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ABSTRACT
This paper considers the problem of resource monitoring.
We consider the scenario where an adversary is physically
monitoring on the resource access, such as the electricity
line or gas pipeline, of a user in order to learn private in-
formation about his victim. Recent works, in the context of
smart metering, have shown that a motivated adversary can
basically profile a user or a family solely from his electric-
ity traces. However, these works only consider the case of a
semi-honest-but-non-intrusive adversary that is only trying
to learn information from the consumption reports sent by
the user.

This paper, instead, considers the much more challeng-
ing case of aintrusive semi-honest adversary, i.e. a semi-
honest adversary that is in addition physically monitoring
the resource by modifying the distribution network. We aim
at answering to the following question: is it possible to de-
sign a resource distribution scheme that prevents resource
monitoring and provides strong protection? This paper pro-
poses and analyzes several possible solutions. The proposed
solutions provide different privacy bounds and performance
results.

1. INTRODUCTION
Communication wiretapping or eavesdropping is of-

ten referring to telephone and Internet conversation
monitoring by a third party. There exist different wire-
tapping or monitoring techniques, but most of them
consist in inserting listening devices in the network. In
this paper, we assume that the adversary is not inter-
ested in listening to the communications of a victim,
but instead is interested in his resource, such as elec-
tricity or gas, consumption. We define this attack as
”resource monitoring”. It can typically be performed
by inserting a meter on the pipe that is used to deliver
the resource to the victim.
Communication wiretapping has been studied for sev-

eral years. The adversary’s objectives might be to listen
to the content of the communication, i.e. emails, phone
communication, or to have access to the communica-
tion patterns (traffic analysis). It was shown that by
simply analyzing traffic, the adversary can gain a lot

of information about the communications and the com-
municating parties [22].
In resource monitoring, the adversary is not inter-

ested in the content (he knows the nature of the resource
he is monitoring), but rather in the consumption usage
(for example the electricity usage). Several studies, in
the context of smart metering [18, 14], have shown that
a motivated adversary can profile a user or a family
solely from his electricity traces. Extracting complex
usage patterns of appliances from the raw consumption
profile (e.g., using NALM [13] or simple off-the-shelf
statistical tools [18]), one can infer detailed information
about household activity (e.g, how many people are in
home and what they are doing at a given time). This
extracted information can be used to profile and moni-
tor users for various purposes, creating serious privacy
risks and concerns.
Resource monitoring is in fact quite similar to per-

forming traffic analysis in the communication wiretap-
ping case. However, existing prevention techniques,
such as encryption and traditional traffic shaping, are
not viable nor practical in the context of resource moni-
toring due to the nature of the considered resource. For
instance, in communication systems, applying padding
means sending extra traffic in order to hide the real
traffic pattern. This dummy traffic is then filtered out
at the receiver side. By contrast, in resource networks,
applying dummy padding would consists of consuming
extra resource (to hide the actual usage) which would
have to be charged to the user. Most users would op-
pose to it.
This paper is the first work, to our knowledge, that

considers the challenging problem of resource monitor-
ing. It first describes formally the problem. It then pro-
poses several possible “anti-monitoring” resource solu-
tions that use the concept of smart (random) buffering
and provide strong privacy guarantees under the dif-
ferential privacy model. The security of the different
solutions are formally analysed and their performance
compared.
We acknowledge that the results presented in this

paper are still preliminary and more work is needed.
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However, we believe that with the advent of smart grid
and smart metering of resource, the problem of resource
monitoring is going to become a very important issue
in the coming years and more research is needed on this
topic.

2. RELATED WORK
Smart metering: Smart meters allow the utility
provider to monitor, almost in real-time, consumption
and possibly adjust generation and prices according to
the demand. Several papers addressed the privacy prob-
lems of smart meters in the recent past [10, 18, 4, 5, 6,
20, 14, 11]. In [4, 5], the authors discuss the different
security aspects of smart metering and the conflicting
interests among stakeholders. The privacy of billing is
considered in [20, 18]. Another line of works [3, 6, 11,
17] consider the problem of monitoring the aggregate
consumption of multiple clients without leaking private
information of any individual’s consumption. All these
works assumed a semi-honest-but-non-intrusive adver-
sary who cannot install any extra hardware in the distri-
bution network to collect more information about users
and only uses the measurements provided by the users.
In this paper, we consider the strongest semi-honest-
but-intrusive adversary who can invade the distribu-
tion network and modify it to gather more information
about users.

