased byte is higher than the original. This is repeated until the max value (0xff)
is reached.

– Decrease-data-until-min-value: This attack type is similar to the previous one,
but at the start, we take the highest value from the selected bytes and decrease it every
message, until we reach 0x00.

– Replace-data-with-increasing-counter: We start a counter from 0 and in-
crease it by one at every occurrence of the message. The selected bytes get replaced
with the counter. The counter can overflow.

– Replace-data-with-decreasing-counter: Similar to the previous attack type,
but the selected bytes get replaced by a decreasing counter starting from 255, which
can underflow.

After the user sends the configuration via the graphical web interface or via a direct POST
request, the device validates the configuration on the server-side, and if it is correct, it starts the
attack phase.

Figure 2.4: The graphical web configuration interface of the CAN gateway.

2.3.2 Evaluation

During the evaluation, we performed two tests. First, we created a testbed using a Raspberry
Pi with a PiCAN shield; and a NodeMCU ESP32s with an additional CAN Transceiver as our
CAN nodes. Later, we used a vehicle testbed built from actual vehicle components to verify the
functionalities of our device in a close-to-real-world setting.

15

Attacks against the CAN bus

Raspberry Pi testbed

The nodes were configured to send messages to each other via the CAN bus; however, they could
only send these messages through the CAN gateway. The testbed can be seen in Figure 2.5.

During the measurements, we tested all attack types, with different IDs, offsets, and attack
lengths, while logging both the UART lines, as well as the messages on both sides of the gateway.
As we found, the CAN gateway managed to modify the messages with an introduced delay of
260us on the 1Mbps CAN bus. This delay is only approximately 2.3 times longer than a lost
arbitration, which could be caused by a busy bus or a short transient fault.

One example of the tested attacks has the following parameters:

• Bitrate: 1 Mbps

• Id: 0x090

• Offset: 2; AttackLength: 3

• ByteValue: 0x08

• AttackType: Replace-data-with-constant-values

Figure 2.5: The CAN gateway testbed using a Raspberry Pi and a NodeMCU ESP32s.

16

Attacks against the CAN bus

A screenshot of a measurement can be seen in Figure 2.6. There are two messages traveling
on the bus at the same time:
A→B: ID: 0x090, Data: 0x00 0x80 0x80 0x80 0x41 0x41 0x00
B→A: ID: 0x045, Data: 0x01 0xf2 0x03 0xf4 0x05 0xf6 0x07 0xf8

However, after both messages go through the CAN gateway, the targeted message with the 0x090
ID arrives with changed values. On the arriving side, the following messages are present:
A→B: ID: 0x090, Data: 0x00 0x80 0x08 0x08 0x08 0x41 0x00
B→A: ID: 0x045, Data: 0x01 0xf2 0x03 0xf4 0x05 0xf6 0x07 0xf8

Thus, we can say that the CAN gateway has successfully modified the preconfigured part of the
message.

Figure 2.6: Simultaneous message transmission in both direction.

Vehicle testbed

After verifying that our attack worked in our local testbed, we tested the malicious CAN gateway
on a Citroen C5 test bench, which contains the electronics of a real-life Citroen C5 (Figure 2.7).

We found a CAN bus connection point between the dashboard and the ECU, we connected
the CAN gateway to this point. The attack we performed was to overwrite the tachometer value
with a constant, and thus force the dash to show a modified engine rpm value instead of the real
one. The attack parameters were the following:

• Bitrate: 250 kbps

• Id: 0x208

• Offset: 0; AttackLength: 1

• ByteValue: 0x30

• AttackType: Replace-data-with-constant-values

17

Attacks against the CAN bus

Figure 2.7: The Citroen C5 test bench.

As one can see in Figure 2.8, despite the engine idling at 810 rpm, the dashboard shows the
modified values of around 1500 rpm.

Figure 2.8: The attack of the tachometer displays different rpm than the real one.

2.3.3 Summary

Our CAN gateway device was designed to perform a Man-in-the-Middle attack by separating
the targeted ECU and the rest of the CAN bus. Being in a man-in-the-middle position allows
our device to modify the content of any message passing through the CAN gateway without

18

Attacks against the CAN bus

any excess message or increase in the busload. It is capable of modifying CAN messages in
real-time with a minuscule introduced delay of 260 µs, without being detectable by current
measures. It can handle up to 100% bus load with a bus speed of 500 kbps or less, and about
60-100% busload at 1 Mbps. The device is built from low-cost, commonly available parts, and
it provides a wireless interface that can be used to remotely configure the attack parameters.

After demonstrating our capability to execute message modification attacks, we developed
an attack simulator1. This application can modify any benign CAN trace to contain an attack.
With the added confidence that we validated this attack in real life, using the simulator is scalable
solution for data generation.

2.4 CrySyS dataset of CAN traffic logs

In this Section, we describe our fullest dataset we generated during our research. It focuses
on message injection and message modification attacks, as those two are challenging research
problems from a detection point-of-view.

Similarly to our results presented in previous Sections, proof-of-concept demonstrations of
attacks have shown the emerging threats against vehicles in recent years. As a response, the
research community made several propositions to secure the protocol or introduce anomaly de-
tection systems to stop the threats. Recent research has increasingly focused on using machine
learning for anomaly detection. A typical property of these approaches is that they require a
large dataset for proper model building and evaluation. However, there seems to be a shortage
in appropriate datasets that contain a sufficient variety of attacks.

With our dataset, we would like to improve the situation by giving access to a large number
of captured CAN logs in various traffic scenarios in both benign and attacked state. Our dataset
not only addresses the data quantity requirements of machine learning-based anomaly detection
approaches, but we also focus on the peculiarities of the field by capturing traces with different
length. The dataset contains shorter traces (with IDs beginning with S-*), which are useful for
rapid model development and idea-testing in addition to longer traces (with IDs beginning with
T-*) captured in various traffic scenarios for robust real-life evaluation and results. In total, our
dataset consists of 1274 CAN traces.

2.4.1 Methods

We captured multiple hours of traffic in different traffic scenarios to create a diverse benign
dataset. In order to create realistic attacked traces, we chose two approaches to perform attacks.
On the one hand, we built a testbed with a physical CAN network to execute attacks affecting
the message repetition times. On the other hand, we developed an attack simulator to calculate
the effect of timing in different attacks. This hybrid generation approach results in a scalable but
still realistic solution.

Besides the previously shown anomaly patterns, where the attacker modifies a single sig-
nal, we introduce a new modification of the benign signals: double attacks, where the same
(or different) attack takes place simultaneously against two CAN signals. Our goal with these

1https://github.com/CrySyS/can-log-infector (Last accessed: Oct 1, 2023)

19

Attacks against the CAN bus

anomalies is to test more thoroughly detection systems designed to exploit system-wide commu-
nication information, such as signal correlations. We performed all our attacks in single-signal
(Figures A.11. and A.12.) and double-signal (Figures A.13. and A.14.) modes.

Benign CAN data captures

The CAN data was captured in our test vehicle through the OBD port. We built a device to
record the raw messages as described in Section 1.2. The captures were performed in a variety
of different driving scenarios. The dataset contains 26 recordings: 15 simple maneuver scenarios
and 11 complex traffic scenarios, as shown in Table A.6. The complex traffic scenarios contain
traces captured in an urban environment, on a country road, and during motorway drives.

The captured data was analyzed to determine the communication properties. The commu-
nication contains messages with 18 different CAN IDs. The data fields of the messages were
processed with the method proposed by Brent et al.[NGMK18] to extract the vehicle signals.
We managed to identify and extract 78 signals, which are shown in Table A.7.

Attacks

The inherent insecurity of the CAN bus allows for multiple attacks against vehicles. Taxonomies
to categorize these attacks have been proposed in many papers [SDK19, CS16, TW17]. We
describe our performed attacks following the widely used taxonomy of Cho et al[CS16].

According to this taxonomy, an attacker can achieve two types of compromise on ECUs:
weak and full compromise. A weakly compromised ECU can be used to capture traffic and its
normal message transmission can also be suspended (called a suspension attack). In addition
to these misdeeds, a fully (or also called strongly) compromised ECU can also inject newly
fabricated messages into the CAN bus (called a fabrication or injection attack). In the case of
multiple compromised ECUs, if the attacker has weak control over one ECU and full control
over another, a new type of attack also becomes possible: masquerade (or modification). In
this scenario, the message transmission of the weakly compromised ECU is suspended, and at
the same time, a synchronized fabrication attack is also performed using the fully compromised
ECU. For the rest of the ECUs on the bus, this attack is transparent from the message repetition
time of view: the inter-arrival times of the targeted frames on the bus remain unchanged. A mas-
querade attack can also be achieved by physically modifying the CAN bus to insert a malicious
CAN gateway into the communication, as shown in Section 2.3

A suspension attack on a weakly compromised ECU has a similar effect on the CAN bus
as a device malfunction or failure. As this can happen under benign circumstances as well,
safety features are implemented in vehicles to handle such cases without severe consequences.
Therefore, our work focused on attacks performed with a fully compromised ECU.

We performed 12 message fabrication and 12 masquerade attacks on our dataset of 26 traces.
The attacks have been carried out in both single-signal and double-signal versions. All of the
attacks have been performed for two different time durations. The resulting total number of
traces in the dataset is 1274 (26 benign and 1248 attacked).

20

Attacks against the CAN bus

Fabrication attack During a fabrication attack, new messages are injected into the benign
traffic. The attacker exploits the fact that ECUs may be implemented so that they accept data at
any time. If this is the case, then sending modified CAN frames with a significantly higher fre-
quency can reliably change the behavior of a receiving controller. The original and the injected
messages appear on the CAN bus simultaneously.

We built a CAN testbed from three devices to safely reproduce such an attack in a laboratory
environment. In order to remain as close to a real scenario as possible in our testbed, we replayed
traffic captured from the test vehicle (with the simulator device) while executing the attacks (with
the attacker device). We used a third device (the observer) to capture the effects of the attack on
the replayed traffic. The schematic of the testbed is shown in Figure A.9.

Masquerade attack A masquerade attack is the most complicated to be performed on an
actual vehicle because two ECUs have to be differently compromised in a coordinated way. This
attack is also the most stealthy option for an attacker, as there are no additional messages on the
CAN bus, and the timing of the normal packets remain unchanged. This property makes this
attack easy to simulate: we modified the data contents of some messages of our benign capture
logs, leaving all other aspects of the capture unchanged to achieve the effect of a masquerade
attack. Overall, we performed the same number and type of attacks in the masquerade cases as
during the fabrication attacks.

Signal modification strategies We chose two signals as the target of our tests: the vehicle
speed and the engine revolution signals (Figure A.10). We found these signals in the CAN com-
munication using manual reverse engineering steps and validated our finding with the method
presented by Lestyán et al.[LÁBS19].

We defined six signal modification strategies that we performed during both the fabrication
and the masquerade attacks. Furthermore, we executed the same attacks once only on one signal
(Figures A.11 and A.12), then targeting two signals simultaneously (Figures A.13 and A.14).
This wide range of attacks cover many strategies, allowing for a thorough evaluation of defense
mechanisms. The chosen signal modification strategies are the following:

• CONST: The attacker replaces the CAN signal values with a constant in every message.

• REPLAY: The attacker replaces a CAN signal value with a previously captured value
from the traffic. This attack takes twice as long compared to the others: first, the attacker
records the signal values, then in the second half of the attack, it replays them.

• POS-OFFSET: The attacker adds a constant value to the CAN signal in each message.

• NEG-OFFSET: The attacker adds a constant value to the CAN signal in each message.

• ADD-INCR: The attacker adds a continuously incrementing value to the CAN signal in
each message. This causes a slow but growing shift away from the original value.

• ADD-DECR: The attacker subtracts a continuously decrementing value in each message
from the CAN signal. This causes a slow but growing shift away from the original value.

21

Attacks against the CAN bus

2.4.2 Data Records

Multiple files belong to each test case. The files containing the benign test cases are the follow-
ing:

• [TraceID]-benign.log: CAN trace file with the raw messages.

• [TraceID]-benign.json: metadata about the trace (e.g. capture details).

• [TraceID]-benign-speedAndRevolutionSignal.pdf : plot of the speed and engine revolution
signals.

The files containing the attacked cases are organized in the following way:

• [TraceID]-malicious-[Attack-type].log: CAN trace file with the raw messages.

• [TraceID]-malicious-[Attack-type]-inj-messages.log: in case of a message injection at-
tack, the injected messages are stored separately as well.

• [TraceID]-malicious-[Attack-type].json: metadata about the trace (e.g. capture details and
trace file information).

• [TraceID]-malicious-[Attack-type]-speedAndRevolutionSignal.pdf : plot of the speed and
revolution signals in two format.

The TraceIDs for each of our scenarios can be found in Table A.6. The structure of a raw
CAN trace follows the format used by the SocketCAN Linux package2.

2.4.3 Technical Validation

CAN data recorder validation

We captured and transmitted CAN packets with a Raspberry Pi based recorder. Using the Pi-
CAN23 board, we were able to handle messages up to 1 Mbps speeds, the maximal transmission
speed of the CAN bus. We verified with measurements, using commercial tools, that our device
processes every CAN frame without packet loss.

We executed "dry runs" of our testbed. During these executions, we replayed messages
with the simulator device and recaptured them with the observer device without an attacker’s
intervention. These tests validated that all messages arrive in our testbed, and the inter-arrival
times between messages remain unchanged.

Attack validations

Our attacks target two CAN signals: (i) the engine revolution signal and (ii) the vehicle speed
signal. Both signals are displayed on the dashboard; thus, the effects of the attacks have been
manually validated first to show that they have an actual impact on the vehicle.

2https://github.com/linux-can/can-utils (Last accessed: Oct 1, 2023)
3https://www.skpang.co.uk/collections/hats/products/pican2-can-bus-board-for-raspberry-pi-2-3 (Last accessed:

Oct 1, 2023)

22

Attacks against the CAN bus

Fabrication attack validation We tested our testbed for the correctness of the fabrication
attacks in two ways. First, we performed the testbed validation tests for every measurement to
detect potential message loss. Second, we plotted the resulting signal after the attacks to verify
the achieved effect visually. The result was rejected if any inconsistency was found, and the test
re-executed. If the result passed all the checks, an automated visualization and documentation
of the test case was executed.

Masquerade attack validation The execution of these attacks only modifies the data part of
the messages. Therefore, we only had to check that the modifications were aligned with our
signal modification goals. Similarly to fabrications attacks, we plotted the resulting signals and
validated that the behavior of the modified signal matches the goal.

2.4.4 Usage Notes

Comparison to other datasets

The lack of available datasets has significantly hindered the research on CAN security [VIB+22].
Capturing real data and performing attacks require a significant effort and special expertise in the
automotive field. Therefore, datasets with a wide range of attacks are required for advancements
in the field.

Previous datasets primarily focus on fabrication attacks due to the relatively easy execution
of these attacks. Although the significance of a fabrication attack has been shown in successful
vehicle compromises, the drastic changes of these attacks in the frame repetition times allow
the development of effective detection methods. Masquerade attacks are more powerful attack
methods. Therefore, detection algorithms should also be tested against those. Currently avail-
able datasets either lack some of the desired features of the attacks or the attack circumstances
are artificial.

The HCRL Lab released two CAN datasets with different attacks called "CAN Dataset for in-
trusion detection (OTIDS)"[LJK17] and "Car-Hacking Dataset"[SWK20]. Both datasets contain
only fabrication attacks achieving different goals like, DoS, fuzzing, spoofing, or impersonation
attacks.

The "Automotive Controller Area Network (CAN) Bus Intrusion Dataset v2"[DLdHE19]
dataset contains three different types of attacks: suspension, fabrication, and masquerade attacks.
Their goal during the fabrication attacks is to perform a DoS, fuzzing, or replay attack. During
a masquerade attack, they replace the frame data bytes with an FF value. Although this is a new
type of attack, detecting this significant change is a manageable task.

The SynCAN (Synthetic CAN Bus Data) dataset[HSDU20] contains only extracted CAN
signals instead of the original CAN frames. The attacks are synthetically generated and their im-
pact is unknown. The attack generation tactics have a similar approach to that of ours (e.g. they
also perform a CONST attack called Plateau, an ADD-INCR attack called Continous Change,
and a REPLAY attack called Playback), but the dataset is significantly smaller compared to ours.

The ROAD dataset[VIB+22] can be considered the most complete dataset so far. It contains
both fabrication and masquerade attacks that are physically verified to have an impact on the ve-
hicle. Although their tests were performed on a real vehicle and not on a testbed, they executed

23

Attacks against the CAN bus

their experiments on a dynamometer to remain safe during the test. This approach ensures that
the attacks are executed on an existing CAN network; however, the vehicle is in a test environ-
ment during the execution. Therefore any external circumstance caused by a real environment
(e.g. traffic scenarios) is missing from their data.

There are further CAN datasets available for purposes other than attack detection (see e.g.,
the "Automotive CAN bus data: An Example Dataset from the AEGIS Big Data Project"4). As
their contents are unusable for our research goals, we excluded them from the comparison.

Code availability

The source code used for the dataset generation is open source5, which allows others to extend
or modify the dataset. Fabrication attack generation requires a few easily accessible hardware
components, while the masquerade attacks can be generated on any general-purpose computer.

2.5 Summary

The CAN bus, which is one of the most common communication solutions for ECUs, has several
security weaknesses, since security was not in focus during its development. The application of
an authentication schema is not widespread; the source of an information can not be identified
only inferred from the CAN ID field of the message. Hence, it is possible to inject fake messages,
or modify existing messages on the CAN, and by doing that, to force some ECUs to act upon
these fake messages, which may influence the vehicle’s overall behavior.

While message injection attacks are easy to implement, they provide several side effects,
making them almost trivial to detect. Message modification attacks are hard to realize and
require a more profound knowledge of the field, but they are much less detectable.

We performed message injection and modification attacks as well, allowing us to obtain a
large amount of data for later use. To aid the research community’s effort in securing the CAN
bus, we also released our dataset to the public.

4https://zenodo.org/record/3267184#.XpwVqS9h1hE (Last accessed: Oct 1, 2023)
5https://github.com/CrySyS/CAN-Dataset-Generator (Last accessed: Oct 1, 2023)

24

Chapter 3

Semantic compression of CAN traffic

This chapter focuses on the compression of CAN traffic. Even though the CAN protocol and
the transmitted data are relatively simple compared to network traffic in other domains, the
repetitive communication results in frequent transmissions, eventually generating a large amount
of data. Currently, after a message is processed, the data is discarded. However, by increasing
the exposure of automotive systems to cyber attacks to support forensics analysis, long-term
storage of network traffic became desirable.The research question of this chapter is: How can
we best aid the data storing and offloading processes in a resource constrained environment to
support forensics analysis?

Historical analysis of CAN bus logs is only possible if the data storage issue is solved ef-
ficiently. There are two possible approaches: (1) storing traffic logs locally or (2) offloading
captured traffic to a remote server. Whichever option the manufacturer chooses, traffic com-
pression can significantly improve the efficiency of the process. In this Chapter, we propose
a compression method that allows for the lossless, yet efficient storage of data. We also show
in Section 3.4, that our compression method allows analysts to perform the log analysis on the
compressed data, therefore, it contributes to reduced analysis time and effort. We achieve this
by performing the semantic compression on the CAN traffic logs, rather than simple syntactic
compression. Besides all these advantages, the compression ratio that we achieve is better than
the compression ratio of the state-of-the-art syntactic compression methods, such as zip.

The syntactic compression methods operate on the low level byte stream representation of
the data. In contrast to this, the semantic compression methods interpret the data being com-
pressed and take advantage of its semantic understanding. The semantic compression has gener-
ated considerable interest in the recent years. It has been successfully applied in different fields
such as general database compression [JNOT04b], video compression [MTTH13a] and virtual
machine memory compression [RRA+13]. Here, we propose a new application area for it.

The rest of the chapter is organized as follows: In Section 3.1, we give an overview on crash
data recorders and show that they are not appropriate for supporting forensic analysis of cyber-
attacks. We describe our new semantic compression algorithm in Section 3.2, and we evaluate
its performance in Section 3.3. In Section 3.4, we show that the proposed format is a useful
approach to find traces of an injection attack. Finally, in Section 3.5, we summarize the results.

25

Semantic compression of CAN traffic

3.1 Related work

Data recording in road vehicles Data recording devices that can capture information con-
tinuously or triggered by an event have existed in the transportation industry for decades. The
best known such devices are probably the "black boxes" used in aviation to record data that can
be used by investigators to reconstruct some of the circumstances of an airplane crash. Such
recording devices now also exist in road vehicles: since September 2014, a so called Event Data
Recorder (EDR) is mandatory for every new passenger car and new light commercial vehicle
(LCV) in the US.

The purpose of EDR devices is to collect data about the vehicle dynamics and the vehicle sta-
tus that enable better accident reconstruction. It helps in validating insurance claims, encourages
safer driving behavior, and extends the scientific knowledge about real accidents. The impor-
tance of an EDR-like "black box" increases with the deployment of highly automated functions
in road vehicles, as there must be some objective evidence proving who was in charge of control
in the vehicle in a critical situation. It is, however, not clear what would be the minimum set
of data that needs to be collected in case of automated or highly automated vehicles; accident
researchers and automated vehicle experts are currently working together on new regulations in
this field.

While EDR devices collect data from the CAN bus, the recording of that data is not con-
tinuous in time, but triggered only by certain events that may indicate a forthcoming accident
(e.g., events that trigger the airbag). In addition, the data recorded by EDR devices is limited to
a short interval in time (typically a few seconds) surrounding the point in time of the accident.
Unfortunately, a cyber attack that ultimately leads to an accident may happen long before the
accident itself (at least, well beyond a few seconds interval around the time of the accident), and
therefore, the data recorded by an EDR device will not contain satisfactory information about
the cyber attack causing the accident. For detecting cyber attacks and for being able to analyze
after an incident how the attack was executed, one needs to collect and record a continuous flow
of CAN traffic for an extended period of time.

There exist data recording devices, such as tachographs, that perform continuous data collec-
tion in vehicles. Tachographs are mainly used on heavy trucks, buses, and emergency vehicles
to continuously record certain parameters of the vehicle such as its speed, its engine RPM, and
odometer values. Yet, the main purpose of tachographs is to monitor the duty status of the
drivers of commercial vehicles, and they are not designed to record raw CAN traffic. They usu-
ally record only a few vehicle parameters with a certain recording frequency, and they are not
available on all kinds of road vehicles. Hence, similar to EDRs, tachographs in their current
form cannot really be used in investigations of cyber incidents affecting vehicles.

Hence, we can conclude that, although they have seemingly similar goals, existing data
recording devices in road vehicles actually address a problem different from the one that we
address in this Chapter, and they are not appropriate for cyber incident investigations.

Compression Semantic compression has generated considerable interest in the recent years. It
has been successfully applied in different fields such as general database compression [BGR01,
JNOT04a, GP16], video compression [MTTH13b], and network traffic compression [CRN08].

26

Semantic compression of CAN traffic

To the best of our knowledge, it has not been applied yet for forensic evidence handling in the
automotive domain. Hence, what we propose in this Chapter is a new application area for it.

Many of the previously proposed semantic compression algorithms perform lossy compres-
sion. However, lossy compression is not appropriate for forensic purposes, as for forensic in-
vestigation, one needs to collect and retain accurate information that can potentially be used as
evidence in front of court. Hence, in the sequel, we focus on semantic compression algorithms
that provide a lossless service. In particular, we compare our work to [CRN08], which was
proposed to compress IP traffic captures, and [GP16], which is a recent semantic compression
algorithm for large data tables that outperforms some earlier proposals, such as [BGR01] and
[JNOT04a].

IPzip [CRN08] is an algorithm for compressing IP network packet headers and payloads.
One of the motivations for developing IPzip was to support forensic investigations and to help
ISPs to comply with data retention laws. Hence, IPzip performs lossless compression on full
network traffic captures. In addition, IPzip is a semantic compression algorithm that exploits
the correlations exhibited by packets that belong to the same upper layer protocol session or
have the same destination port (inter-packet correlation) and correlations of header fields within
individual packets (intra-packet correlation). The basic idea of IPzip is to reorder the packets
in the network log such that related packets are grouped together, and to separate the structured
header part of packets from their unstructured payload. In this respect, our method is similar,
as we also rearrange CAN packets based on their CAN IDs and separate the unstructured CAN
payload from the CAN header and other meta-information, such as timestamps. We cannot
exploit however correlations of header fields, because the CAN header contains a single ID field,
and we cannot either exploit redundancy in upper layer flows, because we cannot interpret the
proprietary, manufacturer specific upper layer protocols. Yet, we achieve a better compression
ratio than IPzip: in [CRN08], the authors report that IPzip achieves a compression ratio between
30% and 40%, while our compression ratio is around 10-12% (in our binary format). The
difference may stem from the highly periodic nature of CAN traffic, which is not a characteristic
feature in IP traffic.

Squish [GP16] is a semantic compression algorithm that leverages the relational structure
of large data tables in databases. It uses a combination of Bayesian Networks and Arithmetic
Coding to capture multiple kinds of dependencies among attributes and to achieve near-entropy
compression rate. More specifically, it learns a Bayesian network structure from the dataset,
which captures the dependencies between attributes in the structure graph, and models the con-
ditional probability distribution of each attribute conditioned on all the parent attributes. Then, it
applies arithmetic coding to compress the dataset using the Bayesian network as the probabilis-
tic model. Finally, it concatenates the model description file (describing the Bayesian network
model) and compressed dataset file. Squish achieves a reduction in storage on real datasets of
over 50% compared to its nearest competitors, including ItCompress [JNOT04a] and SPARTAN
[BGR01]. It is difficult to compare it to our algorithm, because it was not used to compress
network traffic logs. On tables containing discrete numbers, which are similar to a series of
timestamps in our setting, it achieves a compression ratio of around 32%. Our 10-12% compres-
sion ratio is better, because we can exploit the periodic nature of the timestamps.

27

Semantic compression of CAN traffic

Finally, we must mention the compression algorithms BFC and SRA proposed in [WC15],
which were specifically developed for lossless compression of CAN packets. However, their
motivation is different: they address the problem of overload on the CAN bus. BFC and SRA
can compress CAN packets in real-time, which results in reduction of the bus load. They achieve
a compression ratio of around 80%, and they require special hardware or software in ECUs to
perform compression and de-compression. Our algorithm is not intended to be used in real-time,
it does not require any modification to existing ECUs in the vehicle, and it achieves a much better
compression ratio of around 10-12%. However, this comparison is not entirely fair due to the
different goals of BFC/SRA and our algorithm.

3.2 Traffic log compression algorithm

The usage of semantic compression and syntactic compression helps to achieve different goals.
A clever combination of the two approaches could benefit from the advantages of both: semantic
compression reduces the file size while maintaining accessibility to the data. whereas syntactic
compression achieves the smallest possible file size.

To exploit the benefit of both approaches we propose to apply both methods at different
operational phases. During data collection an on-the-fly semantic compression could reduce file
sizes while keeping data available for immediate processing. The compressed files could be an
input for IDS or other anomaly detection appliance. The compressed data format allows a fast
analysis of data flows because they are stored in blocks after one another whereas investigation
of causality relations is more computing-intensive.

An optional long term storage or cloud transfer of network logs requires a smallest minimum
file sizes while the importance of immediate data accessibility is reduced. This implies the use
of syntactic compression at this phase. It has been proven before that performing semantic
compression before syntactic compression still pays off [JMN99].

Semantic compression

We propose a compression algorithm that takes advantage of the largely periodic nature of the
CAN traffic. The high level approach of our algorithm is to separate the traffic into message
flows, containing only messages that have the same ID, and then, compressing each message
flow separately leveraging the previously identified properties. Algorithm 1 shows the pseudo
code of the compression.

28

Semantic compression of CAN traffic

Algorithm 1: Semantic compression
Input: raw CAN log
Output: compressed CAN log

1 messages← read CAN traffic log;
2 f lows← separate Messages into message groups;
3 for f low in f lows do
4 calculate_average_inter_arrival_time(f low);
5 group_messages_with_identical_data(f low);
6 for message in f low.messages do
7 compress_timestamp(message);

8 for f low in f lows do
9 write_compressed_ f low_to_out put(f low);

After reading the log file (where messages are stored similarly then showed in Example 3.1),
the first step is to filter the messages based on the ID field of the protocol. This step generates
separate lists of messages (a flow) where the only remaining information for each message to be
stored is its timestamp in the log and the data content of the message. In many cases, the content
shows only very low variations, allowing the compression to be even more efficient by grouping
together identical messages.

1481492674.734327 0x260 8 000000000000006a
1481492674.736055 0x2c4 8 05c8000f0000923c
1481492674.738092 0x2c1 8 080335016ad9004f
1481492674.754306 0x260 8 000000000000006a
1481492674.759605 0x2c4 8 05c8000f0000923c
1481492674.769823 0x2c1 8 0803390170d90059
1481492674.774302 0x260 8 000000000000006a
1481492674.783129 0x2c4 8 05c2000f00009236
1481492674.794246 0x260 8 000000000000006a
1481492674.801541 0x2c1 8 08033b0174d9005f
1481492674.806689 0x2c4 8 05c2000f00009236
1481492674.814227 0x260 8 000000000000006a
1481492674.83034 0x2c4 8 05c5000f00009239
1481492674.833283 0x2c1 8 08033b0174d9005f
1481492674.834316 0x260 8 000000000000006a
1481492674.853767 0x2c4 8 05c8000f0000923c
1481492674.854213 0x260 8 000000000000006a
1481492674.865006 0x2c1 8 0803380172d9005a
1481492674.874181 0x260 8 000000000000006a
1481492674.877285 0x2c4 8 05c8000f0000923c

Example 3.1: Simplified CAN traffic log

Storing a complete and separate timestamp for each message in a flow would be a waste
of storage. Our more efficient approach takes advantage of the periodicity of messages. The-
oretically, a new message with the same ID should come at an exactly predictable time point

29

Semantic compression of CAN traffic

based on the inter-arrival time of this message type. However, this behavior can be changed by
a higher priority message on the CAN bus. If two messages are sent at the same time, then only
the one with the higher priority will be sent, shifting the inter-arrival time of the messages with
the lower priority. From this point on, the arrival times of this complete message flow will be
shifted.

An efficient way to store the timestamp of a message is to store the number of periods (spe-
cific for that flow) passed since the last message of the same type and an additional offset value
that is induced by either priority causes or measurement distortions. This approach also allows
for an efficient description of message flows, where the same message data appears repeatedly
from time to time.

It is important to note that the timestamp is not part of the original CAN message, but it is
an essential part of the post-analysis to have this information; thus, we consider the timestamp a
natural part of the CAN trace.

For each message flow, there are some additional metadata to be stored: the message ID, the
first appearance of the flow in the log and the characteristic period length of the flow. These flow
specific metadata should be followed by the message data and then the compressed timestamp
for each message. An example of this compressed format can be seen in Example 3.2, where the
sign separates the period number and the offset value in each compressed timestamp.

0x260
start_time:1481492674.734327
period:19984
00 00 00 00 00 00 00 6a: 0#0,1#-5,1#12,1#-40,

1#-3,1#105,1#-87,
1#-16

0x2c4
start_time:1481492674736055
period:23540
05 c8 00 0f 00 00 92 3c: 0#0,1#10
05 c2 00 0f 00 00 92 36: 1#-16, 1#20
05 c5 00 0f 00 00 92 39: 1#111
05 c8 00 0f 00 00 92 3c: 1#-113, 1#-22

0x2c1
start_time:1481492674738092
period:31728
08 03 35 01 6a d9 00 4f: 0#0
08 03 39 01 70 d9 00 59: 1#3
08 03 3b 01 74 d9 00 5f: 1#440, 1#14
08 03 38 01 72 d9 00 5a: 1#-5

Example 3.2: Compressed CAN traffic log

30

Semantic compression of CAN traffic

A compression example

The operation of our semantic compression can be effectively demonstrated on Example 3.1 that
shows a simplified CAN traffic log. It has been truncated and reduced to only contain messages
from three different ID types. Other than that it is a real life traffic log.

In the first step the algorithm reads the messages separating them into groups with the same
ID. In this case it would result in 3 groups: 0x260, 0x2c4 and 0x2c1. The following step is the
same for each group, that is to compressing messages inside a group.

An efficient way to find repeated messages is to build a hash map of the messages using the
message data as a key. At this level, the only remaining information to be stored is the arrival
time of the message.

For a more efficient compression the timestamps are stored in a coded way taking advantage
of the CAN traffic properties. The inter-arrival times of the messages can be calculated, based
on the stamps, requiring only to store the small difference between the predicted and the actual
arrival times.

It is possible, that a message data appears in the traffic from time to time. This also has
an impact on the compression, i.e. we need to store the elapsed number of periods in each and
every case too. This number usually has the value of 1 but for a recurring data this may vary.

The final result of the compression of this log can be seen in Example 3.2. For storing the
compressed timestamp the number of cycles and the arrival shifts are separated with a # sign.

Output formats

We defined two output formats for our algorithm. One is a text base (ASCII) representation of
the traffic log (like presented in Example 3.2), while the other is a binary format. Both formats
contain the same lossless information.

It is worth having both of this options because various further usage may prefer one over the
other. The binary format stores the compressed data in a more efficient way that can be seen in
Table 3.1.

Table 3.1: Semantic compression ratio comparisons

Original trace Text format Binary format
Test case file size file size file size file size file size

(bytes) (bytes) percentage (bytes) percentage
1 10 095 971 1 710 920 16,94% 1 090 757 10,80%
2 7 040 165 1 334 902 18,96% 835 539 11,86%
3 19 143 383 3 747 229 19,57% 2 307 146 12,05%
4 21 936 245 4 233 994 19,30% 2 601 354 11,85%

31

Semantic compression of CAN traffic

Table 3.2: Semantic and Syntactic compression ratio comparisons

Test case

Original trace Semantic and Syntactic compression combined
zip compressed Text format Binary format

file size file size file size file size file size
(bytes) (bytes) percentage (bytes) percentage

1 1 291 315 546 725 5,41% 499 998 4,95%
2 937 319 429 234 6,09% 390 467 5,54%
3 2 569 118 1 194 758 6,24% 1 092 183 5,70%
4 2 895 039 1 332 585 6,07% 1 223 677 5,57%

3.3 Evaluation

We evaluated our algorithm in terms of run-time performance and efficiency. As the most im-
portant performance metric, we calculated the compression ratio and as for efficiency, we also
measured the speed of our implementation. We performed our measurements multiple times
with different datasets originating from different vehicles. We used vehicles of three different
brands all belonging to the low mid-level category built between 2005 and 2010.

We captured traffic with a Raspberry Pi based CAN interpreter, similarly as introduced in
Section 1.2. It allowed us to access the raw information on the CAN bus and we saved every
CAN message with a timestamp. We performed traffic captures through the OBD interface
where the design of the vehicle allowed for an uninterrupted access to the power-train CAN bus
traffic through this connection. We were able to gather traffic logs of multiple hours in all three
types of vehicles that we used in the evaluation.

3.3.1 Run-time complexity

The time complexity of our semantic compression algorithm is O(n) where n is the number
of messages in the traffic log. To compress a complete traffic log, the algorithm iterates over
the messages 6 times. Every iteration is linear regardless the size of the input therefore its
complexity is O(n). For the python implementation of the compression we also only used data
structures with either O(n) or O(1) data structure speed.

The algorithm was capable of efficiently compressing data gathered during the test scenarios
in every case at least a magnitude faster than the incoming speed as shown in Table 3.1. This
speed overall makes our algorithm a good candidate for on-board data compression for local
usage of the information or as a preparation for a remote transmission.

3.3.2 Compression ratio

The measured compression ratios show significant progress in the data sizes (Table 3.1 and Table
3.2). We were able to achieve compression ratios of less than 20% using an ASCII represen-
tation of the output of our algorithm. The binary representation shows an even more efficient
compression with the results being around 10% of the original file size.

32

Semantic compression of CAN traffic

If we applied the additional syntactic compression to our semantic compression it resulted
in the smallest file sizes we were able to achieve. In the ASCII representation scenario the
combined result shows an approximate 6% compression ratio while the binary case show an
approximate 5% compression ratio.

This result can be considered as another proof that it is worth applying semantic compression
before syntactic compression because with this combination additional efficiency can be gained.

3.3.3 Correctness

We also implemented a de-compression algorithm. It allowed us to restore the data in an identi-
cal form to the original files before the compression. We performed a bit-by-bit and a SHA-256
based comparison of the original and the de-compressed files to check the correctness of our
algorithm. In every case, we could restore the original data without any loss.

3.4 The forensic use of the compressed format

In the recent years several articles have been published about the vehicle security. Perhaps the
largest impact was achieved by the papers of Koscher at al. in [KCR+10] and Miller et al. in
[MV13]. These papers described a series of attacks against the vehicle CAN busses using dif-
ferent attack approaches. Their attacks on a network level can be divided into two categories:
sending already known messages with a frequency different from the usual frequency and insert-
ing messages with a previously unused message ID. Based on our research, our proposed CAN
compression format can also be helpful to find attacks described in these works.

The first type of the CAN attack inserts new messages with a known message ID. The pur-
pose of this attack is to flood the CAN bus with a modified message data suppressing the infor-
mation sent in the original messages. This approach was used, for example, to modify informa-
tion displayed to the driver. The appearance of the original message on the CAN bus cannot be
prevented leaving the only option of sending the crafted messages with a much higher frequency
(up to 10-20 times the original value).

The second type of the CAN attack inserts completely new, previously unseen messages into
the traffic. In the presented works, those new messages were diagnostic messages. The goal of
those messages was to trigger functionalities of the car that would otherwise be turned off. As an
example, it is possible to use the park assistant feature of certain cars during the normal driving
circumstances to change position of the driving wheel.

Both of these attacks produce a very specific pattern in the CAN traffic that can be easily
identified in the compressed format proposed in this work.

One of the properties of the CAN traffic, also utilized by our compression, is the highly
regular arrival times. This property is harmed when a higher frequency flooding attack is inserted
into the CAN communication. The proposed format represents arrival times in an “elapsed
cycles # offset” format. During the normal operation, the value of elapsed cycles is the most
probably 1 and the offset is a relatively small number. This behavior changes notably when a
log file that includes a flooding attack is compressed. In this case, the value of the elapsed cycles
is always 0 because the time between attacking messages is around 1/10 - 1/20 of the normal

33

Semantic compression of CAN traffic

inter-message time. This also results in an offset field with a greater value than the offset values
in the normal case. An example of a compressed attack traffic log can be seen in Example 3.3.

id:0110
start_time:1483093132166605
period:9994
0200000000270000:3#-392,1#426,
0200000000260000:1#-348,1#-47,1#-22,1#369,1#-37,1#-301,1#44,1#299,1#-209,1#-81
027d000000200000:2149#-3321,0#999,0#999,0#999,0#999,0#999,0#999,0#999,

0#999,0#999,0#999,0#999,0#999,0#999,0#999

Example 3.3: Compressed CAN traffic log

Using messages, as part of an attack, with completely new IDs generates an entirely new
section in the compressed format. The first step of the compression is to separate messages into
discrete groups of messages with the same ID. This step makes it very easy to find attacks using
new message IDs. The easiest way to find this discrepancy is to compare multiple compressed
traffic logs originating from the same vehicle. This allows the analyzer to significantly reduce
analysis time.

Finding anomalies in the compressed format relies on the fact that the properties of the traffic
are determined based on a benign traffic period. This can be rather easily achieved because only
a very short time frame is required to calculate this information. This calculation can be repeated
periodically and the result should be the same every time. If that was not the case, that could
also be an indicator that probably an attack happened in that time frame.

3.5 Summary

In this chapter, we presented an efficient way to perform lossless compression of the CAN traffic
logs. Based on our observations of the periodic properties of the CAN traffic, we designed a
semantic compression algorithm for the CAN traffic. With the use of our algorithm, storage
efficiency and communication costs can be significantly improved, while keeping the possibility
to perform analysis on the compressed data.

34

Chapter 4

Anomaly detection

This chapter describes our efforts to improve the security of CAN networks with anomaly detec-
tion solutions. Our goal is to identify the previously introduced message injection and message
modification attacks. We propose multiple algorithms, built on different prerequisites, that can
effectively detect anomalies in the CAN communication. We formulated two research questions
for this chapter:

• Is it possible, and, if yes, how to detect anomalies on compressed logs?

• Is it possible, and, if yes, how to improve anomaly detection over the state of the art by
applying the latest machine learning techniques?

In Section 4.1, we give an overview of the potential approaches to improving the security of
the CAN bus. Then, in Section 4.2, we show that our proposed CAN compression algorithm is
suitable for message injection detection. In Section 4.3, we propose a new message modification
detection algorithm against message modification attacks. Next, in Section 4.4, we explain
a neural network based detection algorithm to identify further message modification attacks.
Finally, in Section 4.5, we summarize our anomaly detection results.

4.1 Approaches to increasing the security of the CAN bus

Researchers have tried to tackle to problem of the insecurity of the CAN network (as described
in Section 1.4) from many different perspectives. Some of the more notable options are (1)
the improvement of the CAN specification with the introduction of security features, such as
authentication, (2) the installation of a firewall between CAN network segments, (3) the redesign
of the CAN transceiver hardware elements to enforce security controls, or (4) the introduction
of various intrusion detection systems, such as a physical model-based intrusion detection or a
network anomaly-based intrusion detection system to identify attacks. While all these measures
could theoretically improve the security of the CAN bus, they are either not efficient enough
or their usage is impractical from the manufacturer point of view. Next, we will detail these
approaches and their shortcomings.

35

Anomaly detection

Authentication As mentioned before, one of the biggest deficiencies of the CAN bus is that
it lacks security features, such as message authentication. CANAuth [VHSV11] solves this
issue by using a symmetric key based HMAC. As described in Section 1.1, every bit transmitted
on the CAN bus get sampled at the 75% percentile point of the bit time to ensure a reliable
sampling. However, technology has developed a lot since the introduction of the CAN bus, and
microelectronics are much faster nowadays. Thus we could use a higher sampling rate in order
to hide authentication data in the propagation segment of every CAN bit.

CANAuth prevents message injection attacks introduced in Section 2.2 and also allows the
detection of some message modification attacks, such as a MitM attack described in Section 2.3,
it does not stop a modification attack occurring after a full ECU compromise. If the firmware
of the ECU is modified, then the attacker is capable of transmitting modified data with correct
message authentication codes.

Firewalls Another mitigation method is to use firewalls [Ari10]. By using a firewall, we can
physically split a CAN bus into multiple separate segments and control the traffic going between
them. For instance, we can apply allowlist or blocklist-based message filtering on each of the
different segments, introduce rate limiting, etc. Thus, we can limit the possibility of message
injection and DoS attacks. Adding a CAN firewall to an existing car should not require redesign-
ing the car, since the firewall itself is just a simple device with two CAN interfaces, which can
be inserted between the separated CAN segments.

While this solution could appear as the ultimate solution to the shortcomings of the CAN
standard, it has several issues. For instance, we have to separate every important ECU or at least
every important segment with a firewall, in order to be effective, which creates an excess cost
for the manufacturer. An even bigger issue is the management of the firewall. Who gets to write
the filtering rules? How are the rules updated, if an update is required? Who is responsible if
an important packet gets dropped unintentionally? What if an airbag does not open during an
accident due to a malformed firewall rule? While these edge cases could seem unimportant, not
being able to address them satisfactorily may make manufacturers deciding not to use this tech-
nology. Adding a firewall in front of every important ECU naturally leads to the next approach,
which is, improving every CAN transceiver with firewall-like features.

Secure CAN transceivers A third mitigation technique is the secure CAN transceivers pro-
posed by NXP [EWO20]. Their idea is to introduce a new firewall-like security defense layer at
the CAN transceiver level. Using this new layer, they can prevent message spoofing in both the
transmitting and the receiving side; i.e., detect malicious ECUs and evade DoS attacks.

This approach is welcomed by manufactures as it does not result in a significant cost increase
but from a rule-management point-of-view it suffers from the same problems as any other fire-
wall solution. Furthermore, it can secure vehicles built in the future, it does not solve the security
problems of the already existing billions of vehicles.

Modeling of the physical process As with any cyber-physical system, modeling the physical
system parameters for intrusion detection can be a promising approach to identifying attacks.

36

Anomaly detection

This can be the foundation of an anomaly detection solution; however, compared to other tradi-
tional intrusion detection systems, it is worth discussing separately due to the significantly differ-
ent challenges of physical system modeling and data capture. This approach has been shown to
work effectively in general control systems, such as industrial control systems [GHM16] and in
vehicular systems. In [WPW+17] Wasicek et al. showed that by building a model of the engine,
they can detect engine control modifications, such as a chip tuning. Although the experiment
shows promising results, creating an accurate model and accessing all the necessary parameter
readings remains challenging.

Network intrusion detection Identifying intrusions on the CAN bus can significantly improve
vehicle security. In general, two intrusion detection approaches are available: signature-based or
model-based anomaly detection [RKAK+22]. Signature-based detection has a low false-positive
rate as it can accurately identify previously known attacks. However, signature-based techniques
fail to identify novel or previously unseen attacks. Model-based anomaly detection techniques
can identify novel attacks; therefore, we only focus on these systems from hereon.