Differential privacy: The notion of differential pri-
vacy was first proposed in [9] (for a survey of recent
results refer to [8]). Differential privacy says that releas-
ing data using a differentially private algorithm will not
increase the adversary’s chance to infer any information
about any users in the dataset. The main advantage of
differential privacy over other privacy models is that it
does not specify the prior knowledge of the adversary
and provides rigorous privacy guarantee if each users’
data is statistically independent [16].

Anti-wiretapping and traffic shaping: The usual
techniques of defeating wiretapping (traffic analysis) in
communication networks consists of traffic encryption
and channel masking. Channel masking includes traffic
shaping like padding, traffic delaying, and re-ordering
of packet sequences [7, 15, 12, 19, 2]. Another re-
search deals with telephone wiretap and dialed number
recording [21]. Most of these works are concentrated
on information systems where bitstreams can be eas-
ily transformed in order to hide their information con-
tent against a malicious eavesdropper. Moreover, these
transformations (like padding) mostly causes minimal
costs to benign users which is not the case for resource
monitoring, where asking more resource than the real
demand can cause significant extra costs to the clients.

3. MODEL

Suppose provider P sells some resource, such as elec-
tricity, to client C where the resource can be measured
by an appropriate metric in units. The price of the re-
source is described by a pricing function: the price that
the client pays for x units to the provider is denoted by
f(x), where f : R→ R.
We assume that the distribution process between P

and C is periodic and happens in consecutive slots. In
each slot, C consumes x units and pays f(x) to P . We
assume that P and C are fully cooperative, i.e., P al-
ways provides C with the requested amount and it al-
ways accepts the amount given by P .

C has an overall demand of
∑N

j=1 X
j
i

def
= Xi units in

slot i where Xj
i denotes the jth sub-consumption (or

sub-demand) in slot i. These sub-demands can corre-
spond to the demands of other customers, if for example
C resells the resource, or the consumption demand of C
itself (e.g., if C watches TV then the electrical consump-
tion of the TV during the watching period corresponds
to a single sub-demand). The demand (or consumption)
profile of C over n slots is defined by (X1, . . . ,Xn).

3.1 Adversary model
Several papers addressed the privacy problems of

smart meters in the recent past [10, 18, 4, 5, 6, 20, 14,
11]. All of these papers, consider what is called in the
literature, semi-honest adversaries. A semi-honest ad-
versary faithfully follows all protocol specifications and
does not misrepresent any information related to their
inputs, e.g., size and content. However, during or after
protocol execution, he passively attempts to infer addi-
tional information about the victim from the collected
data.
This paper considers a stronger adversary model. We

consider a semi-honest intrusive adversary, i.e. an ad-
versary that faithfully follows all protocols, but that
can, in addition, invade the distribution network to
gather more information about clients. In other words,
we are assuming that the adversary can monitor the
electricity or gas consumption of the clients by installing
meters on the power line or gas pipeline that is outside
of the client’s control (like outside from his household).
In general, the objective of the adversary is to in-

fer detailed information about the victim’s activity by
monitoring her consumption. Our goal is to protect
against a strong adversary that might know the total
consumption (X1,X2, . . . ,Xn) and all the sub-demands

composing it, except from one i.e. Xj
i . We say that a

scheme is secure if the adversary is unable to recover
Xj

i whatever external information it has.

3.2 Privacy model
Our adversary model is included in the differential

privacy model, which was first proposed in [9]. Differen-
tial privacy guarantees that the client’s privacy should
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not be threatened substantially more regardless what
external knowledge the provider has.

Definition 1 ((ε, δ)-differential privacy) An algo-
rithm A is (ε, δ)-differential private, if for all data
sets D1 and D2, where D1 and D2 differ in at most
a single user, and for all subsets of possible answers
S ⊆ Range(A),

P (A(D1) ∈ S) ≤ eε · P (A(D2) ∈ S) + δ

Differential private algorithms produce indistinguish-
able outputs for similar inputs (more precisely, differing
by a single entry), and thus, the modification of any sin-
gle user’s data in the dataset (including its removal or
addition) changes the probability of any output only up
to a multiplicative factor eε plus an additive constant δ.
The parameters ε and δ allow us to control the level of
privacy. Lower values of ε and δ imply stronger privacy,
as they restrict further the influence of a user’s data on
the output.
The following theorem suggests a simple technique to

differential privately release an aggregate by adding a
random noise to the that, where the noise distribution
is carefully calibrated to the global sensitivity of the
aggregate. The global sensitivity of an aggregate is the
maximum variation of its value when we change one of
its data component.