Anomaly detection solutions can recognize if the communication deviates from the normal
state to inform the driver (and potentially the manufacturer) about a problem. Typically, an
alert does not trigger any automatic countermeasure; therefore, the risk of a false intervention in
the vehicle controls is low. Furthermore, an anomaly detector can simultaneously added to the
CAN network to any other defense solution, as it operates only as an observer of the ongoing
communication. Multiple potential detection mechanisms exist, e.g., in [MGF10], 8 categories
have been defined as possible approaches, from simple formality and range checks to more
complex plausibility and consistency checks.

Based on the information source, these are 4 different approaches to information gathering
for network anomaly detection, each with an example:

• CAN ID: in [TJL15], Taylor et al. measure the frequency of the incoming packets with the
same ID to identify any time-based deviation from the normal behavior caused by injected
messages.

• CAN Payload: in [KTP20], Kukkala et al. propose a recurrent autoencoder network that
can detect CAN messages in which signals have been tampered with. For each message
ID, one such recurrent autoencoder is trained to reconstruct the signals within that partic-
ular message ID.

• CAN frame: in [ABM+21], Ashraf et al. proposed an LSTM autoencoder-based model,
that uses the packet count and bandwidth of the traffic in a fixed window as features.

• Physical characteristic: in [CS16] Cho et al. introduce a Clock-based IDS (CIDS) so-
lution to identify any change between the transmission times of CAN frames originating
from the different ECUs due to various manufacturers. Their approach shows very promis-
ing accuracy. However, it can only be applied by physically modifying the network.

Previously demonstrated results all have benefits, but their detection accuracy does not reach
the expected level, or their resource needs could be more suitable for embedded systems. In the
following Sections, we propose new anomaly detection algorithms to address these problems.

37

Anomaly detection

4.2 Attack detection in compressed CAN traffic

Cyber attacks on vehicles can cause physical accidents. This means that when an accident hap-
pens, forensic analysis must be extended into the cyber domain, and investigators must analyze
whether the accident was caused or made possible by a cyber attack. Imagine, for example, that
a compromised ECU provides false data and as a consequence, misleading information is dis-
played to the driver on the dashboard, or the airbag is disabled silently before a crash, or some
autonomous driving function is enabled and the driver loses control over the vehicle. All these
can either lead to an accident or increase accident severity. As the cyber attack on the vehicle
may occur well before the accident that it causes, forensic analysis can be successful only if
detailed logs are recorded for an extended period of time, not just for a few seconds before the
accident1.

In our view, in the future, especially with the increased penetration of autonomous vehi-
cles, it will be indispensable to continuously record CAN traffic in vehicles and efficiently store
these logs for later forensic analysis. Efficient storage of CAN logs requires compressing them.
Compression not only saves storage space, but it also makes it easier to off-load logs from the
vehicle. Usually, the compressed log must be decompressed for analysis purposes, and the anal-
ysis is carried out on large amount of decompressed data. This increases the inefficiency of the
analysis itself. In this Section, we study the problem of detecting anomalies that may indicate
cyber attacks on the compressed CAN traffic log, generated after applying our previously intro-
duced compression algorithm from Chapter 3, hence making analysis faster by not requiring a
decompression first.

Anomaly detection cannot be performed on any kind of compressed CAN log, but the com-
pression method must support the analysis of the compressed data. Our compression algorithm
achieves a higher compression ratio than traditional syntactic compression methods such as gzip.
Besides this advantage, in this Section, we show that it also supports the detection of certain
types of attacks in the CAN log without decompression. More specifically, we can easily de-
tect injection attacks, where the attacker (e.g., a compromised ECU) injects a given type of
periodic CAN message with a smaller repetition time (higher frequency) than its normal repeti-
tion time. Most of the attacks demonstrated in prior work were of this kind[MV15][CMK+11].
The increased frequency of injected false messages usually results in "overriding" the informa-
tion carried in the legitimate messages. We show that such an attack causes a well-identifiable
anomaly pattern in the compressed log even when the frequency of the fake messages is just
slightly larger than the normal frequency.

The remainder of this section is organized as follows: In Section 4.2.1, we give an overview
on the existing anomaly detection works on CAN traffic focusing mostly on injection attacks
detection, aiming for the same goal as our solution. In Section 4.2.2, we discuss the attack
scenario and the possible attacks against the CAN protocol that we and recent works take into
consideration. We describe the dataset, we used during this research, in Section 4.2.2. We
present our anomaly detection approach and its evaluation in Section 4.2.3. Finally, we conclude
in Section 4.2.5.

1https://www.nhtsa.gov/research-data/event-data-recorder (Last accessed: Oct 1, 2023)

38

Anomaly detection

4.2.1 Related Work

Anomaly detection on the CAN bus has been an actively researched field recently. Multiple
approaches have been proposed varying in the interpretation of the CAN traffic. If the inter-
pretation of the CAN messages are accessible (e.g. because the CAN matrix is available), it is
possible to collect and analyze the actual vehicle parameters. Approaches using this knowledge
usually perform anomaly detection on this high level data. The researches not using a CAN
matrix are mainly focused on the communications properties such as repetition times of the
messages.

A. Taylor et al. proposed a method from the first approach in [TLJ16]. They interpreted the
CAN massages to build a current state of the vehicle. Then with a Long Short-Term Memory
Network (LSTM) predicted the next state of the car. If the actual state, based on the following
messages, is diverging from the predicted state, due to injected messages with false data, they
detect it as an anomaly.

S. N. Narayanan et al. proposed a hidden Markov models based approach to anomaly
detection[NMJ16]. They used the OBD port available in every modern car to access the CAN
bus. Packets captured through this interface are interpreted then and used to build the Markov
model. They also understand states of the vehicle and define the possible state transitions. If an
unexpected state transition is detected that means an anomaly in their model.

In [MS17] M. Marchetti et al. showed that anomaly detection can be efficiently performed
based on CAN ID sequences. From the CAN traffic they only use the ID field of the messages.
They build a transition matrix to understand the connection between messages. If during nor-
mal traffic an ID follows another then this transition is marked as normal in the matrix. Their
anomaly detection method analyzes whether a not allowed transition appears in the traffic.

In another paper Taylor et al. [TJL15] presented an anomaly detection approach that is based
on repetition times of the messages on the CAN bus. They first splitted the traffic into flows.
For every flow various measures are calculated such as the number of packets in the flow, the
average Hamming distance between successive packet data fields and the average time difference
between successive packets. During their analysis they show that the only reliable parameter for
anomaly detection is the average time difference between successive packets. They use a one-
class support vector machine (OCSVM) to classify the benign traffic and to detect anomalies.
They measure the efficiency of their work only on syntactically generated traffic.

Although anomaly detection on compressed traffic has several advantages, this idea was not
researched so far. We aim to close this gap by analyzing normal and attacked compressed CAN
traffic to determine what kind of anomalies could be detected with this approach.

4.2.2 Realized CAN injection attacks

It is possible to achieve an anomaly with just a few messages but in most cases for an attack to
be successful, a large number of messages are necessary. In Chapter 2, we introduced the attack
organizing them by the technical complexity of the execution. In the following paragraphs, we
only focus on message injection attacks and we describe the various possibilities of an attacker,
organized by the number of messages required. The amount of extra messages greatly influences
the attack detectability.

39

Anomaly detection

DOS against the CAN bus In this scenario the goal of the attacker is to completely disable
the communication on the CAN bus. This can be achieved at least with two extreme approaches.

An attacker could disturb the transmission of every CAN packet by starting its own dummy
transmission in the middle of every other packet. This way an error will occur during the recep-
tion of every packet. This attack does not need a full packet to be sent by the attacker just a few
bits with the correct timing.

Similar effect can be achieved with the transmission of packets with the ID 0. The ID field
of the CAN packet is also determines the priority of the message. The value of the ID decides
which packet can be transmitted in case of multiple colliding packets. The smaller the ID of a
packet is the higher its priority is. If an attacker sends continuously packets with the ID 0 then
there will not be any resource left for the normal traffic.

Both of these attacks are operation critical for a vehicle. A complete DOS against the CAN
bus isolates the ECUs from each other disabling most of their operations. These scenarios are
trivial to detect, as the number of extra messages or interventions are extremely large, but very
difficult to handle.

Messages with new IDs It is common in car manufacturing that the same hardware parts are
used in various car models. This practice makes it possible for an attacker to try to trigger
functionality in a car that would not be used otherwise. On the CAN level this means that
messages could appear with previously unseen IDs.

Some attacks are realized with the usage of debug packets[MV13]. These scenarios also
introduce packets with new IDs on the bus.

Although the number of messages is rather low in this scenario, if all benign IDs are known
in advance, identifying these attacks is simple. Messages with IDs not seen before can effectively
be found with basic allow-listing or simple anomaly detection.

Irregular messages with known IDs Some CAN messages are only transmitted as a response
to certain events. These messages are encountered rarely because they are responses to environ-
mental changes and are not part of the regular operation of a vehicle. An attacker could inject
any of these messages at random times to force an inconsistency in the operation.

Without an external source of information the only way to detect these messages is to corre-
late information from other packets. This is a challenging task in most cases if even possible.

Messages with regular repetition times To interfere with the normal operation of a vehicle
the regular communication of the ECUs should be altered. It is hard to remove messages from
the CAN bus (if en error occurs during transmission usually a re-transmission logic is triggered at
the sender) thus the best possible option for an attacker is to send malicious packets additionally.
A packet with fake content could force the vehicle into a compromised state until the next packet
with correct content arrives. Most attacks aim to keep the vehicle in a compromised state for the
majority of the time. This means that the attacker is required to send a lot of malicious packets
to minimize the effect of the original benign traffic.

40

Anomaly detection

Based on the goal of the attacker the frequency of the malicious packets could be anything
between 1x and 10x of the original traffic. Our measurements and previous research[MV13]
results also showed that a malicious traffic with ∼10x the frequency of the original traffic forces
the vehicle to stay in a compromised state almost constantly.

Datasets

During the research we created two datasets. First, we created a synthetic dataset where the
attacks were manually injected into a clean CAN traffic log. Then we also performed some
attacks against a real vehicle that gave us real life infected traffic logs.

Synthetic data set

We have captured a few hours of benign traffic from a mid class vehicle. With reverse engineer-
ing we found the signal used to display the RPM of the engine on the dashboard. We used this
signal during our attacks to simulate an attack where false information is displayed to the driver.
The RPM value is sent by an ECU in a message with the ID 110. Normally this message is send
in every 10 millisecond. This attack belongs to the "Messages with regular repetition times"
category described in Section 4.2.2.

We created a packet with a malicious content to insert into the traffic. The packet contained
a higher RPM value than found in normal traffic.

We generated the malicious traffic with multiple steps. First we splitted the normal traffic
into smaller chunks. Each chunk contained approximately 1 minute of traffic. As a base rule
we decided that every attack should be at least 5 seconds long because a shorter attack on the
dashboard would probably not disturb the driver thus it would not achieve any goal. We also
generated longer attacks. For each attack scenario we increased the attack length with 5 seconds.
This resulted in attacks with random length in these intervals: 5-10; 10-15; 15-20; 20-25 and
25-30 seconds.

For every attack scenario we generated 100 malicious samples. They were each tested in our
algorithm together with 100 benign samples.

We generated the malicious traffic simulating the normal operation of the CAN bus (includ-
ing the bus arbitration). First, we generated 10000 malicious packets. The time stamp of the
first packet was randomly chosen from the first half of the benign sample, the rest of the time
stamps were calculated based on the chosen attack frequency. Then, we merged the benign and
the malicious packets according to the time stamps. If two messages overlapped than the one
with the higher time stamp was shifted after the other, simulating the CAN arbitration process. If
there was enough time until the next message then the malicious message was simply inserted.
Otherwise the same logic was repeated again to resolve further conflicts in the time stamps.
Generally, the bus load was relatively low in our test vehicle resulting a low number of those
conflicts.

Once we had the 100 malicious and 100 benign samples for every scenario we compressed
all of the logs with the chosen compression algorithm. Furthermore we examined how the
detectability of such an attack changes with the modification of the message injection frequency.
We generated attacks where the injection frequency was 10 times, 5 times and 2 times higher

41

Anomaly detection

than the original frequency of the given ID. We considered the 10 times higher frequency the
default frequency for an injection attack as our real life tests and other researcher results also
demonstrated it is an adequate frequency for an attack to have a stable effect.

In our captured traffic there are 18 different IDs. There are IDs with regular (14) and irregular
(4) repetition times. We only focused on the regular IDs.

Real-life attacks

We used a test vehicle to demonstrate some of the attacks described previously. It allowed us
to test our anomaly detection approach in a real life scenario as well. During the attacks, we
targeted both the speed and the transmission indicator of the vehicle. For the speed indicator,
we used 3 different attack frequencies: ∼10 times higher, 2 times higher and the exact same
frequency as the original messages have. For the transmission indicator we also used a frequency
10 times of the original. We also collected benign traffic from the vehicle to compare it to the
malicious logs.

Speed indicator modification In this attack we were able to change the displayed speed of
the vehicle. We achieved that even when the car was standing still without the engine running.

We performed this test with different attack frequencies. In the first attempt, shown in Fig-
ure 4.1, the frequency of the forged packets was the same as the original one effectively doubling
the number of packets with the given ID. This caused the speed indicator to oscillate between
the real speed (0 km/h) and the forged speed (30 km/h).

Figure 4.1: Speed indicator attack with 1x frequency caused oscillation of the indicator needle.

In our second attempt, shown in Figure 4.2, we increased the frequency of the malicious
packets to 10x the frequency of the normal traffic. This created a stable attack where the indicator
showed continuously the speed defined by our attack.

42

Anomaly detection

Figure 4.2: Speed indicator attack with 10x frequency. The indicator shows 28 km/h while the
real speed was 0 km/h.

Transmission dashboard modification We also attacked the transmission signal for the dash-
board, of which the normal state is shown in Figure 4.3. The engine was still not running but we
were able to force the display to show that the vehicle was in gear 1.

Figure 4.3: Original state of the transmission display.

To achieve the attack goal, we used a packet observed during previous test drives. The
malicious packet injection frequency was also 10x of the original rate. As an unintended side-
effect we also modified the fuel level indicator and some control lights from the engine. In the
original state, the fuel level was low whereas during the attack it showed that the tank is half full
(Figure 4.4). This indicates that the fuel level and some of the control signals are transmitted in
the same packet as the current gear.

43

Anomaly detection

Figure 4.4: Attack on the transmission display. The engine was not running but the indicator
showed gear 1. The control lights were switched off and the fuel level was increased.

4.2.3 Anomaly detection algorithm

Our detection algorithm has the goal to decide whether a given message in the compressed CAN
traffic log belongs to an attack or not. To address this, first we split the compressed log into
separate ID files, where each file contains messages of a given ID. These files are analyzed
separately.

We calculated different features of the malicious and benign logs to find the ones that distin-
guish them the most efficiently. Although, the changes of the repetition times had a significant
impact on the structure of the compressed traffic log, the simplest and most powerful feature
turned out to be the number of messages during a constant time window.

In a time window of 1 minute we count the number of messages for each ID. Thus we get a
feature for each ID: the number of messages in a minute. This will be different in a normal and
an attacked traffic log. This approach is also intuitive. If we inject additional messages of an ID
that has an approximately constant message rate per minute, the increase in the message rate per
minute will indicate an attack.

This feature proved to be reliable for attacks both with higher and lower frequencies.
Based on the previously suggested feature, attacks can be detected efficiently. As can be

seen in subsection 4.2.4, this approach separates malicious traffic logs from benign logs even
visually making the decision easy.

4.2.4 Results

We evaluated our method on both synthetic and real life data with different attack frequencies.
On synthetic data we used the above mentioned 100-100 normal and attacked samples for

attacks with different frequency. The histogram of the distribution of the attacks can be seen
in Figure 4.5. They demonstrate that the attacked traffic is efficiently distinguishable from the
normal traffic even when the attack frequency is as low as 2 times of the original.

44

Anomaly detection

5000 10000 15000 20000 25000 30000 35000
Number of messages per 1 min

0

20

40

60

80

100
ID 110 10x freq flooding

5-10 sec
10-15 sec
15-20 sec
20-25 sec
25-30 sec
normal

5000 10000 15000 20000 25000 30000 35000
Number of messages per 1 min

0

20

40

60

80

100
ID 110 2x freq flooding

5-10 sec
10-15 sec
15-20 sec
20-25 sec
25-30 sec
normal

Figure 4.5: Comparison of the number of messages feature for 100 - 100 benign and syntheti-
cally attacked samples.

10000 20000 30000 40000 50000
Message numbers per min

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Attacking the velocity (ID 0016)

10x freq
2x freq
1x freq
normal

0 2500 5000 7500 10000 12500 15000 17500 20000
Message numbers per min

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Attacking the gear shift (ID 0050)

10x freq
normal

Figure 4.6: Comparison of the number of messages in normal and attacked scenarios during real
attacks.

On the data from the real world attacks we performed the same calculations. Figure 4.6
shows that our algorithm achieves the same reliable results in the real life scenarios as well.

These results show that with this approach it is possible to achieve correct classification in
every case. For the stable attacks, where a high message frequency is used, the proposed method
produces a reliable result with 0 false positive and false negative rates. As the message injection
rate decreases the confidentiality is also reduced but even for attacks with 1x injection frequency
it remains high enough for a correct decision.

4.2.5 Summary

In this section, we argued that cyber attacks on vehicles may cause physical accidents, therefore,
forensic investigations must be extended into the cyber domain. In order to support this, CAN
traffic in vehicles must be logged continuously and stored efficiently for later analysis. Our main
contribution was a novel anomaly detection method that works on compressed CAN traffic logs.
The advantage of running anomaly detection on the compressed logs is that less amount of data
needs to be analyzed, hence, the efficiency of forensic investigations can be increased.

45

Anomaly detection

Our anomaly detection algorithm is based on analyzing the average frequencies of messages
with given CAN IDs. The compression algorithm that we use preserves the number of messages
per unit time in an easily extractable form in the compressed CAN log, which makes it possible
to use our anomaly detection algorithm on the compressed logs. We demonstrated that this ap-
proach works reliably in a range of scenarios, including using data sets captured in real vehicles
and modified with synthetically generated attacks as well as data sets captured in real vehicles
under real attacks. Our algorithm was capable to identify attacks in both cases.

Observing the average frequencies of messages with given CAN IDs may appear to be a
simplistic approach for anomaly detection; nevertheless, it works reliably for detecting injection
attacks. In addition, many prior works suggested that injection attacks are easy to carry out and
they have noticeable effects, hence, this type of attack is one of the most important attacks to
consider.

4.3 Correlation-based anomaly detection

An overwhelming majority of the demonstrated attacks rely on injecting fake messages into the
CAN bus. Some ECUs can be easily misled by the fake information in those injected illegiti-
mate messages if they overweight the legitimate ones carrying the correct information. These
injection attacks, however, are not so difficult to detect: one can observe the timing statistics of
different types of messages and detect deviations from expected values by simple heuristic rules.
Similarly to our proposed method for forensics analysis, [MV14] introduced the idea of analyz-
ing the rate of messages for in-vehicle attack detection. In the normal state of vehicle operation,
most message IDs appearing on the CAN bus have a regular frequency. When an attacker injects
messages to achieve some malicious goal, the frequency of some message IDs will unexpectedly
increase, as the legitimate ECUs will still send messages periodically with those message IDs
besides the attacker’s injected messages. Moreover, the frequency may be increased by a factor
ranging from 2 to 100, as pointed out in [MV14]. Hence changes in frequencies can be detected
quite easily by simple comparison to some fixed thresholds within a certain size of observation
window. Equivalently, increased frequency of a message ID can be translated to decreased inter-
arrival times for that message ID, and hence, changes in the statistics of inter-arrival times of
certain message types can also serve as the basis for attack detection.

While the majority of attacks on the CAN bus indeed relies on message injection, this is
not the only technique to achieve malicious goals. The predictability of message ID frequencies
alone is not sufficient for detecting attacks in case of irregular or unpredictable CAN messages
and in case of attacks that do not inject new messages on the CAN bus. In this Section, we
address the latter problem: we propose a method to detect message modification attacks. Mes-
sage modification attacks are more difficult to carry out, but they are also much more difficult
to detect, therefore, attackers may consider them in the future, especially, given that message
injection attacks will likely be detected by future vehicles. Achieving a message modification
attack is difficult because the built in safety features of the CAN bus prevent a deliberate modifi-
cation of a message on the fly. Hence, as described in Chapter 2, three options remain: (1) either
the attacker compromises the relevant ECU to modify the message before it is even transmit-
ted; (2) or a CAN gateway between two segments is compromised to modify a message during

46

Anomaly detection

the hand-off between segments; (3) or the CAN bus is divided into two segments with a new
malicious gateway inserted, allowing for message modifications on the gateways between the
segments. The first two can be performed purely with software exploits, while the last requires
physical modification of the network. Despite the increased complexity, the first and the last
approaches to message modification attacks have already been demonstrated in [MV13]. We
also demonstrated the executability of the third option in Section 2.3.

In this Section, we introduce a new anomaly detection solution that utilizes the fact that
vehicle signals are correlated. The speed, the engine revolution, the current fuel consumption
and many other values change together, representing the physical changes of the vehicle state.
The solution proposed here can understand these high level relationships between the vehicle
signals with the correlation values that correspond to the normal state of the vehicle. During
an attack, if a vehicle signal is overwritten by the attacker in a CAN message, some of the
measured correlation values may deviate from those of the normal state, and this can be detected
as an anomaly. An advantage of this approach, compared to previously proposed algorithms
where only a single signal value is used in the anomaly detection, is that if the attacker does not
modify all the correlating signals precisely at the same time, the attack can likely be detected.

The rest of this Section is structured as follows. Section 4.3.1 presents the related work.
Section 4.3.2 introduces our proposed anomaly detection method and Section 4.3.3 summarizes
its testing and validation. Finally, Section 4.3.4 concludes this work.

4.3.1 Related work

Academic papers proposing solutions for securing in-vehicle networks can be divided into three
groups: (1) a relatively large body of work (e.g., [VHSV11, GMvHV12, NR16]) is concerned
with adding extensions to the CAN protocol, and by doing so, fixing its inherent security weak-
nesses; (2) a few papers (e.g., [MHT+12]) discuss intrusion prevention either by introducing fire-
walls or other techniques; and (3) another set of papers (which we discuss in more details below)
deal with intrusion detection on the CAN bus using various approaches. Given the considerable
amount of work done in the field, a few surveys have also been published: [SMAV19, KKJ+21]
have the broad scope of in-vehicle security as a whole, and [LOAB19, YZOB19, WLX+20] are
more focused on in-vehicle intrusion detection. As our work falls in the domain of anomaly-
based intrusion detection, we focus on that domain in the rest of this section.

Anomaly-based intrusion detection can take two approaches: specification-based and model-
based anomaly detection. In case of the former, the normal behavior of the monitored system
is explicitly specified. For instance, in the automotive case, the car manufacturer can have
specifications for the normal frequency of different periodic messages at which they appear on
the CAN bus. Deviations from the specification can easily be identified as signs of attack. In the
case of model-based anomaly detection, on the other hand, no explicit specification of normal
behavior is given, but instead, a model of the normal behavior is somehow obtained (e.g., learned
by observing the system in the non-attacked state), and deviations from this model are detected
as attacks. Different academic proposals differ in what modelling technique they use and what
features of the system are modelled.

As for the modelling technique, many papers propose to use some statistical model (e.g.,
mean, variance, or entropy) of some parameter, with simple heuristic rules (e.g., comparison to

47

Anomaly detection

a threshold) [MV14, TJL15, SKK16, GMT16, MBC+17] or more sophisticated statistical hy-
pothesis testing methods [MS17, TBSK18] to detect deviations from the model. Other papers
(e.g., [The14, TLJ16, MW17, KK16a]) use some machine learning model (e.g., classifier or
neural network), with the corresponding model specific method to decide if some input devi-
ates from the learned model. Regarding the features that are modelled, many papers consider
properties of the network traffic itself, such as packet timing features (e.g., frequency of certain
types of packets) [TJL15, SKK16, MBC+17, TBSK18] and features related to the content of the
packets (e.g., the time series of packet IDs or certain signal values) [MW17, KK16b, MS17],
whereas some papers use physical characteristics as features, such as voltage level and clock
drift of physical signals on the CAN bus [CJJ+18, JWQ+18].

In this Section, we propose a model-based anomaly detection method for the CAN bus that
uses correlations across different types of messages as features. To the best of our knowledge
the only other paper using correlation-based anomaly detection is [BODA+20] therefore, we
make a more in-depth comparison here. The method proposed in [BODA+20] computes the
correlation between two specific signals, velocity and RPM, and detects attacks where extra
messages containing incorrect values of these signals are injected into the bus. In contrast to
this, our method computes the correlation between all pairs of signals, and identifies those pairs
that have high correlation without identifying the actual signals. In addition, we detect message
modification attacks, which are more difficult to detect than injection attacks. We simulate seven
different types of modification attacks and evaluate the performance of our method for each of
them. Otherwise, both [BODA+20] and our work use the Pearson correlation function, while
in [BODA+20], the authors applied other analysis techniques (such as K-Means and Hidden
Markov Models) as well.

4.3.2 Anomaly detection algorithm

Our anomaly detection algorithm focuses only on the detection of message modification attacks,
where the original repetition times of the messages are unchanged. As a result only the content
of the messages can be used for anomaly detection.

Overview

We propose an anomaly detection algorithm that uses the correlation between signals encoded
in CAN messages. Under normal conditions, the correlation between different signal pairs stays
within a (signal pair specific) interval. In case of an attack where the attacker modifies only
one member of a correlating signal pair, the resulting correlation may no longer stay within the
interval, and this can be detected as an anomaly.

In the training phase, the correlation values between signals has to be determined. We mea-
sured multiple times the pairwise Pearson correlation between every signal pair in a one minute
long time window and in a three minutes long time window. Next, based on these measure-
ments, we decided whether the measured values represent an actual correlation. We achieved
this by fitting different continuous probability distribution functions onto the measured correla-
tion values. When we found a proper fit, we added the signal pair to our model. For every signal
pair, we also calculated four thresholds to identify the boundaries of normal behaviour: (1) two

48

Anomaly detection

thresholds define a narrow normal interval, such that measurement outside of this interval are
considered potential anomalies; (2) and another two thresholds define a wider interval, such that
measurements outside of this interval are considered anomalies immediately.

In the detection phase, correlation values are determined in both a one minute long and a
three minutes long window. Then the measured values are compared to the previously defined
threshold for anomaly detection.

Data preprocessing

In the training and testing phases we used a 31 minutes long CAN traffic log captured from a
middle class vehicle. The traffic contains both periodic and non-periodic messages. This means
that some messages arrive regularly with a fix repetition times, while others are only transmitted
upon specific events. Before the training, we filtered out the non-periodic messages and those
periodic messages that appear less than once per minute. After the filtering step, 92% of the
original data remained.

The next step was the signal extraction from the traffic log. For this we used an algorithm
from the Automated CAN Payload Reverse Engineering2 project introduced in [NGMK18].
This algorithm separates the bits of the CAN data field into signals based on bit flip frequencies,
called Transition Aggregation N-Grams. The method builds on the property that the MSB bits
of a signal change less frequently than the LSB bits. If there is a significant change in the bit
flip frequencies of two neighboring bits that shows the boundary between two signals. The same
statistical information can also be used to determine the signal encoding.

We calculated correlation values pairwise for the identified signals in different time win-
dows. We tested window sizes from 1 to 8 minutes. For every interval, we re-sampled the
signals to have two signal values per second within the chosen window. This rarefying speeds
up the correlation calculation. Our measurements showed that the best results can be achieved
by choosing 1 minute and 3 minutes as final time windows. This allows us to detect significant
anomalies fast and smaller anomalies in a reasonable time.

Model training

Five matrices are calculated for both time windows for the purpose of anomaly detection. A
matrix C contains the correlation values and there are four additional threshold matrices that
store two upper (Cth+,1 Cth+,2) and two lower thresholds (Cth−,1 Cth−,2) for the detection.

Each cell ci, j in matrix C contains the Pearson correlation value calculated between signals i
and j in the given time window. The correlation value is stored the following way:

• if the calculated coefficient indicates constant values then a NaN value is stored.

• otherwise if the two-tailed p-value of the Pearson correlation coefficient is less than or
equal to 0.05, then the calculated value is stored.

• otherwise a 0 is stored.
2https://github.com/brent-stone/CAN_Reverse_Engineering (Last accessed: Oct 1, 2023)

49

Anomaly detection

During the training phase, we randomly select a starting point in the CAN log and calculate
the correlation values for all signal pairs for both time intervals. Selecting the starting point
randomly allows us to use the original trace multiple times generating a correlation matrix with
small differences for every starting point. With this method, we created 300 training matrices
for the threshold calculations.

These training matrices gave us a good representation of the typical correlation value for all
pairs of signals. In order to find thresholds characterizing the normal behaviour, we fitted dif-
ferent continuous probability distribution functions onto the ci, j values of every training matrix.
For every distribution, we performed a Kolmogorov-Smirnov (K-S) test to find the distribution
that fits best the correlation values. The K-S test gave us two results: a D statistics and a p-value.
For the former, we calculated3 a critical value at significance level α = 1% using (4.1) (where n
is the number of samples in the dataset):

d1% =
1.6276√

n
(4.1)

Those distributions, where the resulting D statistic was less than or equal to the critical value
and the resulting fitted probability distribution’s standard deviation was greater than 0 and less
than 0.2, we accepted the distribution as a potential candidate. Then, for all these candidates,
we calculated the probability distribution’s percent-point (or quantile) function value for the
10−3,1−10−3,10−6,1−10−6 probabilities. These gave us candidates for the minimum (mini, j),
maximum (maxi, j), significant min. (sigmini, j) and significant max. (sigmaxi, j) thresholds.

To choose the best option from the candidates, a scoring technique was used, which is based
on the length of the normalized significant min-max interval (sigmaxi, j− sigmini, j) and the nor-
malized min-max intervals (maxi, j−mini, j). The candidate with the minimum final score was
selected as the final probability distribution. We used the following function (Figure 4.7 and
Equation 4.2) with a minimum value of 0.6 for the significant min-max, and a minimum value
of 0.5 for the min-max intervals:

score(x) =

{
(x−min)2, if x≤ min
x−min
min∗x , if x > min

(4.2)

Figure 4.7: Visualization of the function used to score the normal min-max threshold intervals.

3https://www.real-statistics.com/statistics-tables/kolmogorov-smirnov-table (Last accessed: Oct 1, 2023)

50

Anomaly detection

Figure 4.8: One example of a signal pair with a fitted ’loggamma’ probability distribution

Then, for the final candidate score we used the formula (4.3):

f inal_score = 0.65∗minmax_score+0.35∗ signi f icant_minmax_score (4.3)

The used scoring system assigns the smallest score to the candidates with a min-max inter-
val length closest to 0.5 and a significant min-max interval length closest to 0.6. This approach
prefers the candidates where the intervals are relatively small but not too tight. Our measure-
ments showed that these typically used statistical constants in the calculations with this weight-
ing gives the best trade-off between false positive and false negative results. We used a larger
weight for the min-max score to reflect that it is more important to detect an attack than the
speed of the detection.

These final chosen threshold values are stored in the threshold matrices, given that there
was at least one candidate distribution, in the following way: the minimum values are stored in
matrix Cth−,1; the maximum values are stored in matrix Cth+,1; the significant minimum values
are stored in matrix Cth−,2, and finally, the significant maximum values are stored in matrix
Cth+,2. If there was no candidate probability distribution found, the signal pair was excluded
from the study.

Some correlations between signals are not linear, but as we focus on detection accuracy and
not correlation measurement accuracy, we used the Pearson correlation in all our measurements,
resulting in the most precise model.

51

Anomaly detection

In Figure 4.8, we present an example of the measured correlation values of a signal pair
and the fitted probability distribution function (’loggamma’). The vertical blue and red lines
show the determined minimum and maximum, and significant minimum and maximum values,
respectively.

Detection

In the detection phase, the current correlation values are calculated for the last 1 and 3 minutes
of the traffic, and then, the results are compared to the threshold matrices in the following way:

• if a correlation value is outside the significant min-max interval, it is marked as an attack;

• if the value is only outside the normal min-max interval, but not outside the significant
one, we consider it a potential attack only, which will be a real attack if our model with
the other time interval also gets a similar result.

4.3.3 Evaluation of the algorithm

Benign dataset In the testing phase, we took 270 1-minute long samples of the original trace,
which we also used for training. As the starting points of the samples are chosen randomly,
this can be considered a separate set of samples from the training dataset. We performed the
detection step of the algorithm on these new samples with a previously trained model and found
the following result: the model incorrectly signaled an attack in 14 out of 270 cases, resulting in
a false positive rate of 5.2%.

Infected dataset The validation of the proposed algorithm was performed on an infected
dataset. We simulated different message modification attacks (no new message is added to the
log) with a previously developed attack simulator4 that can take a clean CAN log and modify a
selected subset (specified by ID and time interval) of its messages according to 7 different attack
scenarios:

1. const: the original data value is replaced by a given attack data.

2. random: the original data value is replaced by a new random value.

3. delta: a given attack data is added to the original data value.

4. add_incr: an increasing value is added to the original data value.

5. add_decr: an increasing value is subtracted from the original value.

6. change_incr: the original data value is replaced by an increasing value.

7. change_decr: the original data value is replaced by a decreasing value.

4https://github.com/CrySyS/can-log-infector (Last accessed: Oct 1, 2023)

52

Anomaly detection

As it can be seen from this list, this simulator can synthetically generate a large number
of infected traces following the same attack strategies we used in the in real-life demonstrated
version of a message modification attack, described is Section 2.3.

Measurements In order to evaluate the performance of the algorithm in more details, we di-
vided the signals into three different groups and validated the algorithm in each group separately.
The first group contain signals that strongly correlate with multiple other signals. Typically, the
most important signals of a vehicle belong to this group. The second group contains signals that
have a strong correlation with one other signal, and the third group contains signals with only
weak correlation values. We considered a correlation strong between two signals if the mean of
the absolute correlation value was above or equal to 0.9 for all the 300 training data samples.

We chose from each group 4 or 5 signal pairs for the validation. For these signals, we
simulated all previously mentioned 7 attacks on 15 randomly chosen segments of the original
trace. Each attack was performed multiple times. First, only 8 bits was modified according to the
attack description in one of the target signals, than the number of affected bits in the upcoming
test was increased by 4 until the signal length was reached. All of the attacks were theoretical,
but based on previous real life attack descriptions. For this simulation, we did not check whether
a specific attack would actually have any impact in real life.

Figure 4.9: Testing results for 16 bit long signal with strong correlations.

Figure 4.9 shows detailed results for a signal with strong correlations. The 16 bit long signal
was attacked with all attack types. For each type, 3 attacks were performed where the affected
number of bits increase from 8 to 16. The two colors of the columns indicate which time window
was successful for the attack detection. The detection rate varies between 55% and 100% with
an above 90% result for attacks modifying more than 12 bits.

The results found in the others groups, as expected, are less accurate. The average detection
accuracy of attacks of signals with one strong correlation is 58% while this falls to ∼20% for
the third group where the signals only have weak correlations.

53

Anomaly detection

Figure 4.10: Detection accuracy of high priority signals.

Figure 4.10 shows a summary of the results for messages with the highest priority (based on
the CAN ID field). It can be seen, that most messages with the highest priority contain signals
with high correlation, making them ideal candidates for a correlation based anomaly detection.

4.3.4 Summary

In this section, we proposed a novel correlation based anomaly detection method for the CAN
bus with a focus on message modification attacks. We showed, that our solution efficiently
detects most of the attacks, making it a promising candidate for real life anomaly detection.
Furthermore, a significant advantage of this correlation based detection is that it can detect even
the most sophisticated attacks, assuming that the attacker does not modify every related signals
consistently.

In our future work, we plan to investigate if the proposed threshold based detection mech-
anism can be replaced with other potential solutions that increase accuracy. A potential option
for this is a machine learning based classification. Moreover, the efficiency of the correlation
calculation could also be increased with better data preprocessing, in order to further improve
the applicability of our solution in real life scenarios.

4.4 Signal anomaly detection with TCN

Detecting message modification attacks is a difficult task. Building any model of the CAN traffic
based only on the message data is particularly challenging, as we do not know how to interpret
the data; therefore, we cannot exploit any semantic information. As we showed in Section 4.3,
exploiting data correlations between messages can be a powerful detection mechanism. How-
ever, not every signal correlates strongly with others, so that approach is limited. In this Section,
we propose a new detection method that works on a signal-by-signal base to supplement our pre-

54

Anomaly detection

vious solutions. We propose a TCN-based approach for detecting modified CAN bus messages.
We construct and train the TCN in an unsupervised fashion, since, in practice, labelling CAN
bus messages is a very difficult task. In the training process, the TCN will learn to accurately
reconstruct the individual signals of CAN bus messages through its causal convolution layers,
which allows for information retention from past data samples. Finally, the classification of new
data samples will resume to setting an appropriate threshold on their reconstruction loss value.
The core idea here is that signals whose data have been altered will be poorly reconstructed by
the model, and thus be easy to recognize. Note, that it is not a prerequisite for us to know CAN
bus signal semantics which is usually kept confidential [LÁBS19, RLÁB19]. The contribution
of this Section is two-fold:

1. We then propose a TCN architecture to learn and reconstruct the normal behaviour of
CAN bus signals, and use this information to pinpoint anomalies that do not conform to
the reconstruction given by model.

2. We compare the detection performance of our approach to a state-of-the-art GRU-auto-
encoder [KTP20] (shown to outperform other existing solutions) through numerical ex-
periments on both our own dataset and the de facto standard SynCAN dataset [HSDU20].
Results show that our simple TCN-based approach compares favorably to the state-of-
the-art, i.e., it achieves similar or better accuracy with a significantly lower false positive
rate.

The rest of this Section is structured as follows. Section 4.4.2 presents our proposed TCN
architecture in detail. Section 4.4.3 describes the design of our experiments including choos-
ing the baseline, introducing our two datasets and the training process, and defining evaluation
metrics. Section 4.4.4 presents the results of the comparative performance evaluation. Finally,
Section 4.4.5 concludes this research.

4.4.1 Related work

In recent years, a considerable amount of literature has been published on CAN bus intrusion
detection. These works can be split into three categories: frequency-, statistics-, or machine
learning based methods. Most of these approaches are particularly useful for detecting cyber-
attacks in which additional messages are being injected into the CAN bus. The simplest of
the three, frequency-based models focus on testing inter-arrival times of CAN messages against
a predefined normal baseline [TJL15, SKK16, MBC+17]. As the name suggests, statistics-
based detection approaches exploit the statistical properties of CAN bus traffic such as entropy
[MA11], Z-score [TBSK18] or Mahalanobis distance [MCWW19]. Machine learning based
methods imply the usage of artificial neural networks, clustering and supervised models for
classification and regression. In the specific field of CAN bus intrusion detection, popular ma-
chine learning approaches include autoencoders [LOMH19, LCX+21, NLY+20], recurrent neu-
ral networks (RNN) such as Long Short-Term Memory (LSTM) networks [TLJ16, NJCF19,
KCI+20, HSDU20, HIO+20], Gated Recurrent Unit (GRU)-based networks [KTP20], replica-
tor neural networks [WWSZ18], and deep convolutional networks [SWK20]. The scrutinized

55

Anomaly detection

literature shows that recurrent architectures are often the preferred choice for modeling the time
series of CAN bus signals, whilst convolutional networks are used when data is transformed to
a two-dimensional grid dataframe to resemble an image format [SWK20]. In particular, only
one approach was found to combine these two techniques in the form of a convolutional LSTM
[TLW20] which is trained on labeled data in a supervised fashion.

Temporal Convolutional Networks To the best of our knowledge, no existing solution em-
ploys (causal) convolutions to model the time series representation of CAN signals; we argue
that such an approach makes perfect sense given the successful application of convolutional
networks to sequence modeling tasks. Specifically, a Temporal Convolutional Network (TCN)
is a type of convolutional network whose architecture consists of causal (and dilated) convolu-
tions [BKK18]. It has been shown that this new type of network outperforms recurrent architec-
tures, such as LSTM and GRU, on a multitude of sequence modeling tasks including the adding
problem and image classification on sequential MNIST and P-MNIST [BKK18]. In fact, TCNs
have also been successfully applied to anomaly detection in general time series data [HZ19].

4.4.2 Anomaly detection algorithm

In this section, we present the motivation behind choosing temporal convolutional networks
as an anomaly detection mechanism for the CAN bus. We first provide some background on
convolutional networks and then describe our proposed TCN architecture in detail.

Convolutional networks Convolutional neural networks are a particular kind of deep neural
networks that enables the extraction of relevant spatial and temporal features from the input
(e.g., an image) by learning a set of filters. These filters represent multi-dimensional arrays
sliding over the input image, and are initialized randomly. During the forward pass, the dot
product between the entries of each filter and the image sub-block is computed, resulting in a
feature map. When another convolutional layer is added, the features learned in the first layer
are combined to create new ones. To account for as many (non-linear) combinations of features
as possible, it is customary to increase the filter size in the subsequent layers. The deeper the
network becomes, the better it gets at extracting refined patters from the data. A more detailed
description of different convolutional architectures can be found in [AG17].

Temporal convolutional networks (TCN) are a category of convolutional networks partic-
ularly suitable for modeling long-term dependencies in sequential data [vdODZ+16, BKK18].
Consider for instance the following task: based on input sequence x0,x1, . . . ,xT , predict corre-
sponding output y0,y1, . . . ,yT at each time step. There are two constraints associated with this
task. First, the predicted output yt should only be influenced by previously observed inputs
x0,x1, . . . ,xt , and, second, the size of the network output must be identical to that of the input
sequence. TCNs tackle the first constraint by sliding a filter only over the past input values. In
other words, the convolution filter has positive weights only for past inputs. TCNs also employ
dilated causal convolutions which, unlike regular causal convolutions, enable an exponential
growth of the receptive field by skipping over the inputs while convolving. Moreover, a larger
receptive field allows the neural network to infer the relationships between different observa-

56

Anomaly detection

tions in the input data. The second constraint is addressed by padding the input data with zeros
at the borders, to control the dimension of the output. These two architectural elements can
be observed in Figure 4.11, depicting a dilated causal convolutional network with two hidden
layers. Here, the zero-padding is represented by the white squares on the left side. The filter
size of k = 3 is indicated by the blue lines. The dilation factor d, applied at each layer, indicates
how many input values are being skipped by the filter. Increasing the dilation factor by 2 at each
subsequent layer results in a receptive field of size 15: the value of a neuron in the output layer
is influenced by fifteen neurons from the input layer.

Figure 4.11: A dilated causal convolutional neural network with two hidden layers, dilation
factors d = 1,2,4 and filter size k = 3 [BKK18].

TCNs possess numerous advantages when compared to recurrent architectures [BKK18].
Convolutions within TCNs can be computed in parallel, thus allowing the entire data sequence to
be processed. That is not possible with RNNs, where the computation of the output at a specific
timestep requires the complete computation of all its predecessors. Moreover, TCNs require
less memory during training than RNNs, where partial values of cell-gates need to be stored,
and exhibit stable gradients, as backpropagation does not happen through multiple different time
samples. In theory the receptive field of RNNs is infinite; in TCNs the field is finite, and its size
depends on the number of layers (dilations) and filters used. Apparently, there exists a trade-off
between how lightweight the network is, and its ability to capture long-term dependencies in
the data. Both aspects are equally important to obtain a scalable and reliable CAN bus intrusion
detector. In the remainder of this Section we show that a TCN model is a suitable candidate for
this purpose. Furthermore, we argue that an architecture with scalable size is advantageous in a
resource limited embedded environment, such as a vehicle.

TCN architecture The proposed TCN to be used for CAN bus intrusion detection follows the
general framework from [BKK18] and is shown in Figure 4.12. The network consists of an input
layer, three residual blocks, and an output layer. As shown in the figure, the input for the TCN

57

Anomaly detection

Figure 4.12: Our TCN architecture with three residual blocks with convolutional dilations and
filter size of k = 2.

must be three-dimensional. Each residual block contains two dilated causal convolution layers
each having 64 filters and the same dilation factor d. The Rectified Linear Unit (ReLU) is used
as an activation function on these layers. The filter size is kept at the same value of k = 2 across
all residual blocks. A skip connection is also enabled, which adds the output from the previous
layer to the next layer. This is marked by the element-wise addition ⊕. Due to zero-padding,
this operation may receive inputs that differ in shape. To circumvent this, a 1x1 convolution is
added.

The network is kept simple deliberately: no weight normalization or dropout layers have
been used. Our main objective here is to investigate whether this lightweight TCN can suc-
cessfully learn to reconstruct CAN bus signals, and achieve results comparable to or better than
other, more complex state-of-the-art classifiers.

Intrusion score and output We distinguish between benign and malicious messages by ap-
plying a threshold to the reconstruction loss. We therefore monitor the squared error between
the signal value at a given time and its latest reconstructed value. This defines an intrusion score
for each signal in a message. To compute an intrusion score per message, we calculate a set of
thresholds given by the 99.9th percentile of the validation loss for each signal in the data. A
message is then labeled as malicious if one of the signal’s intrusion scores exceeds the thresh-
old set for that signal. We opted for this approach to label messages based on individual signal
thresholds: in practice, depending on the complexity and correlation of the signals, some may
be better reconstructed during training than others.

4.4.3 Experiment design

In this subsection we describe the design of our numerical experiments, including the baseline
model, datasets, training process and our choice of evaluation metrics.

58

Anomaly detection

Selecting the most suitable baseline For evaluation purposes, we identified the best-performing
CAN bus anomaly detection algorithms by scrutinizing recent literature. We used the following
selection criteria:

• Unsupervised learning: the algorithm requires no labeled data for training.

• Generalization: the algorithm is easy to generalize, and thus does not depend on data
pre-processing such as identifying and pre-selecting specific CAN signals.

• Fully-reproducible: the algorithm needs to be accompanied by sufficient information in
order to have a fully reproducible implementation.

To the best of our knowledge, the most recent and suitable candidate is the INDRA frame-
work [KTP20]. It proposes a recurrent autoencoder network that is able to detect CAN messages
in which signals have been tampered with. For each message ID one such recurrent autoencoder
is trained such that it learns to reconstruct the signals within that particular message ID. This
approach is shown to outperform other recent unsupervised methods such as Predictor LSTM
[TJL15], Replicator Neural Network [WWSZ18], and CANet [HSDU20], on most attack classes
of the SynCAN dataset, in terms of accuracy and false positive rate. Moreover, Predictor LSTM
is designed to predict the raw message data in string form, and thus does not directly fall within
the scope of time-series-based intrusion detection. Note that the CANet model is also more
complex since its architecture combines the LSTM models of individual messages to account
for capturing the correlations between different IDs. Finally, the convolutional LSTM proposed
in [TLW20] is a promising method for predicting multi variate time series data. However, it was
designed for supervised learning which requires labeled data for training and for this reason, it
falls outside the scope of this paper.
In view of these arguments, INDRA is the most sensible baseline for comparative performance
evaluation.

Datasets

When evaluating machine learning classifiers, it is considered best practice to employ multiple
datasets in order to assess the impact of the number of data samples and different features on
the model’s performance. Moreover, publicly available CAN bus datasets for intrusion detection
are labelled differently, either per message ID or per signal. To account for both, we consider
two datasets: the SynCAN dataset with message labels and the CrySyS dataset with individual
signal labels.

SynCAN dataset The SynCAN (Synthetic CAN Bus Data) dataset was introduced in [HSDU20],
and is publicly available5. The dataset contains 10 different CAN message IDs, whilst the num-
ber of signals in each ID varies between 1 and 4. Overall, the dataset covers 20 signals. The
training data spans approximately 16.5 hours of traffic, while the testing data about 7.5. More-
over, testing data includes a 0/1 label per individual message, to indicate whether it is malicious

5www.github.com/etas/SynCAN (Last accessed: Oct 1, 2023)

59

Anomaly detection

or not. However, there is no indication as to which signal has been attacked within a malicious
message. Since this dataset is only meant for unsupervised learning purposes, the training data
does not include explicit labels. Finally, the test data is split across six different files, each
corresponding to a different simulated attack:

• Plateau attack: the value of a single signal is overwritten by a constant value over a certain
period of time.

• Continuous change attack: the value of a signal is overwritten at a slow pace, such that it
increasingly deviates from its true value.

• Playback attack: the values of a signal within a time interval is overwritten with the values
of the same signal from a randomly selected past interval.

• Suppression attack: signal values contained in a certain message ID simply do not appear
in the CAN traffic for a period of time.

• Flooding attack: messages with a certain ID are sent with a higher frequency to the CAN
bus.

Detection of message injection attacks (suppression attack and flooding attack) is not a goal
of this Section. Nonetheless, in Section 4.4.4, we evaluated our TCN architectures performance
on those as well for a better comparison with the INDRA model.

CrySyS dataset The CrySyS dataset was created by the CrySyS Lab in the context of the
SECREDAS project 6, and it is also publicly available7. It is significantly smaller compared to
the SynCAN dataset, however, the driving environment and the behavior of the vehicle are better
known. It contains 7 smaller (<1 minute) captures of specific driving and traffic scenarios, and
a longer trace (∼ 25 minutes). There are 20 different message IDs in the traces, and the number
of signals varies between 1 and 6.

We modified the original CrySyS traces with the attack generator script, also used in Sec-
tion 4.3.3 to simulate attacks. After we identified the different signals in the traces, using the
method presented in [NGMK18], we replaced a chosen signal with a modified value for the
second half of the trace. Note that the simple change-to-constant/plateau attack was enough to
demonstrate the capabilities of our approach over INDRA (see Section 4.4.4). Also note that we
focused on IDs with 1 to 4 signals per message, similar to SynCAN, to be able to compare the
results across the two datasets.

Training the models

Training both the TCN and INDRA models required the normalization of signal data (values
between 0 and 1), and then re-shaping the input data to three-dimensional. This was done by
sliding a fixed-size window over the time series, one timestamp at a time. As in [KTP20], we

6www.secredas-project.eu (Last accessed: Oct 1, 2023)
7www.crysys.hu/research/vehicle-security (Last accessed: Oct 1, 2023)

60

Anomaly detection

Table 4.1: Overview of datasets used in the numerical experiments.

Dataset Message ID
No. of
signals

Train
samples

Test
samples

SynCAN
2 3 4139826 909869
3 2 2070144 1884235
10 4 1380087 610294

CrySyS
280 4 157472 3895
290 5 15748 389

applied a rolling window of 20 timestamps or, equivalently, of 20 messages, to the training
datasets shown in Table 4.1.

The rest of the training parameters were set to the same values as in [KTP20] to ensure an
accurate reproduction of the INDRA model. Concerning the optimizer and loss function, both
models used the Adam optimizer with learning rate 0.0001 and mean square error. The models
were trained for 100 epochs with a batch size of 128 on 85% of the training data, whilst the other
15% was kept for validation. An early-stop mechanism terminated the training if the validation
loss did not improve in the last 10 epochs. Note that during initial experiments, a higher number
of epochs was considered, but the training stopped before the 100th epoch in all cases. All
models were implemented using the keras and keras-tcn8 libraries in Python 3.7, and trained on
a GeForce GTX 960 GPU. The two models have only been trained offline, not on live CAN bus
data.

Evaluation metrics

To evaluate the performance of the TCN model, we use the intrusion score defined in Sec-
tion 4.4.2. The INDRA model uses the same squared error as a signal intrusion score, but
applies a generic threshold set to the 99.9th percentile of the validation loss (computed across
all signals). The message intrusion score is then given by the maximum signal intrusion score
contained in that message, and is then compared to the threshold. We use three standard per-
formance metrics for the evaluation of the models: accuracy, false positive rate and precision.
Accuracy measures the ratio of the predicted labels exactly matching the ground truth, and is
defined as follows:

Accuracy =
T P+T N

T P+FP+T N +FN
, (4.4)

where T N, T P, FN, FP denote the number of true, and false, positives and negatives, re-
spectively. Accuracy gives an indication of the general classification capabilities of a certain
model.

The false positive rate (FPR) measures the amount of samples wrongly classified as mali-
cious, whilst in fact being benign. The false positive rate is extremely relevant from the practical

8www.github.com/philipperemy/keras-tcn (Last accessed: Oct 1, 2023)

61

Anomaly detection

point of view: in the CAN bus context, the messages marked as malicious may need to be further
analyzed before deciding on mitigation actions. To keep operation efficient, the false positive
rate needs to be minimized as much as possible. Precision, on the other hand, measures the ca-
pabilities of the model to actually detect the relevant attacks (positive samples). This is another
important quantity to monitor since imbalanced datasets, with far more negatives than positives,
may render accuracy a deceiving metric. In fact, CAN bus datasets are usually imbalanced,
since most (simulated) attacks have a very short duration. The FPR and precision are defined as
follows:

FPR =
FP

T N +FP
, (4.5)

Precision =
T P

T P+FP
. (4.6)

Figure 4.13: Training loss (continuous lines) and validation loss (dashed lines) of the two models
on message ID 290 of the CrySyS dataset.

Table 4.2: Accuracy of the models on SynCAN dataset.

Model Data Normal Cont. Playb. Flood. Suppress Plateau
TCN

ID 2
0.9977 0.8660 0.8674 0.7678 0.8402 0.8336

INDRA 0.9811 0.8584 0.8660 0.7600 0.8347 0.8133
TCN

ID 3
0.9992 0.8664 0.8680 0.6422 0.8390 0.8394

INDRA 0.9965 0.8653 0.8672 0.6420 0.8377 0.8386
TCN

ID 10
0.9977 0.8637 0.8577 0.7399 0.8446 0.8282

INDRA 0.9858 0.8546 0.8638 0.7923 0.8370 0.8100

62

Anomaly detection

4.4.4 Results

SynCAN We first assessed the performance of the two models on the SynCAN dataset. The
accuracy and false positive rate, calculated for the normal test set and for each attack class, are
shown in Table 4.2 and 4.3. A first observation is that TCN achieves a higher accuracy than
INDRA in most cases, with the exception of playback and flooding attacks on ID 10. More-
over, the false positive rates are quite low for both models, which can be explained by looking
at the precision values in Table 4.4. Overall, there are large variations in the precision values
across different message IDs which may be related to how the attacks were performed (target
signals chosen, attack duration, etc.) and the different signal correlations. Also, the relatively
low precision values in Table 4.4 show that the models manage to capture only a limited set
of temporal characteristics of the SynCAN data. This is a direct consequence of the stopping
mechanism implemented during training, and in the case of TCN, of the choices made to keep
a lightweight architecture. For playback attacks, precision is very low for both models, which
leads to the similarly low false positive rates achieved in this class. This is not surprising since
during a playback attack, a portion of past data is written over its current values, making the
signal look normal, and thus the attack difficult to detect. TCN clearly achieves a better per-
formance than INDRA in detecting continuous attacks. Moreover, for message IDs 2 and 3,
TCN detects suppression attacks with a much larger precision compared to INDRA. This result
appears to be influenced by the number of signals in the message, since precision significantly
decreases as the number of signals increases. As for plateau attacks, the two methods achieve
similar results. INDRA is more precise than the TCN model is on detecting flooding attacks.
This is an expected result, mainly due to the TCN accurately reconstructing data from a flooding
attack since the data values are not altered during such an attack. To sum up, the TCN model is
capable of detecting all message modification attacks (continuous change, playback and plateau)
effectively. Although detecting attacks which modify the arrival rates of CAN bus messages was
not part of the original goal, TCN also proved successful at detecting suppression attacks.

CrySyS The message IDs in the SynCAN dataset contains signals that are physically interde-
pendent, but are very weakly correlated; this also increases the difficulty of the detection task.
In order to assess how the two models perform in a different setting, we consider two message
IDs of the CrySyS dataset which contains more signals with a strong correlation. Here, similarly
to SynCAN, only one signal was attacked. The results are shown in Table 4.5. We notice that

Table 4.3: False positive rate of the models on SynCAN dataset.

Model Data Normal Cont. Playb. Flood. Suppress Plateau
TCN

ID 2
0.0022 0.0018 0.0013 0.0026 0.0001 0.0066

INDRA 0.0188 0.0121 0.0046 0.0157 0.0101 0.0495
TCN

ID 3
0.0007 0.0009 0.0002 0.0011 0.0004 0.0012

INDRA 0.0034 0.0033 0.0012 0.0033 0.0025 0.0036
TCN

ID 10
0.0022 0.0072 0.0160 0.0001 0.0011 0.0136

INDRA 0.0141 0.0176 0.0070 0.0047 0.0105 0.0447

63

Anomaly detection

Table 4.4: Precision of the models on SynCAN dataset.

Model Data Cont. Playb. Flood. Suppress Plateau
TCN

ID 2
0.4457 0.2458 0.0205 0.9027 0.3022

INDRA 0.1992 0.3696 0.1577 0.2812 0.3033
TCN

ID 3
0.5231 0.0000 0.1028 0.5854 0.7809

INDRA 0.0143 0.0000 0.3766 0.3261 0.6192
TCN

ID 10
0.3706 0.1949 0.000 0.0212 0.2036

INDRA 0.1779 0.1668 0.9413 0.0386 0.2224

Table 4.5: Results for the CrySyS dataset.

Model Data Acc. FPR Precision
TCN

ID 280
0.8833 0.0426 0.7766

INDRA 0.7989 0.0000 0.0000
TCN

ID 290
0.9159 0.0687 0.7701

INDRA 0.8617 0.0378 0.7755

both models still achieve high accuracy and a low false positive rate, with TCN showing a high
precision for both attacks, as opposed to INDRA, failing to detect the attack in message 280.

Results combined The simple TCN architecture achieves a slightly better accuracy compared
to the INDRA model on both datasets. A remarkable achievement of TCN is the significant
reduction of false positives (by a factor of 10) in nearly all cases: this translates to a more
reliable detector in practice. Further advantages of the TCN are that it is quick to train, has
a much smaller resource need, and achieves in general lower training and validation loss (see
Figure 4.13 for an example).

4.4.5 Summary

In this section, we examined the applicability of temporal convolutional networks to CAN bus
anomaly detection, with a focus on message modification attacks. To this end, we proposed
a lightweight TCN, and showed that its classification performance compared favorably to the
state-of-the-art baseline INDRA across different datasets and attack classes. Specifically, we
demonstrated that our computation-efficient and compact TCN model achieves similar or better
accuracy, while reducing false positives with an order of magnitude. This shows that TCNs have
a great potential both in modeling CAN bus signal and being deployed in practical settings.

Future work First of all, the elimination of the early termination mechanism would potentially
yield better performance; early termination was necessary in our experiments due to hardware-
related constraints. Second, the TCN architecture was kept very simple on purpose to ensure
a computationally lightweight model. However, the learning abilities of the network could be
improved by increasing the filter size and the dilation factor between causal convolutions, and by

64

Anomaly detection

stacking additional residual blocks together. Third, it is worthwhile to investigate how message-
based and signal-based intrusion thresholds, and the underlying intra-message signal correla-
tion influence the performance of both models for different attack classes. Finally, correlations
between signals across different message IDs could be considered leading to a more accurate
representation of normal CAN bus behaviour. To this end, an architecture combining multiple
TCN blocks (modeling individual message IDs a la CANet [HSDU20]) could be used.

4.5 Summary

In this chapter, we focused on detecting anomalies in CAN networks. We investigated new
methods to detect the attacks presented in Chapter 2.

Our anomaly detection on compressed traffic, presented in the first section, further extends
the defense against injection attacks. In the following two sections, we proposed two new meth-
ods for defending against message modification attacks. The first one can efficiently detect
anomalies by evaluating the signal correlations. In contrast, the second one processes the sig-
nals individually with a machine learning method to predict the future signal values and then
detect anomalies by comparing the prediction with the measured values.

In conclusion, the presented methods address different attacks against CAN networks, and
their combined or separate application can significantly improve vehicle security.

65

Chapter 5

Privacy problems

Data is constantly being generated within the systems of vehicles, particularly in contemporary
cars equipped with an array of controllers and sensors. These vehicles capture an extensive
range of signal values during operation, offering a comprehensive insight into the vehicle’s per-
formance and its driver’s behavior. As discussed in preceding sections, storing and managing
this influx of data is becoming increasingly crucial, particularly in identifying and mitigating
potential cyber-attacks targeting automotive systems.

However, beyond its significance in fortifying cybersecurity measures, the data harvested
from vehicles is versatile. Rather than solely serving defensive purposes, it possesses the poten-
tial to fuel a new wave of data-driven services tailored to enhance user experience and conve-
nience. This paradigm shift opens new ways for innovative applications within the automotive
industry, paving the way for personalized services and intelligent recommendations based on
intricate data analytics.

Yet, a pressing concern emerges amid the promising prospects of data-driven services - pro-
tecting personal data. With access to an abundance of sensitive information, including driving
patterns, vehicle usage habits, and even geolocation data, a paramount obligation arises to safe-
guard individual privacy rights. In their pursuit of offering tailored services, manufacturers must
navigate a delicate balance between utility and privacy, ensuring that data utilization remains
within the bounds of legal frameworks and ethical standards.

The potential applications of vehicle-generated data are manifold. Manufacturers can lever-
age this information to deliver proactive maintenance recommendations, optimize performance,
and enhance the overall driving experience for vehicle owners. Moreover, third-party entities
may capitalize on behavioral insights from driver data to offer supplementary services, ranging
from personalized insurance premiums to location-based promotions.

However, the exploitation of such data must be underpinned by a steadfast commitment to
compliance with pertinent regulations and adherence to ethical principles. Striking a harmonious
balance between innovation and data protection is imperative to foster trust and sustain the in-
tegrity of data-driven services in the automotive domain. Thus, while the potential benefits of
leveraging vehicle data are undeniable, they must be pursued with a commitment to ethical con-
duct and regulatory compliance, ensuring that the privacy and autonomy of individuals remain
sacrosanct amidst the ever-evolving landscape of automotive technology.

66

Privacy problems

The volume of data generated and collected by networked information systems is already
staggering and ever-increasing. With the advent of data analytics and machine learning, this
data inflow enables thousands of data-driven services which make our lives easier everyday. On
one hand, the modern vehicle is such a networked information system, generating abundant data
both on its in-vehicle network and, when V2X-enabled, towards other vehicles and the smart
infrastructure. On the other hand, a prominent service category is, e.g., location-based services
which help us navigate efficiently, hail a ride swiftly and cheaply, and get informed on potentially
relevant businesses nearby. However, such services do not come for free: more often than not
we pay for them with our personal data.

When service-enabling data is personal, the data controller (and data processors involved)
must observe regional and national data protection regulations; in Europe this points to the Eu-
ropean General Data Protection Regulation or the GDPR [PtC16]. While we do not intend to
introduce GDPR fully in this chapter, it is essential to outline three of its concepts to facilitate
comprehension. First, GDPR demands legal basis for data controllers to use personal data: the
primary way to achieve this is getting the informed consent of the data subject. Second, the term
“personal data” is defined as “any information relating to an identified or identifiable natural per-
son; an identifiable natural person is one who can be identified, directly or indirectly.” Singling
out is a fundamental method explicitly mentioned to identify a person in data; only data that
do not allow singling out the record of any individual may be exempt from the GDPR [CN20].
Third, certain personal data is deemed sensitive, and thus enjoy even stronger protection: per-
sonal data revealing racial or ethnic origin, political opinions, religious or philosophical beliefs;
trade-union membership; genetic data, biometric data processed solely to identify a human be-
ing; health-related data; and data concerning a person’s sex life or sexual orientation.

The research question for chapter is: Should CAN logs be treated as personal data, as by
offloading data processing to third-party providers, there might be strict legal requirements for
data handling?

Vehicular data often directly carries personal or even potentially sensitive information such
as location data, heart rate, or driver fatigue among others. Indeed, four spatio-temporal data
points of an individual’s daily trajectory identify 95% of all individuals uniquely [DMHVB13];
this facilitates singling out. Also, as evidenced by the publicly released NYC taxi dataset, in-
dividual trips might allow the inference of the driver’s (or the passenger’s) religious beliefs or
health status1; these are sensitive personal attributes. Moreover, the Strava incident2 showed
us that location data create patterns on the aggregate that can still give away an individual’s
personal information.

Meanwhile, data collection through the in-vehicle network, notably the CAN bus, is ongo-
ing by OEMs (Original Equipment Manufacturers) for maintenance, recall, and, increasingly,
monetization purposes. Therefore, even third-party service providers can get access to that data;
vehicle data hubs collect and standardize such data and sell it for applications including insur-

1fpf.org/blog/implications-of-broad-data-collection-by-the-nyc-taxi-limousine-commission (Last accessed: Oct
1, 2023)

2www.theguardian.com/world/2018/jan/28/fitness-tracking-app-gives-away-location-of-secret-us-army-bases
(Last accessed: Oct 1, 2023)

67

Privacy problems

ance3, traffic management, electric vehicle infrastructure planning, fleet management, advertis-
ing, mapping, city planning, and location intelligence4. The vehicle data market is predicted to
be worth between 300 billion and 800 billion USD by 20305. However, if CAN data i) reveals
the trajectory and location of the vehicle and its passengers and/or ii) enables singling out a spe-
cific driver, it should be treated as personal data; in this case the GDPR should be in full effect.
Adding fuel to the fire, CAN data is often collected without the informed consent of the owner/-
driver and without even the alternative of opting out. Such a hypothesis carries great weight: for
handling private data, GDPR defines strict requirements for data controllers and processors (rea-
sonable technical and organizational security safeguards, Art. 24 and 32 GDPR, in some cases
data protection impact assessment, Art. 35 GDPR) and rights for data subjects (right to access,
right to erasure, right to object, as per Art. 12-23 GDPR). Satisfying these requirements carry a
substantial cost and might even perturb the century-old process of how cars are sold. Moreover,
not meeting these requirements can result in hefty fines, evidenced by much publicized cases in
other domains6.

To avoid potential repercussions of data breaches and legal non-compliance, data controllers
and processors either apply anonymization, or ask drivers’ consent in order to process their data.
However, since vehicle data are composed of the fine-grained measurements of a multitude
of vehicular sensors, they are inherently high-dimensional, potentially unique to a driver, and
therefore challenging to anonymize without significant utility loss. Standard pseudonymization
techniques that remove only direct identifiers but keep the sensor measurements intact gener-
ally do not work, and vehicular data are no exception7. Moreover, the “ad-hoc” application of
different standard anonymization techniques, such as the aggregation or removal of apparently
sensitive measurements, often results in volatile, empirical privacy guarantees to the population
as a whole but fails to provide a strong, worst-case privacy guarantee to every single individual;
a specific requirement of privacy regulations. Indeed, as the measurements of different sensors
are strongly correlated, we demonstrate later that removing some apparently sensitive measure-
ments (e.g., GPS coordinates) may still allow their inference from the data of other “proxy”
sensors (e.g., steering wheel angle and speed). This not only makes anonymization very dif-
ficult, but it also stifles fine-grained consent control which provides a common legal basis to
process personal data if anonymization is not viable. However, data controllers (can) hardly ex-
plain the potential privacy implications of sharing such interdependent attributes which means
that a driver’s consent will arguably not be informed and hence becomes invalid.

In this chapter, we show exactly that indeed, analyzing CAN logs and using the combina-
tion of different sensor measurements make it possible infer the trajectory of the vehicle even
if precise GPS locations cannot be accessed. Specifically, our contribution is twofold. First,
we reconstruct both short (microtracking) and long (macrotracking) driving routes (including
destination) only from the speed, steering wheel position, and the starting location of the vehicle
with high accuracy. Second, we demonstrate that intuitive but ad-hoc anonymization methods

3www.nationwide.com/personal/insurance/auto/discounts/smartride (Last accessed: Oct 1, 2023)
4themarkup.org/the-breakdown/2022/07/27/who-is-collecting-data-from-your-car (Last accessed: Oct 1, 2023)
5www.capgemini.com/insights/research-library/monetizing-vehicle-data (Last accessed: Oct 1, 2023)
6www.cnet.com/tech/gdpr-fines-the-biggest-privacy-sanctions-handed-out-so-far (Last accessed: Oct 1, 2023)
7www.vice.com/en/article/4avagd/car-location-data-not-anonymous-otonomo (Last accessed: Oct 1, 2023)

68

Privacy problems

providing empirical average-case privacy guarantees cannot be relied on to transform CAN logs
into anonymous data exempt from the GDPR [PtC16], while still preserving meaningful utility.

The rest of this chapter is organized as follows. Section 5.1 provides an overview on related
research works. Section 5.2 describes the attacker model we consider in this chapter. Section
5.3 shows how we can reconstruct both the short- and long-term trajectory of a vehicle based on
its CAN log. Section 5.4 investigates multiple naive signal processing and statistical methods
meant to provide defense against tracking efforts, shows that these are ineffective for CAN data.
At last, Section 5.5 concludes this chapter.

5.1 Related Work

The automotive location privacy problem has been researched for well over a decade. A signifi-
cant boost to this field was the emergence of vehicle usage based services such as new insurance
constructions. These services offer a lower cost for users who shared their vehicular data, while
promising user privacy via only collecting driving behaviour information and not location data.
Unfortunately, Dewri et al. [DAET13] already showed that the collection of vehicle parameters
can reveal the driving destination without a GPS signal. In the following years multiple papers
showed that various types of vehicular data can be used to reconstruct driving traces partially,
or completely. Gao et al. [GFS+] showed that based on a starting position and the speed signal,
their elastic pathing algorithm could predict destinations with an error smaller than 500m for
26% of the cases. This is significantly less accurate than our approach which has an error of
5-100 meters for endpoint reconstruction (see Table 5.1). Zhou et al. [ZCL+17, ZDZ+19] used
also only the starting position and the speed signal to reconstruct driving traces. Their approach
combines these with additional knowledge about the environment, such as road condition, real-
time traffic, and even traffic regulations, to filter out the potential trace candidates. Results
showed that the real route was in the top 10 candidate routes with 60% probability. Kaplun et
al. [KS19] showed that without the detailed speed signal, it was also possible to reconstruct the
trajectory with a high probability. They used cornering events, average speed and total driving
time for reconstructing trajectories. Waltereit et al. [WUW19] showed that based on the distance
of each driving section and turning directions, it was possible to find the correct trajectory in a
large area of a map without knowledge of starting point or destination. Our approach works
with similar type of data, however, both the objective and the internal operation of our algorithm
differ significantly. The authors in [WUW19] assumed that the signals extracted from CAN
messages are accurate and reconstructed route segments separately. However, as we show, sig-
nals are inherently erroneous which results in inaccurate reconstruction for longer trajectories.
Pesé et al. proposed the RoCuMa algorithm for route identification based on only the steering
wheel position in [PPS20]. The algorithm first creates a road curvature database of the analysed
city, and then tries to identify the curves during the trips. RoCuMa achieved over 70% accuracy
in the most suitable regions, but was completely inefficient in others (e.g., Manhattan like grids).
The problem RoCuMA tried to solve is similar to ours discussed in Section 5.3.2, as the steering
wheel position can be extracted from the CAN traffic in most cases. Even though the objective
is similar to ours, our approach is more robust, i.e., its correctness does not significantly depend
on the selected region, and also more accurate. Sarker et al. [SQS+20] proposed Brake-Based

69

Privacy problems

Location Tracking (BBLT). Their approach extracts the break signal values from the CAN bus,
which are then used to reconstruct the movement of the vehicle. The extracted signal values are
processed in three steps. First, they categorize the signal sub-sequences into different driving
maneuvers, then based on the maneuvers they estimate the parameters of the movement, such
as the number of intersections or the speed profile. Finally, they search for trajectories on the
regional map, that are the closest to the determined parameters. The goodness of a candidate
edge is determined by a custom score function. Their evaluation showed that in 89% of the cases
the reconstruction was successful.

Finally, the location privacy of a driver can also be violated via smart devices carried on
board while driving. E.g., Han et al. [HON+12] described a location inference technique us-
ing smartphone accelerometers to successfully locate drivers within a small radius of the true
location.

In summary, prior works use different signals (only speed [DAET13, KS19, GFS+], speed
and traffic information [ZCL+17, ZDZ+19], only steering wheel position [PPS20], braking
[SQS+20], acceleration [HON+12]) for reconstruction, while we rely on speed and steering
wheel position extracted from CAN messages exclusively. Earlier approaches first partially, or
completely reconstruct the trajectory from the signals, then fit the result to the map for correc-
tion. By contrast, we always predict the next location from only the previous one using speed
and steering wheel position, and immediately correct the prediction with map data, that is, we
do not let the error accumulate over successive predictions. As we show later, this approach
provides larger reconstruction accuracy even for longer trajectories than what has been reported
before. Our technique is simple and efficient, and works even on resource-constrained devices
as long as map data can be stored on the device.

5.2 Adversary model

The adversary aims to reconstruct the trajectory of a specific individual’s vehicle from its CAN
data as accurately as possible. The adversary may know the identity of this driver and can only
access the vehicle’s CAN data, except its GPS trajectory, as well as the geographical map of the
region R (e.g., a bounding box of the entire trajectory). This is the only background information
the adversary has about the driver’s whereabouts. In particular, the GPS location is not present
in the CAN data explicitly but can only be inferred indirectly from other signals extracted from
the CAN log, such as speed, steering wheel position, as well as the start of the trajectory which
is presumably observable by the adversary. These are not far-fetched assumptions since the
majority of available cars nowadays still do not have built-in GPS receiver, or if they do, it is
unlikely that potentially sensitive location information is shared with third parties. The adversary
aims to localize the trajectory within R with as little error as possible, which is measured as an
average distance between the reconstructed and the original trajectory. Although larger error
implies stronger privacy preservation in general, more precise assessment of the potential privacy
risks is difficult due to the varying contextual factors and therefore is beyond the scope of this
work. For example, an error within a few hundred meters may not be enough to decide if the
driver visited a hospital or a church in a city, but is sufficient to infer which village it traversed
in the countryside.

70

Privacy problems

Figure 5.1: Computation of the radius as R = L/sin(β), where L and β denote the vehicle length
and wheel position, respectively.

5.3 Trajectory reconstruction

In this section, we show that by releasing CAN data, vehicles and thus drivers become traceable.
The tracing of the vehicle is achieved in two steps. First, we show how a vehicle can be traced
accurately over short distances based exclusively on CAN messages. We refer to this concept as
microtracking. Second, we show how to extend tracing for longer trips using additional, publicly
available information. We refer to this second problem as macrotracking. Recall that positioning
data (GPS) is not included in the CAN traffic.

5.3.1 Microtracking

The objective of microtracking is to reconstruct the trajectory of a given vehicle over a short
distance (10-100 meters). If the initial position is of the vehicle is known, the next position at
any time can always be predicted from the previous one using the speed and the direction of
the movement. Fortunately, these values can be computed solely from the signals of speed and
steering wheel position which are directly accessible in the vehicle’s CAN messages transmitted
and recorded during the trip.

First, the speed and the steering wheel position signals are extracted from the CAN message
stream. These can be relatively easily found even for an unknown vehicle based on the method
described in [LÁBS19]. Next, the extracted signals together with the timestamps of the recorded
CAN messages are used to calculate small delta movements of the vehicle. If the vehicle is going
along a straight line, then the calculation is straightfoward (distance = velocity× elapsed time).
If the steering wheel is not in the central position, then the radius of the path segment can be
calculated based on the geometry of the vehicle as illustrated in Figure 5.1. In particular, the
radius R can be calculated from the sine of the angle β of the wheels as R = L/sin(β), where
L denotes the distance between the two axles. The wheel position is inferred from the steering
wheel position, which is extracted from the CAN messages, through measurements. Finally, the
small delta movements are aggregated sequentially to uncover the trajectory of the vehicle. We
validated our method successfully in different short but characteristic test scenarios.

In general, this type of microtracking is reasonably accurate for short trajectories, but it can
be quite inaccurate for longer trajectories as the small approximation errors stemming from the
noisy and often biased sensor measurements can add up over a longer trip.

71

Privacy problems

5.3.2 Macrotracking

Next, we describe the reconstruction of the movement of a vehicle from CAN traffic captures
over longer trips (>100 meters). To achieve this goal, we use some auxiliary information in or-
der to mitigate the problem of error accumulation. As for microtracking, the speed and steering
wheel angle values extracted from the CAN messages are required for the reconstruction. Ad-
ditionally, the starting position and the initial heading are also a prerequisite for our algorithm.
Provided with these input data, we show that the trajectory of a vehicle can be effectively recon-
structed revealing the destination of the drive, which constitutes a privacy breach with respect to
the driver. This implies that CAN logs have to be handled or processed carefully to avoid this
privacy issue and comply with data protection regulations.

Cumulative errors in microtracking

Our microtracking can be considered as a dead reckoning process which estimates the vehicle
position from the previous one using inherently erroneous sensor measurements. Indeed, these
measurements are (1) noisy (e.g., steering wheel position, wheel speed measurements are not
always accurate due to random environmental factors such as wheel slippage or surface irregu-
larities), (2) potentially biased (e.g., deliberately higher velocity is reported for safety reasons),
or (3) some parameters of the vehicle may not be known exactly (e.g., axle distance). Even if
these errors result in a small deviation relatively to the previous position, they accumulate over
successive predictions making the recovery of longer trajectories very inaccurate. To mitigate
this error accumulation, we first performed a thorough calibration by multiplying the extracted
values of speed and steering wheel position by a correction factor so that they match the man-
ually measured ground truth values. Although this improves the results, the problem of error
accumulation still persists, which is also illustrated by Figure 5.2a; some parts of the trajectory
are off the road and still far from the original path.

In fact, as long as location is predicted only from inaccurate internal parameters and mea-
surements of the vehicle, it remains subject to cumulative errors. In engineering practice, this
problem is generally solved by periodically performing external measurements to correct the
prediction and thus reduce the accumulated errors. Similar solutions are used, e.g., for the guid-
ance of spacecraft systems [LMS82]. Next we show how map data can be used to perform
periodical measurements to improve the prediction of our model.

Measurements based on map data

The state of a vehicle at any time is characterized by its heading and position. Following our
prediction model in microtracking, the state is predicted only from potentially inaccurate internal
parameters (axle distance) and sensor readings (speed and steering wheel position), referred to
as model-based prediction in the sequel. However, using a map allows us to regularly correct the
predicted state of the vehicle, i.e., reducing the accumulated errors. In particular, if the vehicle
should always be on a road, then a predicted position which is off the road can be corrected.
Similarly, the direction of movement should also be aligned with the road, allowing corrections
for the heading as well.

72

Privacy problems

(a) C1 reconstruction without map (b) C1 reconstruction with map

Figure 5.2: C1 test trajectories. Map-corrected trajectories (right) follow the roads more faith-
fully than only model-based trajectories produced by microtracking (left).

Starting from the position predicted by our microtracking model only from internal mea-
surements as described in Section 5.3.1, we calculate a new position on the map by projecting
this model-predicted position on the nearest road segment. This gives us a new, corrected posi-
tion and heading value aligned with the road that we use in our improved algorithm as a precise
external measurement. Along roads without intersections, this approach works smoothly and
prevents error accumulation. However, near intersections, it might be unclear which the correct
road segment is for the projection. To address this duality in our algorithm, we use a simple
linear estimation of the next state as properly weighing both the model-predicted and map-
corrected states based on the nearby conditions: the model-predicted states have larger weight
near intersections, while map-corrected states have larger weight away from the intersections.

More specifically, given the model-predicted and map-corrected position and heading values,
denoted by statemodel = [posmodel,headmodel] and statemap = [posmap,headmap], respectively, the
next state of the vehicle is computed as their linear combination: w ·statemap+(1−w) ·statemodel,
where w = min(dmodel,γ)/γ is the map weight, and dmodel denotes the distance from posmodel to
the nearest intersection. In other words, if the model-predicted position is within a distance of
γ to the nearest intersection, then its weight is inversely proportional to the distance, otherwise
mainly map-corrected position and heading are used for prediction.

Our linear estimation is a simple instantiation of the Kalman filter [WB95], which is a pow-
erful tool to estimate past, present or future states of a system with uncertainties. It needs to
have a dynamic model of the target system and multiple sequential measurements to form its
estimations. A weighted average is calculated over the output of the dynamic model and mea-
surement results, taking into account the uncertainty of said measurement. In our algorithm, the

73

Privacy problems

dynamic model is the movement reconstruction of the vehicle in microtracking when only inter-
nal parameters and sensor readings are utilized. The measurements are the projected positions
on the map, and the uncertainty of the measurement can be approximated with the distance to
the closest intersection.

The pseudo code to reconstruct the movement of a vehicle is presented in Algorithm 2.
First, the next state is always predicted from the previous state with model-based prediction as
in microtracking (Line 5-8), and then map-based correction (Line 9-14) is only performed if the
distance from the last correction is sufficiently large (Line 10 in Alg. 2). Executing map-based
correction after capturing every single CAN message with a speed or steering wheel position
value is unnecessary and would prolong reconstruction significantly.

The result of a successful reconstruction of our C1 test is shown in Figure 5.2b. Although a
slight deviation from the road can be observed near intersections due to model-based prediction,
these errors are corrected and hence do not accumulate as moving away from the intersection
due to the increasing weight of map-based correction (γ is set to 150 meters).

Algorithm 2: Macrotracking for CAN logs
Input: starting position and heading value, CAN log
Output: Reconstructed trajectory T

1 initialize current state to starting position and heading;
2 load data from CAN log;
3 filter relevant messages;
4 while there is message to process do
5 Model-based prediction:
6 extract speed and steering wheel position from messages;
7 compute heading from axle distance and steering wheel position;
8 calculate next state from current state using heading and speed;

9 Map-based correction:
10 if distance from last correction > minimum required then
11 find nearest road segment on map;
12 project current position and heading to selected road segment;
13 update map weight w based on distance from closest intersection;
14 update next state using the projected state with map weight w;

15 append next state to reconstructed trajectory T;
16 update current state to next state;

We built our algorithm on OpenStreetMap8, which we accessed using the OSMnx library
[Boe17]. This service allowed us to get access to precise position and shape information of road
segments. We projected the map and all coordinate data in OSMnx from the World Geodetic
System 1984 (WGS84)9 (used in maps and GPS) to a Spherical Mercator projection coordinate
system (EPSG:3857)10 to be able to perform more precise distance calculations in 2D.

8https://www.openstreetmap.org (Last accessed: Oct 1, 2023)
9https://epsg.io/4326 (Last accessed: Oct 1, 2023)

10https://epsg.io/3857 (Last accessed: Oct 1, 2023)

74

Privacy problems

Validation

The accuracy of our algorithm depends on the correctness of model-based prediction and the
density of the road network. On one hand, areas with many intersections does not allow the map
based corrections to improve the model prediction as much, therefore the reconstruction error
will dominate over longer distances. On the other hand, if the trajectory of the drive follows
long sections without intersections, our algorithm will hardly suffer from any errors.

We defined two metrics to evaluate the accuracy of our algorithm as follows:

1. Endpoint reconstruction error: we measure the distance (in meters) between the actual
endpoint of the movement and the destination predicted by the algorithm.

2. Average trajectory reconstruction error: along the actual movement of the vehicle (the
ground truth trajectory) we calculate test points every 15 meters. At each test point we
find the closest point in the reconstructed trajectory and measure the distance to the test
point. Finally, we calculate an average of the measured distances.

Table 5.1 shows data about our test cases. In these tests, we drove along different circular
trajectories to be able to visually show the result of our first metric as well. We also counted the
number of decision points (intersections), where the algorithm had to make a correct decision.
In the C3 test case, we drove with frequent movements of the steering wheel even on straight
road segments to make the reconstruction harder. The table shows that our algorithm was able to
reconstruct the trajectories with only small errors. Furthermore, the corresponding Figures (5.2-
5.4) show that the reconstructed trajectories follow along the roads actually used, with small
deviations only around intersections.

Privacy implications for CAN logs

In this chapter, we showed that it is possible to reconstruct the movement of a vehicle for both
short and long distances from CAN messages. This can be a valuable forensics tool, e.g., in
case of accident reconstruction; but it can also cause a privacy breach if CAN logs are not
handled with proper care and/or they fall into the wrong hands. If the starting position and
heading is known, then our algorithm can effectively reconstruct a vehicle’ trajectory, revealing
private information about the driver. Given that personal location information is categorized as
sensitive data in the GDPR, data controllers, whether OEMs or third-party companies, managing
such data have to comply with strict requirements. This comes with added cost and operation
complexity; yet, non-compliance could result in prohibitively large fines.

75

Privacy problems

Table 5.1: Summary of macrotracking test cases

Test case

Average
trajectory re-
construction
error (meter)

Std.
deviation of

error
(meter)

Endpoint re-
construction

error
(meter)

Total
distance
travelled
(meter)

Number
of

decision
points on

map
C1 without map 30.2 25.13 9.3 2025.17 20

(Figure 5.2) with map 9.37 8.99 4.2 2039.11 20
C2 without map 39.37 34.02 35.58 2139.03 18

(Figure 5.3) with map 9.13 8.74 41.12 2158.48 18
C3 without map 55.04 36.07 82.17 1751.07 19

(Figure 5.4) with map 7.45 6.05 6.05 1817.81 19

(a) C2 reconstruction without map (b) C2 reconstruction with map

Figure 5.3: C2 test trajectories

(a) C3 reconstruction without map (b) C3 reconstruction with map

Figure 5.4: C3 test trajectories

76

Privacy problems

5.4 Potential defenses

In this section, we describe and evaluate different defense techniques against location recon-
struction (macrotracking) described in Section 5.3.2. We consider here some well established
signal processing techniques including low pass filtering and smoothing which might be tempt-
ing to employ by a data controller or processor in order to distort CAN data so that unique
features of traces are no longer recognizable. However, as we show, such techniques fail to
provide strong privacy guarantees, or introduce so much distortion to counter our attacks that
renders the anonymized data practically useless.

5.4.1 Smoothing

Smoothing is a type of downsampling technique. It is used to remove short-term fluctuations
and highlight longer-term trends in the signal (or time-series). It has many variations, the main
idea is to shift a fixed-size moving window through the signal and apply a transformation on
each window, then publish the transformed signal. We apply a moving window by passed time
and not by data points, i.e. the average of the data points that is in a fixed time frame (called
smoothing window), whose size in time is given as a parameter w, is calculated and used as a
single replacement of all points within the given time frame. As the mean is reported per window,
consecutive windows do not overlap. This technique is expected to smooth out local variations
of every signal within w seconds. Therefore, as long as such local variations correspond to
unique features of a trace, the transformed signal should mitigate tracking.

Evaluation

We evaluate our algorithm on the smoothed data produced with different values of smoothing
window size w. The goal is to find a window size where the accuracy of macrotracking is
sufficiently small but the accuracy of the transformed data is still meaningful.

Figure 5.5, Figure A.15, and Figure A.17 show the effect of smoothing on the model-based
trajectory reconstruction without map correction (i.e., microtracking) for the C1, C2, and C3
cases respectively. Although smoothing negatively impacts reconstruction, applying smoothing
even with the largest window size still allows a relatively accurate reconstruction of many parts
of the trajectory. Interestingly, due to an encoding of the steering wheel value in the messages,
applying smoothing on this signal has an inverse effect: it results in sharper turns than in the
original trace.

Our macrotracking algorithm with map correction is significantly more accurate than only
model-based reconstruction and can successfully reconstruct the original traces in all cases.
In the C1 (Figure 5.6) and C2 (Figure A.16) cases, increasing the window size also increases
the reconstruction error, but all results can still be considered as successful reconstructions.
Although the C3 test case is driven with frequent steering wheel changes (as described in Section
5.3.2), the effect of these changes are reduced by smoothing, and therefore the reconstruction
results are actually improved with a larger window size (Figure A.18). Table 5.2 contains the
trajectory reconstruction errors with their standard deviation and the endpoint reconstruction
error for all test cases with three different window sizes.

77

Privacy problems

(a) Smoothing window: 0.201s (b) Smoothing window: 1.608s (c) Smoothing window: 6.4s

Figure 5.5: C1 test case macrotracking result on smoothed data without map

(a) Smoothing window: 0.201s (b) Smoothing window: 1.608s (c) Smoothing window: 6.4s

Figure 5.6: C1 test case macrotracking result on smoothed data with map

Table 5.2: Effects of smoothing on the location tracking algorithm.

Test case
Smoothing

windows size
(second)

Average
trajectory

reconstruction
error (meter)

Std. deviation of
error (meter)

Endpoint
reconstruction
error (meter)

C1
(Figure 5.6)

0.201 32.2 26.4 22.76
1.608 33.51 26.97 33.02

6.4 38.58 27.97 132.94

C2
(Figure A.16)

0.201 37.75 28.68 75.74
1.608 38.92 32.83 76.72

6.4 42.22 32.47 126.84

C3
(Figure A.18)

0.201 50.78 32.74 64.71
1.608 47.53 29.6 66.52

6.4 20.47 18.15 70.09

78

Privacy problems

5.4.2 Low pass filtering

Low pass filtering is a common technique not only to compress signals, but to reduce noise,
eliminate aliasing, or attenuate resonances [Ell12] without heavily degrading utility. Moreover,
with the growing need for data privacy, low pass filtering has been used for signal anonymiza-
tion as well [CHCMB19]. Low-pass filters attenuate or eliminate all signal components above
a specified frequency. By deleting these high frequency components, one can get rid of the id-
iosyncrasies of the signal and end up with the more general parts. Unlike smoothing, low pass
filtering is expected to provide a finer-grained control over utility loss, and the mean squared
error is precisely quantifiable since the transformation is orthonormal and therefore preserves
the L2-norm of the signal.

In this section, we show that low pass filtering still implies mostly unsatisfactory privacy
guarantee in practice. Below we explain how we applied a low-pass filter on CAN bus signals
with different degrees of utility, then we evaluate the resulting filtered signals with our macro-
tracking algorithm.

We apply low-pass filtering as follows. First, the signal is transformed to its frequency do-
main using orthonormal Discrete Cosine Transform (DCT) which has better energy compaction
property than other Fourier-related transforms. After DCT transformation, the number of re-
moved high frequency components is determined. In general, the more components is dropped
from the signal the lower the utility becomes. The resulting utility is measured by calculating
the normalized euclidean distance between the original and the low passed signal, i.e. we delete
as many of the highest frequency components as many needed to reach a predefined error dis-
tance (aka., reconstruction error) from the original signal. As orthonormal DCT preserves the
L2-norm of the original signal, the transformed signal has the same L2-norm as the original one.
For example, in order to have a reconstruction error of 10% at most, the maximum number of the
highest frequencies of the transformed signal are removed such that the L2-norm of the removed
components is not greater than the 10% of the total L2-norm of the whole signal. A naive al-
gorithm would start deleting components one-by-one starting from higher to lower frequencies,
instead we apply logarithmic search and calculate the resulting error after each iteration. Once
the desired error rate is reached, the filtered signal is transformed back to the time domain and
published.

Evaluation

Figure 5.7 shows the result of trajectory reconstruction without map (i.e., only model-based
prediction) after low-pass filtering the C1 test case. In comparison with smoothing, low-pass
filtering with the chosen parameters distort the original traces more significantly. The counter-
intuitive changes of the turn angles can also be observed here. Similar results can be observed
in Figure A.19 about the C2 case, and in Figure A.21 about the C3 case.

Figure 5.8 shows that our macrotracking algorithm (i.e., reconstruction with map correction)
is capable of reconstructing the original C1 trajectory if the prescribed error rate of low pass
filtering is below 40%. Above this value, the algorithm cannot reconstruct the vehicle movement
in one of the intersections at least. We also observed similar behaviors in the C2 (Figure A.20)
and C3 (Figure A.22) test cases.

79

Privacy problems

The accuracy of the reconstruction for all cases with different amount of low-pass filtering
are depicted in Table 5.3. In summary, the reconstruction is successfully prevented at a low pass
filtering error of 40%.

Table 5.3: Effects of low pass filtering on the location tracking algorithm.

Test case
Allowed

reconstruction
error

Average
trajectory

reconstruction
error (meter)

Std. deviation of
error (meter)

Endpoint
reconstruction
error (meter)

C1
(Figure 5.8)

10% 8.63 9.07 8.45
20% 8.25 7.33 12.9
40% 47.71 74.23 602.64

C2
(Figure A.20)

10% 8.71 8.94 11.43
20% 10.98 11.9 13.37
40% 175.08 159.73 589.17

C3
(Figure A.22)

10% 7.01 5.92 9.36
20% 7.58 5.93 8.16
40% 207.08 151.12 124.05

(a) Filtering: 10% (b) Filtering: 20% (c) Filtering: 40%

Figure 5.7: C1 test case macrotracking results on low pass filtered data without map

(a) Allowed reconstruction er-
ror: 10%

(b) Allowed reconstruction er-
ror: 20%

(c) Allowed reconstruction error:
40%

Figure 5.8: C1 test case macrotracking results on low pass filtered data with map

80

Privacy problems

5.5 Summary

We showed that CAN logs carry personal and sensitive information and therefore are subject
to privacy regulations. We reconstructed the potentially sensitive trajectory of the vehicle from
different sensor measurements other than the exact GPS coordinates. Our attack does not rely
on any special background knowledge for trajectory reconstruction besides the speed, steering
wheel position, and the starting location of the vehicle. In addition, our reconstruction technique
is simple and efficient, and can also serve as a useful forensics tool, e.g., in case of accident
reconstruction. As this attack is feasible under mild assumptions, even unprocessed raw CAN
logs are undoubtedly regarded as personal data according to most privacy regulations. Our at-
tack exploits the subtle dependencies among different sensor measurements which makes their
anonymization, as well as consent control, challenging. Indeed, we also showed that naive
anonymization approaches, such as smoothing or low-pass filtering, either do not provide a
strong worst-case privacy guarantee to every single individual or they yield very inaccurate data.
Therefore, we advocate the application of more principled approaches, such as Differential Pri-
vacy, to anonymize aggregated CAN logs, and provide identical privacy guarantees to every
single driver irrespective of any background knowledge of the adversary. On the other hand,
Differential Privacy generally provides meaningful utility only with a sufficiently large number
of drivers, and can be used for synthetic data generation indirectly through the post-processing
of already noisy aggregates. Therefore, further research is needed to improve the accuracy of
the differentially private release of CAN data with sufficiently strong privacy guarantees.

Finally, instead of data anonymization, data controllers may rather ask for the consent of
drivers in order to process or share their vehicular data, and still remain compliant with privacy
regulations. Even if fine-grained controls to review and grant permissions to certain signals are
provided to drivers with the description of how data will be shared and used, there is usually less
explanation on how much data they can share without revealing sensitive information due to the
interdependency of different signals or attributes. However, in the spirit of the GDPR, providing
informed consent should also entail the comprehension of such potential privacy implications.

81

Conclusion

CAN networks have been the foundation for in-vehicle communication since their inception.
They have been used for decades without problems, but by connecting vehicles to the internet,
the isolation of the CAN bus communication has fundamentally changed. Suddenly, the internal
components of vehicles became potential attack targets. These new threats inspired our research
to efficiently store internal communications for later analysis, detect emerging attacks, and shed
light on potential personal data privacy threats.

In Chapter 2, we introduced our attacker device, which has since generated interest among
our industrial partners and can perform the latest attacks from the state-of-the-art. In addition,
we presented a large dataset of benign and attacked traffic logs, which is a valuable asset for the
research community as machine learning methods get more widespread.

The CAN compression algorithm, presented in Chapter 3, is a purpose-designed algorithm
for a specific problem. It exploits the traffic patterns of typical ECU communication and the
physical operation of a vehicle to efficiently solve the long-term data storage problem. Due to
the total number of cars driven nowadays, the scale of this problem globally is enormous, hence
the need to research domain-specific solutions.

Anomaly detection on the CAN bus, similar to our results presented in Chapter 4, has gener-
ated significant interest in the research community in the last ten years. New results are presented
almost every other week. We consider our results to be valuable contributions to the research
area. However, as the field of machine learning is growing enormously, we expect new anomaly
detection methods will appear. Our CAN-specific ideas will likely remain usable, but applying
better-performing base models may improve the results presented here. Regardless, as future
work, we plan to combine the two anomaly detection methods presented in Section 4.3 and 4.4
to test if the simultaneous application of these two approaches leads to better results. Further-
more, we will investigate whether a traffic situation-specific detection model can achieve better
results than a general approach.

In Chapter 5, we show that privacy problems can arise from CAN data release. The pro-
posed two algorithms can successfully reconstruct the movement of a vehicle for short and
long-distance drives. These threats to the driver’s privacy should be appropriately mitigated.
We also show that naive anonymization techniques are not sufficient. A potential future work of
this research topic is the application of differential privacy to CAN data release.

All the results presented in this thesis are the authors’ own contributions to the field of
vehicle security research. Among those, the most significant ones are the following.

82

Conclusion

THESIS 1.1: I proposed a semantic compression method for compressing CAN
traffic and measured that this alone compresses data to 10% of the
original size in [C2]. I showed that combining semantic and syn-
tactic compression can reduce the required storage space to 5% of
the original size in [J1]. This approach thus provides a significantly
more efficient result than syntactic compression alone, which only
reduces the size to 30% of the original.

THESIS 1.2: To support forensics analysis, I showed through measurements
on two datasets that the compressed format is suitable for high-
confidence identification of message injection attacks in [C4]11. The
previous results show that to implement a successful message in-
jection attack, at least five times the normal message frequency is
required during the attack. The proposed detection solution, on the
other hand, can detect the anomaly from as low as twice the normal
frequency.

THESIS 2.1: I showed in [C6]12 that our model, built on the correlation measure-
ments between CAN signals, can successfully detect message modi-
fication attacks. I tested the accuracy of the proposed method against
seven different attack strategies. The results show that for attacks tar-
getting signals strongly correlating with other signals, the accuracy
of our detection is ∼90% with a 0% false positive rate due to apply-
ing a double threshold system. It is worth highlighting that for the
RANDOM, ADD-INCR, and ADD-DECR attacks modifying at least
8 bits of a signal, we were able to achieve 95% accuracy. Similarly,
for all attacks modifying at least 12 bits of a signal, the detection
accuracy is 95%.

11Dóra Neubrandt implemented the measurement algorithm.
12György Lupták implemented the correlation calculation and statistical testing.

83

Conclusion

THESIS 2.2: I proposed a TCN-based detection model that can detect CAN mes-
sage modification attacks by predicting future values to CAN signals
and then comparing the prediction with the actual values in [C7]13.
Based on measurements from two datasets, I demonstrated that my
TCN-based detection method detects attacks with an accuracy be-
tween 83% and 99% while keeping a false positive rate below 0.2%.
I compared the proposed method to the previously best-performing
solution and showed that my detection algorithm performs better in
27 out of 30 cases.

THESIS 3.1: I proposed a (macrotracking) algorithm that can reliably reconstruct
the trajectory of a vehicle over longer trips only from raw CAN data
and publicly available map information in [J2]. I have verified the
method’s accuracy with measurements: the algorithm was able to re-
construct all several kilometers-long test cases, consisting of at least
20 intersections, with just a few meters of inaccuracy.

THESIS 3.2: I have showed that the proposed macrotracking algorithm is robust
to typical signal distortion techniques for protecting privacy in [J2].
The method’s robustness has been verified by several measurements:
even after applying a low-pass filter to achieve a 20% distortion, the
inaccuracy remained below 8 meters. In the case of smoothing, the
algorithm is even more robust: it accurately restored the original tra-
jectory even after applying a 6.4s long smoothing window.

13Irina Chiscop implemented the TCN network architecture.

84

List of own publications

Conference and Workshop Papers

[C1] András Gazdag, Levente Buttyán, and Zsolt Szalay
Towards Efficient Compression of CAN Traffic Logs
34th International Colloquium on Advanced Manufacturing and Repairing Technologies
in Vehicle Industry, 2017.

[C2] András Gazdag, Levente Buttyán, and Zsolt Szalay
Efficient lossless compression of CAN traffic logs
25th International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), 2017.

[C3] András Gazdag, Tamás Holczer, Levente Buttyán, and Zsolt Szalay
Vehicular can traffic based microtracking for accident reconstruction
Vehicle and Automotive Engineering, Springer, 2018.

[C4] András Gazdag, Dóra Neubrandt, Levente Buttyán, and Zsolt Szalay
Detection of Injection Attacks in Compressed CAN Traffic Logs
Security and Safety Interplay of Intelligent Software Systems, Springer, 2019.

[C5] András Gazdag, Csongor Ferenczi, and Levente Buttyán
Development of a Man-in-the-Middle Attack Device for the CAN Bus
1st Conference on Information Technology and Data Science, 2020.

[C6] András Gazdag, György Lupták, and Levente Buttyán
Correlation-based Anomaly Detection for the CAN Bus
Euro-CYBERSEC, 2021.

[C7] Irina Chiscop, András Gazdag, Joos Bosman, and Gergely Biczók
Detecting Message Modification Attacks on the CAN Bus with Temporal Convolutional
Networks
Proceedings of the 7th International Conference on Vehicle Technology and Intelligent
Transport Systems, 2021.

85

https://www.crysys.hu/publications/files/GazdagBSZ17Visegrad.pdf
https://www.crysys.hu/publications/files/GazdagBSz17softcom.pdf
https://www.crysys.hu/publications/files/GazdagHBSz18VAE.pdf
https://www.crysys.hu/publications/files/GazdagNBSZ18esorics.pdf
https://www.crysys.hu/publications/files/GazdagFB2021CITDS.pdf
https://www.crysys.hu/publications/files/GazdagLB2021EuroCybersec.pdf
https://www.crysys.hu/publications/files/ChiscopGBB2021VEHITS.pdf
https://www.crysys.hu/publications/files/ChiscopGBB2021VEHITS.pdf

List of own publications

Journal Papers

[J1] András Gazdag, Levente Buttyán, and Zsolt Szalay
Forensics aware lossless compression of CAN traffic logs
Scientific Letters of the University of Zilina, 2017

[J2] András Gazdag, Szilvia Lestyán, Mina Remeli, Gergely Ács, Tamás Holczer, and Gergely
Biczók
Privacy pitfalls of releasing in-vehicle network data
Vehicular Communications, 2023.

[J3] András Gazdag, Rudolf Ferenc, Levente Buttyán
CrySyS dataset of CAN traffic logs containing fabrication and masquerade attacks
Nature: Scientific Data, 2023.

86

https://www.crysys.hu/publications/files/GazdagBSz17Zilina.pdf
https://www.crysys.hu/publications/files/GazdagLRAHB2023vehcom.pdf
https://www.crysys.hu/

Bibliography

[ABM+21] Javed Ashraf, Asim D. Bakhshi, Nour Moustafa, Hasnat Khurshid, Abdullah
Javed, and Amin Beheshti. Novel deep learning-enabled lstm autoencoder ar-
chitecture for discovering anomalous events from intelligent transportation sys-
tems. IEEE Transactions on Intelligent Transportation Systems, 22(7):4507–
4518, 2021.

[AG17] N. Aloysius and M. Geetha. A review on deep convolutional neural networks.
In 2017 International Conference on Communication and Signal Processing
(ICCSP), pages 0588–0592, 2017.

[Ari10] Arilou. Feasible car cyber defense. In Proceedings of the 21st escar Europe.
ESCAR, 2010.

[BGR01] Shivnath Babu, Minos Garofalakis, and Rajeev Rastogi. SPARTAN: a model-
based semantic compression system for massive data tables. In Proceedings of
the 2001 ACM SIGMOD International Conference on Management of Data, SIG-
MOD ’01, pages 283–294, New York, NY, USA, 2001. ACM.

[BKK18] Shaojie Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convo-
lutional and recurrent networks for sequence modeling. ArXiv, abs/1803.01271,
2018.

[BODA+20] Lotfi Ben Othmane, Lalitha Dhulipala, Moataz Abdelkhalek, Nicholas Multari,
and Manimaran Govindarasu. On the performance of detecting injection of fab-
ricated messages into the can bus. IEEE Transactions on Dependable and Secure
Computing, pages 1–1, 2020.

[Boe17] Geoff Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and
visualizing complex street networks. Computers, Environment and Urban Sys-
tems, 65:126–139, 2017.

[CHCMB19] Alice Cohen-Hadria, Mark Cartwright, Brian McFee, and Juan Pablo Bello. Voice
anonymization in urban sound recordings. In 2019 IEEE 29th International Work-
shop on Machine Learning for Signal Processing (MLSP), pages 1–6. IEEE, 2019.

[CJJ+18] Wonsuk Choi, Kyungho Joo, Hyo Jin Jo, Moon Chan Park, and Dong Hoon Lee.
VoltageIDS: Low-level communication characteristics for automotive intrusion

87

Bibliography

detection system. IEEE Transactions on Information Forensics and Security,
13(8):2114–2129, 2018.

[CMK+11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. Comprehensive experimental analyses of automotive attack
surfaces. In 20th USENIX Security Symposium (USENIX Security 11), San Fran-
cisco, CA, aug 2011. USENIX Association.

[CN20] Aloni Cohen and Kobbi Nissim. Towards formalizing the gdpr’s notion of sin-
gling out. Proceedings of the National Academy of Sciences, 117(15):8344–8352,
2020.

[CRN08] S. Chen, S. Ranjan, and A. Nucci. IPzip: a stream-aware ip compression algo-
rithm. In Proceedings of the 2008 Data Compression Conference, pages 182–191,
March 2008.

[CS16] Kyong-Tak Cho and Kang G. Shin. Fingerprinting Electronic Control Units for
Vehicle Intrusion Detection. USENIX Association, 2016.

[DAET13] Rinku Dewri, Prasad Annadata, Wisam Eltarjaman, and Ramakrishna Thurimella.
Inferring trip destinations from driving habits data. In Proceedings of the 12th
ACM Workshop on privacy in the electronic society, pages 267–272, 11 2013.

[DLdHE19] Guillaume Dupont, Alexios Lekidis, J. (Jerry) den Hartog, and S. (Sandro) Etalle.
Automotive controller area network (CAN) bus intrusion dataset v2, 2019.

[DMHVB13] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vin-
cent D Blondel. Unique in the crowd: The privacy bounds of human mobility.
Scientific reports, 3(1):1–5, 2013.

[Ell12] George Ellis. Filters in control systems. Control System Design Guide, 9:165,
2012.

[EWO20] Bernd Elend, Thierry Walrant, and Georg Olma. Securing can communication
efficiently with minimal system impact. Technical report, NXP, 2020.

[GFS+] Xianyi Gao, Bernhard Firner, Shridatt Sugrim, Victor Kaiser-pendergrast, Yulong
Yang, and Janne Lindqvist. Elastic pathing: Your speed is enough to track you.

[GHM16] András Gazdag, Tamas Holczer, and Gyorgy Miru. Intrusion detection in cyber
physical systems based on process modelling. In Proceedings of 16th European
Conference on Cyber Warfare & Security. Academic conferences, 2016.

[GMT16] M. Gmiden, H. Mohamed, and H. Trabelsi. An intrusion detection method for se-
curing in-vehicle CAN bus. In Proceedings of the 17th International Conference
on Sciences and Techniques of Automatic Control and Computer Engineering
(STA), 2016.

88

Bibliography

[GMvHV12] Bogdan Groza, Stefan Murvay, Anthony van Herrewege, and Ingrid Ver-
bauwhede. LiBrA-CAN: a lightweight broadcast authentication protocol for Con-
troller Area Networks. In Proceedings of the International Conference on Cryp-
tology and Network Security (CANS), pages 185 – 200, 2012.

[GP16] Yihan Gao and Aditya Parameswaran. Squish: near-optimal compression for
archival of relational datasets. In Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 1575–1584,
New York, NY, USA, 2016. ACM.

[HIO+20] M. A. Hossain, Hiroyuki Inoue, H. Ochiai, D. Fall, and Youki Kadobayashi.
LSTM-based intrusion detection system for in-vehicle can bus communications.
IEEE Access, 8:185489–185502, 2020.

[HON+12] Jun Han, Emmanuel Owusu, Le T Nguyen, Adrian Perrig, and Joy Zhang.
Accomplice: Location inference using accelerometers on smartphones. In
2012 Fourth International Conference on Communication Systems and Networks
(COMSNETS 2012), pages 1–9. IEEE, 2012.

[HSDU20] M. Hanselmann, T. Strauss, K. Dormann, and H. Ulmer. CANet: An unsuper-
vised intrusion detection system for high dimensional can bus data. IEEE Access,
8:58194–58205, 2020.

[HZ19] Yangdong He and Jiabao Zhao. Temporal convolutional networks for anomaly
detection in time series. Journal of Physics: Conference Series, 1213:042050,
jun 2019.

[ISO15] ISO. 11898-1:2015 - Road vehicles - Controller area network (CAN) - Part 1:
Data link layer and physical signalling, International Organization for Standard-
ization, 2015.

[ISO16] ISO. 11898-2:2016 - Road vehicles - Controller area network (CAN) - Part 2:
High-speed medium access unit, International Organization for Standardization,
2016.

[JMN99] H. V. Jagadish, J. Madar, and Raymond T. Ng. Semantic compression and pattern
extraction with fascicles. In Proceedings of the 25th International Conference on
Very Large Data Bases, VLDB ’99, pages 186–198, San Francisco, CA, USA,
1999. Morgan Kaufmann Publishers Inc.

[JNOT04a] H. V. Jagadish, R. T. Ng, Beng Chin Ooi, and A. K. H. Tung. ItCompress: an it-
erative semantic compression algorithm. In Proceedings. 20th International Con-
ference on Data Engineering, pages 646–657, March 2004.

[JNOT04b] H.V. Jagadish, R.T. Ng, Beng Chin Ooi, and A.K.H. Tung. Itcompress: an itera-
tive semantic compression algorithm. In Proceedings. 20th International Confer-
ence on Data Engineering, pages 646–657, 2004.

89

Bibliography

[JWQ+18] Haojie Ji, Yunpeng Wang, Hongmao Qin, Xinkai Wu, and Guizhen Yu. Investi-
gating the effects of attack detection for in-vehicle networks based on clock drift
of ECUs. IEEE Access, 6:49375–49384, 2018.

[KCI+20] Z. Khan, M. Chowdhury, Mhafuzul Islam, Chin-Ya Huang, and M. Rahman.
Long short-term memory neural network-based attack detection model for in-
vehicle network security. IEEE Sensors Letters, 4:1–4, 2020.

[KCR+10] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi
Kohno, Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson,
Hovav Shacham, and Stefan Savage. Experimental security analysis of a modern
automobile. In 2010 IEEE Symposium on Security and Privacy, pages 447–462,
2010.

[KK16a] Min-Joo Kang and Jewon Kang. Intrusion detection system using deep neural
network for in-vehicle network security. PLOS ONE, 11:e0155781, 06 2016.

[KK16b] Min-Ju Kang and Je-Won Kang. A novel intrusion detection method using deep
neural network for in-vehicle network security. In Proceedings of the 83rd IEEE
Vehicular Technology Conference (VTC Spring), pages 1–5, 2016.

[KKJ+21] Kyounggon Kim, Jun Seok Kim, Seonghoon Jeong, Jo-Hee Park, and Huy Kang
Kim. Cybersecurity for autonomous vehicles: Review of attacks and defense.
Computers & Security, 103, 2021.

[KS19] Vladimir Kaplun and Michael Segal. Breaching the privacy of connected vehicles
network. Telecommunication Systems, 70, 04 2019.

[KTP20] Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and S. Pasricha. INDRA:
Intrusion detection using recurrent autoencoders in automotive embedded sys-
tems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 39:3698–3710, 2020.

[LÁBS19] Szilvia Lestyan, Gergely Ács, Gergely Biczók, and Zsolt Szalay. Extracting ve-
hicle sensor signals from CAN logs for driver re-identification. In Paolo Mori,
Steven Furnell, and Olivier Camp, editors, Proceedings of the 5th International
Conference on Information Systems Security and Privacy, ICISSP 2019, Prague,
Czech Republic, February 23-25, 2019, pages 136–145. SciTePress, 2019.

[LCX+21] Yubin Lin, Chengbin Chen, Fen Xiao, Omid Avatefipour, Khalid Alsubhi, and
Arda Yunianta. An evolutionary deep learning anomaly detection framework for
in-vehicle networks – CAN bus. IEEE Transactions on Industry Applications, to
appear, 2021.

[LJK17] H. Lee, S. H. Jeong, and H. K. Kim. Otids: A novel intrusion detection system
for in-vehicle network by using remote frame. In 2017 15th Annual Conference
on Privacy, Security and Trust (PST), volume 00, pages 57–5709, Aug 2017.

90

Bibliography

[LMS82] E.J. Lefferts, F.L. Markley, and M.D. Shuster. Kalman filtering for spacecraft
attitude estimation. Journal of Guidance, Control, and Dynamics, 5(5):417–429,
1982.

[LOAB19] Siti-Farhana Lokman, Abu Talib Othman, and Muhammad-Husaini Abu-Bakar.
Intrusion detection system for automotive Controller Area Network (CAN) bus
system: a review. EURASIP Journal on Wireless Communications and Network-
ing, 184, 2019.

[LOMH19] Siti Farhana Lokman, Abu Talib Othman, Shahrulniza Musa, and Abu
Bakar Muhamad Husaini. Deep contractive autoencoder-based anomaly detection
for in-vehicle controller area network (CAN). In Abu Bakar Muhamad Husaini,
Mohamad Sidik, and Andreas Ochsner, editors, Progress in Engineering Tech-
nology: Automotive, Energy Generation, Quality Control and Efficiency, pages
195–205. Springer International Publishing, Cham, 2019.

[MA11] Michael Muter and Naim Asaj. Entropy-based anomaly detection for in-vehicle
networks. IEEE Intelligent Vehicles Symposium, Proceedings, pages 1110–1115,
06 2011.

[MBC+17] Michael R. Moore, Robert A. Bridges, Frank L. Combs, Michael S. Starr, and
Stacy J. Prowell. Modeling inter-signal arrival times for accurate detection of
can bus signal injection attacks: A data-driven approach to in-vehicle intrusion
detection. In Proceedings of the 12th Annual Conference on Cyber and Informa-
tion Security Research, CISRC ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[MCWW19] Xiuliang Mo, Pengyuan Chen, Jianing Wang, and Chundong Wang. Anomaly
detection of vehicle can network based on message content. In Jin Li, Zheli Liu,
and Hao Peng, editors, Security and Privacy in New Computing Environments,
pages 96–104, Cham, 2019. Springer International Publishing.

[MGF10] Michael Müter, André Groll, and Felix C. Freiling. A structured approach to
anomaly detection for in-vehicle networks. In 2010 Sixth International Confer-
ence on Information Assurance and Security, pages 92–98, 2010.

[MHT+12] Tsutomu Matsumoto, Masato Hata, Masato Tanabe, Katsunari Yoshioka, and
Kazuomi Oishi. A method of preventing unauthorized data transmission in Con-
troller Area Network. In Proceedings of the 75th IEEE Vehicular Technology
Conference (VTC Spring), pages 1–5, 2012.

[MS17] Mirco Marchetti and Dario Stabili. Anomaly detection of can bus messages
through analysis of id sequences. In Proceedings of the IEEE Intelligent Vehi-
cles Symposium (IV), pages 1577–1583, 2017.

[MTTH13a] Tao Mei, Lin-Xie Tang, Jinhui Tang, and Xian-Sheng Hua. Near-lossless seman-
tic video summarization and its applications to video analysis. ACM Transactions

91

Bibliography

on Multimedia Computing, Communications, and Applications (TOMCCAP), 9,
06 2013.

[MTTH13b] Tao Mei, Lin-Xie Tang, Jinhui Tang, and Xian-Sheng Hua. Near-lossless se-
mantic video summarization and its applications to video analysis. ACM Trans.
Multimedia Comput. Commun. Appl., 9(3):16:1–16:23, July 2013.

[MV13] C. Miller and C. Valasek. Adventures in automotive networks and control units.
Technical report, IOActive Labs Research, 2013.

[MV14] C. Miller and C. Valasek. A survey of remote automotive attack surfaces. Tech-
nical report, IOActive Labs Research, 2014.

[MV15] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.
Technical report, IOActive Labs Research, 2015.

[MW17] Moti Markovitz and Avishai Wool. Field classification, modeling and anomaly
detection in unknown can bus networks. Vehicular Communications, 9:43–52,
2017.

[NGMK18] Brent C. Nolan, Scott Graham, Barry Mullins, and Christine Schubert Kabban.
Unsupervised time series extraction from controller area network payloads. In
2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), pages 1–5, 2018.

[NJCF19] Naman Singh Negi, Ons Jelassi, Stephan Clemencon, and Sebastian Fischmeister.
A LSTM approach to detection of autonomous vehicle hijacking. In Proceedings
of the 5th International Conference on Vehicle Technology and Intelligent Trans-
port Systems - Volume 1: VEHITS, pages 475–482. INSTICC, SciTePress, 2019.

[NLY+20] E. Novikova, V. Le, Matvey Yutin, M. Weber, and C. Anderson. Autoencoder
anomaly detection on large CAN bus data. In Proceedings of DLP-KDD 2020.,
New York, NY, USA., 2020. ACM.

[NMJ16] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. OBD-SecureAlert:
An anomaly detection system for vehicles. In Proceedings of the IEEE Interna-
tional Conference on Smart Computing (SMARTCOMP), pages 1–6, 2016.

[NR16] Stefan Nürnberger and Christian Rossow. vatiCAN – vetted, authenticated CAN
bus. In Proceedings of the International Conference on Cryptographic Hardware
and Embedded Systems (CHES), pages 106 – 124, 2016.

[PPS20] Mert D Pesé, Xiaoying Pu, and Kang G Shin. Spy: Car steering reveals your trip
route! Proceedings on Privacy Enhancing Technologies, 2020(2):155–174, 2020.

[PtC16] European Parliament and the Council. Regulation (EU) 2016/679 of the Euro-
pean Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data Protection Regula-
tion). Official Journal of the European Union, L119:1–88, May 2016.

92

Bibliography

[RKAK+22] Sampath Rajapaksha, Harsha Kalutarage, M.Omar Al-Kadri, Andrei Petrovski,
Garikayi Madzudzo, and Madeline Cheah. Ai-based intrusion detection systems
for in-vehicle networks: A survey. ACM Computing Surveys, 11 2022.

[RLÁB19] Mina Remeli, Szilvia Lestyán, Gergely Ács, and Gergely Biczók. Automatic
driver identification from in-vehicle network logs. In 2019 IEEE Intelligent
Transportation Systems Conference, ITSC 2019, Auckland, New Zealand, Octo-
ber 27-30, 2019, pages 1150–1157. IEEE, 2019.

[RRA+13] Anshul Rai, Ramachandran Ramjee, Ashok Anand, Venkata N. Padmanabhan,
and George Varghese. MiG: Efficient migration of desktop VMs using semantic
compression. In 2013 USENIX Annual Technical Conference (USENIX ATC 13),
pages 25–36, San Jose, CA, June 2013. USENIX Association.

[SDK19] Florian Sommer, Jürgen Dürrwang, and Reiner Kriesten. Survey and classifica-
tion of automotive security attacks. Information (Switzerland), 10, 2019.

[SKK16] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based on
the analysis of time intervals of CAN messages for in-vehicle network. In Pro-
ceedings of the International Conference on Information Networking (ICOIN),
2016.

[SMAV19] Chandra Sharma, Samuel Moylan, George T. Amariucai, and Eugene Y. Vasser-
man. An extended survey on vehicle security. Computing Research Repository
(CoRR), abs/1910.04150, 2019.

[SQS+20] Ankur Sarker, Chenxi Qiu, Haiying Shen, Hua Uehara, and Kevin Zheng. Brake
data-based location tracking in usage-based automotive insurance programs. In
2020 19th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), pages 229–240, 2020.

[SWK20] Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. In-vehicle network intrusion
detection using deep convolutional neural network. Vehicular Communications,
21:100198, 2020.

[TBSK18] Andrew Tomlinson, Jeremy Bryans, Siraj Ahmed Shaikh, and Harsha Kumara
Kalutarage. Detection of automotive CAN cyber-attacks by identifying packet
timing anomalies in time windows. In Proceedings of the 48th Annual IEEE/I-
FIP International Conference on Dependable Systems and Networks Workshops
(DSN-W), pages 231–238, 2018.

[The14] Andreas Theissler. Anomaly detection in recordings from in-vehicle networks. In
Proceedings of the International Workshop on Big Data Applications and Princi-
ples, 2014.

[TJL15] A. Taylor, N. Japkowicz, and S. Leblanc. Frequency-based anomaly detection for
the automotive can bus. In 2015 World Congress on Industrial Control Systems
Security (WCICSS), pages 45–49, 2015.

93

Bibliography

[TLJ16] Adrian Taylor, Sylvain Leblanc, and Nathalie Japkowicz. Anomaly detection in
automobile control network data with long short-term memory networks. In Pro-
ceedings of the IEEE International Conference on Data Science and Advanced
Analytics (DSAA), pages 130–139, 2016.

[TLW20] Shahroz Tariq, Sangyup Lee, and Simon S. Woo. CANTransfer: Transfer learn-
ing based intrusion detection on a controller area network using convolutional
lstm network. In Proceedings of the 35th Annual ACM Symposium on Applied
Computing, SAC ’20, pages 1048–1055, New York, NY, USA, 2020. Association
for Computing Machinery.

[TW17] Vrizlynn L.L. Thing and Jiaxi Wu. Autonomous vehicle security: A taxon-
omy of attacks and defences. Proceedings - 2016 IEEE International Confer-
ence on Internet of Things; IEEE Green Computing and Communications; IEEE
Cyber, Physical, and Social Computing; IEEE Smart Data, iThings-GreenCom-
CPSCom-Smart Data 2016, pages 164–170, 2017.

[vdODZ+16] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, Oriol Vinyals, A. Graves,
Nal Kalchbrenner, A. Senior, and K. Kavukcuoglu. Wavenet: A generative model
for raw audio. ArXiv, abs/1609.03499, 2016.

[VHSV11] Anthony Van Herrewege, Dave Singelée, and Ingrid Verbauwhede. CANAuth - a
simple, backward compatible broadcast authentication protocol for CAN bus. In
Proceedings of the ESCAR Conference, 2011.

[VIB+22] Miki E. Verma, Michael D. Iannacone, Robert A. Bridges, Samuel C. Hollifield,
Pablo Moriano, Bill Kay, and Frank L. Combs. Addressing the lack of compara-
bility & testing in CAN intrusion detection research: A comprehensive guide to
CAN IDS data & introduction of the ROAD Dataset, 2022.

[WB95] Greg Welch and Gary Bishop. An introduction to the kalman filter. Technical Re-
port TR95-041, University of North Carolina at Chapel Hill, Department of Com-
puter Science, 1995. The article has also been translated into Chinese by Xuchen
Yao, a student at The Institute of Acoustics of The Chinese Academy of Sciences.
See also our Kalman filter web site at https://www.cs.unc.edu/ welch/kalman/in-
dex.html.

[WC15] Yu-jing Wu and Jin-Gyun Chung. Efficient controller area network data com-
pression for automobile applications. Frontiers of Information Technology &
Electronic Engineering, 16(1):70–78, Jan 2015.

[WLX+20] Wufei Wu, Renfa Li, Guoqi Xie, Jiyao An, Yang Bai, Jia Zhou, and Keqin Li.
A survey of intrusion detection for in-vehicle networks. IEEE Transactions on
Intelligent Transport Systems, 21(3), March 2020.

[WPW+17] Armin Wasicek, Mert D Pesé, André Weimerskirch, Yelizaveta Burakova, and
Karan Singh. Context-aware intrusion detection in automotive control systems.
In Proc. 5th ESCAR USA Conf, pages 21–22, 2017.

94

Bibliography

[WUW19] Marian Waltereit, Maximilian Uphoff, and Torben Weis. Route derivation using
distances and turn directions. In Proceedings of the ACM Workshop on Automo-
tive Cybersecurity, pages 35–40, 03 2019.

[WWSZ18] M. Weber, G. Wolf, E. Sax, and B. Zimmer. Online detection of anomalies in
vehicle signals using replicator neural networks. In ESCAR 2018, 2018.

[YZOB19] Clinton Young, Joseph Zambreno, Habeeb Olufowobi, and Gedare Bloom. Sur-
vey of automotive controller area network intrusion-detection systems. IEEE De-
sign & Test, October 2019.

[ZCL+17] Lu Zhou, Qingrong Chen, Zutian Luo, Haojin Zhu, and Cailian Chen. Speed-
based location tracking in usage-based automotive insurance. In 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS), pages
2252–2257, 2017.

[ZDZ+19] Lu Zhou, Suguo Du, Haojin Zhu, Cailian Chen, Kaoru Ota, and Mianxiong Dong.
Location privacy in usage-based automotive insurance: Attacks and countermea-
sures. IEEE Transactions on Information Forensics and Security, 14(1):196–211,
2019.

95

Appendix

Dataset Description Figures & Tables

Attacker

CAN bus

ObserverSimulator

Ethernet network Testbed controller

Figure A.9: CAN testbed schematics

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

Figure A.10: Example benign CAN signal (S-1-4)

96

Appendix

Table A.6: CAN trace capture scenarios.

Trace ID Scenario description Trace
length Trace size Number

of messages
S-1-1 Driving with ∼ 36 km/h. 30.08 s 693 KB 17,935
S-1-2 Driving with ∼ 36-37 km/h. 30.16 s 691 KB 17,888
S-1-3 Driving with ∼ 36-37 km/h. 30.16 s 695 KB 17,982
S-1-4 Driving with ∼ 37 km/h. 30.06 s 692 KB 17,911
S-1-5 Driving with ∼ 35 km/h. 32.72 s 752 KB 19,443
S-1-6 Driving with ∼ 37 km/h. 29.99 s 672 KB 17,404
S-2-1 Driving with ∼ 60 km/h. 30.06 s 692 KB 17,909
S-2-2 Driving with ∼ 60 km/h. 30.01 s 692 KB 17,897
S-2-3 Driving with ∼ 59 km/h. 30.93 s 713 KB 18,445
S-2-4 Driving with ∼ 60 km/h. 30.19 s 696 KB 18,000
S-2-5 Driving with ∼ 61-62 km/h. 31.98 s 738 KB 19,077
S-2-6 Driving with ∼ 62 km/h. 31.11 s 717 KB 18,553

S-3-1
Acceleration then deceleration:
0 km/h to 50 km/h to 0 km/h.

29.82 s 683 KB 17,669

S-3-2
Acceleration then deceleration:
0 km/h to 40 km/h to 0 km/h.

32.36 s 747 KB 19,327

S-3-3
Acceleration then deceleration:
0 km/h to 40 km/h to 0 km/h.

30.72 s 709 KB 18,335

T-1-1 Driving in urban environment. 430.17 s 10,211 KB 256,921
T-1-2 Driving in urban environment. 1,253.81 s 30,015 KB 748,241
T-1-3 Driving in urban environment. 1,106.71 s 26,433 KB 660,880
T-1-4 Driving in urban environment. 1,576.21 s 37,884 KB 940,154
T-1-5 Driving in urban environment. 1,055.67 s 25,158 KB 629,786
T-1-6 Driving in urban environment. 1,232.86 s 29,431 KB 733,933
T-1-7 Driving in urban environment. 261.73 s 6,189 KB 156,371
T-2-1 Driving on country road. 359.32 s 8,519 KB 214,625
T-2-2 Driving on country road. 371.97 s 8,810 KB 221,907
T-3-1 Driving on motorway. 552.92 s 13,090 KB 328,901
T-3-2 Driving on motorway. 562.09 s 13,333 KB 334,980

Total: 2h 33m 43s 219,655 KB 5,500,474

97

Appendix

Table A.7: Identified CAN signals.

Message ID Signal
Index

Start bit
offset

End bit
offset

0x110

0 6 23
1 24 39
2 40 47
3 48 55
4 56 63

0x120

0 9 19
1 21 31
2 34 39
3 41 51
4 52 63

0x140
0 1 7
1 14 39
2 40 63

0x180

0 1 12
1 13 14
2 15 20
3 21 28
4 32 36
5 37 38
6 39 47

0x1a0
0 12 20
1 25 31
2 32 63

0x280

0 3 15
1 19 31
2 35 47
3 51 63

0x290

0 2 8
1 18 24
2 34 40
3 50 56
4 57 63

0x295
0 6 18
1 23 31

0x300

0 2 3
1 4 7
2 8 10
3 14 25
4 26 27

Message ID Signal
Index

Start bit
offset

End bit
offset

0x301
0 19 47
1 54 55

0x380

0 0 1
1 2 3
2 8 11
3 13 23
4 32 33
5 34 35
6 36 39
7 45 48
8 55 56
9 57 63

0x381

0 0 2
1 3 4
2 7 15
3 24 30
4 31 38
5 40 47

0x383
0 0 4
1 6 7
2 10 39

0x410

0 9 23
1 24 32
2 33 38
3 39 40
4 41 48
5 49 54

0x440
0 3 4
1 5 8
2 13 22

0x4a0
0 16 33
1 34 47

0x510

0 5 15
1 17 23
2 25 31
3 32 63

0x531 0 6 39

98

Appendix

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(a) CONST signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(b) REPLAY signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36

38

40

42

44

46

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(c) POS-OFFSET signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520
En

gi
ne

 re
vo

lu
tio

n
(1

/m
in

)

30

32

34

36

38

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(d) NEG-OFFSET signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36

37

38

39

40

41

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(e) ADD-INCR signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0
Ve

hi
cle

 sp
ee

d
(k

m
/h

)

(f) ADD-DECR signal injection attack

Figure A.11: Single signal injection attacks (S-1-4)

99

Appendix

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(a) CONST signal modification attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(b) REPLAY signal modification attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36

38

40

42

44

46

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(c) POS-OFFSET signal modification attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520
En

gi
ne

 re
vo

lu
tio

n
(1

/m
in

)

30

32

34

36

38

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(d) NEG-OFFSET signal modification attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(e) ADD-INCR signal modification attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(f) ADD-DECR signal modification attack

Figure A.12: Single signal modification attacks (S-1-4)

100

Appendix

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(a) Double CONST signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

1520

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(b) Double REPLAY signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1500

1600

1700

1800

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36

38

40

42

44

46

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(c) Double POS-OFFSET signal injection attack

0 5 10 15 20 25 30
time (s)

1150

1200

1250

1300

1350

1400

1450

1500

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

30

32

34

36

38

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(d) Double NEG-OFFSET signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1500

1600

1700

1800

1900

2000

2100

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36

37

38

39

40

41

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(e) Double ADD-INCR signal injection attack

0 5 10 15 20 25 30
time (s)

900

1000

1100

1200

1300

1400

1500

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0
Ve

hi
cle

 sp
ee

d
(k

m
/h

)

(f) Double ADD-DECR signal injection attack

Figure A.13: Double signal injection attacks (S-1-4)

101

Appendix

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(a) Double CONST signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1420

1440

1460

1480

1500

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(b) Double REPLAY signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1450

1500

1550

1600

1650

1700

1750

1800

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36

38

40

42

44

46

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(c) Double POS-OFFSET signal injection attack

0 5 10 15 20 25 30
time (s)

1100

1150

1200

1250

1300

1350

1400

1450

1500
En

gi
ne

 re
vo

lu
tio

n
(1

/m
in

)

30

32

34

36

38

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(d) Double NEG-OFFSET signal injection attack

0 5 10 15 20 25 30
time (s)

1400

1450

1500

1550

1600

1650

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

39.0

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(e) Double ADD-INCR signal injection attack

0 5 10 15 20 25 30
time (s)

1360

1380

1400

1420

1440

1460

1480

1500

En
gi

ne
 re

vo
lu

tio
n

(1
/m

in
)

36.5

37.0

37.5

38.0

38.5

Ve
hi

cle
 sp

ee
d

(k
m

/h
)

(f) Double ADD-DECR signal injection attack

Figure A.14: Double signal modification attacks (S-1-4)

102

Appendix

Effect of smoothing and low pass filtering on macrotracking

(a) Smoothing window: 0.201s (b) Smoothing window: 1.608s (c) Smoothing window: 6.4s

Figure A.15: C2 test case macrotracking results on smoothed data without map

(a) Smoothing window: 0.201s (b) Smoothing window: 1.608s (c) Smoothing window: 6.4s

Figure A.16: C2 test case macrotracking results on smoothed data with map

103

Appendix

(a) Smoothing window: 0.201s (b) Smoothing window: 1.608s (c) Smoothing window: 6.4s

Figure A.17: C3 test case macrotracking results on smoothed data without map

(a) Smoothing window: 0.201s (b) Smoothing window: 1.608s (c) Smoothing window: 6.4s

Figure A.18: C3 test case macrotracking results on smoothed data with map

104

Appendix

(a) Allowed reconstruction er-
ror: 10%

(b) Allowed reconstruction er-
ror: 20%

(c) Allowed reconstruction er-
ror: 40%

Figure A.19: C2 test case macrotracking results on low pass filtered data without map

(a) Allowed reconstruction er-
ror: 10%

(b) Allowed reconstruction er-
ror: 20%

(c) Allowed reconstruction
error: 40%

Figure A.20: C2 test case macrotracking results on low pass filtered data with map

105

Appendix

(a) Allowed reconstruction er-
ror: 10%

(b) Allowed reconstruction er-
ror: 20%

(c) Allowed reconstruction er-
ror: 40%

Figure A.21: C3 test case macrotracking results on low pass filtered data without map

(a) Allowed reconstruction er-
ror: 10%

(b) Allowed reconstruction er-
ror: 20%

(c) Allowed reconstruction er-
ror: 40%

Figure A.22: C3 test case macrotracking results on low pass filtered data with map

106

	Introduction
	CAN bus
	Physical properties
	Traffic capture
	Signals
	Security shortcomings

	Attacks against the CAN bus
	Denial of Service attack
	Message injection attack
	Message modification attacks
	Malicious CAN gateway
	Evaluation
	Summary

	CrySyS dataset of CAN traffic logs
	Methods
	Data Records
	Technical Validation
	Usage Notes

	Summary

	Semantic compression of CAN traffic
	Related work
	Traffic log compression algorithm
	Evaluation
	Run-time complexity
	Compression ratio
	Correctness

	The forensic use of the compressed format
	Summary

	Anomaly detection
	Approaches to increasing the security of the CAN bus
	Attack detection in compressed CAN traffic
	Related Work
	Realized CAN injection attacks
	Anomaly detection algorithm
	Results
	Summary

	Correlation-based anomaly detection
	Related work
	Anomaly detection algorithm
	Evaluation of the algorithm
	Summary

	Signal anomaly detection with TCN
	Related work
	Anomaly detection algorithm
	Experiment design
	Results
	Summary

	Summary

	Privacy problems
	Related Work
	Adversary model
	Trajectory reconstruction
	Microtracking
	Macrotracking

	Potential defenses
	Smoothing
	Low pass filtering

	Summary

	Conclusion
	List of own publications
	Bibliography
	Appendix