Theorem 1 ([9]) For all h : D → R
r, the follow-

ing mechanism A is ε-differential private (with δ=0):
A(D) = h(D) + L(S(h)/ε), where L(S(h)/ε) is an
independently generated random variable following the
Laplace distribution and S(h) denotes the global sensi-
tivity of h1.

3.3 Resource distribution model
Suppose a client has an overall demand of Xi units

and consumes mi units in slot i (note that Xi and mi

may be different). Let Dn be the random variable de-
scribing the difference

∑n
i=1(mi −Xi) after n slots. A

distribution scheme

• has satisfiability ϕ over n slot, if P (Di ≥ 0) ≥ ϕ
for all 1 ≤ i ≤ n,

• has expected deficit γ over n slot, i.e., E(f(Dn)) =
γ,

• has maximum deficit θ with confidence µ over n
slot, if P (f(Di) ≤ θ) ≥ µ for all 1 ≤ i ≤ n,

• is (ε, δ)-private over n slot, if it satisfies Definition
1 with parameters (ε, δ) over n slot.

1Formally, let h : D → R
r, then the global sensitivity of h is

S(h) = max ||h(D1) − h(D2)||1, where D1 and D2 differ in
a single entry and || · ||1 denotes the L1 distance.

Intuitively, satisfiability measures the guarantee that
the client can satisfy all its consumption demands over
n slots, while expected deficit measures the average loss
of the client (i.e., the expected value of the extra price
that it pays beyond the price of its real demand). Simi-
larly, the maximum deficit says that the maximum loss
of the client in any slot over n will not exceed a certain
bound with a given confidence. Observe that satisfia-
bility, the expected and maximum deficit describe the
utility of a distribution scheme, while (ε, δ) character-
izes its privacy in the differential privacy model.

4. TOWARD SMART BUFFERING
In current smart metering systems, a client that

needs Xi in slot i will directly get it from the resource
provider. Although this approach has always 0 expected
deficit, 0 maximum deficit and provides complete sat-
isfiability over any n slots, it has no privacy guarantee;
in fact, adding a new sub-demand differing from 0 will
always result in δ = 1 in Definition 1. For sake of sim-
plicity, we assume in the sequel that the pricing function
is defined as f(x) = x for all x.
In this section, we present three new resource dis-

tribution schemes and analyze their privacy as well as
their utility in the model described previously. These
three schemes use buffers that sit between the client
and provider and hide the consumed resource to the
provider. A buffer is actually implemented as a battery
that stores the resource.
The main idea of using buffers is to decorrelate the

actual resource consumption from the resource obtained
from the utility. When a customer needs energy, it gets
part of it from its buffer and part of it from the provider.
Similarly, the energy obtained from the provider is
partly consumed by the user’s devices and partly used
to load the buffer.
The rest of this section presents three different buffer-

based schemes. These schemes differ in how the buffer
is managed (i.e. charged or discharged). The first pro-
posed scheme has perfect privacy, but it is not resilient
to profile dynamics and can result in low utility de-
pending on the consumption profile. The last two ap-
proaches provide better privacy-utility trade-offs. The
performance of these algorithms are compared in Sec-
tion 5.

4.1 Constant rate buffering
A straightforward approach to improve privacy is

that the client maintains a buffer and, in each slot, con-
sumes the same amount, denoted by c. If Xi < c, then
the client puts the difference c −Xi into the buffer. If
Xi > c, then it takes Xi − c units out of her buffer to
satisfy all sub-demands.
If c is large enough, then we obtain a perfectly pri-

vate scheme where ε = δ = 0 as the client will always
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consume the same amount independently from its real
demand. However, if

∑n
i=1 Xi > n · c, then the to-

tal consumed amount is not enough to satisfy all sub-
demands which means that it has 0 satisfiability. The
other problem is that the deficit highly depends on all
sub-consumptions, and in general, on the client’s con-
sumption profile. Moreover, this profile must be known
a priori in order to correctly calibrate c which makes it
an impractical approach.

4.2 Smart buffering with symmetric Laplace
noise

The intuition behind smart (random) buffering is as
follows. The client perturbs its real consumption Xt

and consumes X̂t = Xt + s units in each slot t, where
s is a random value drawn from some distribution with
mean 0. If s > 0, then the client puts the extra s units
into the buffer. If s < 0 then it gets the missing κ units
from the buffer. It is easy to see that this approach
is more resilient to profile dynamics as the expected
deficit is 0 independently from the demand profile of
the client (i.e., E(

∑n
i=1 κt) = 0 for all n where κt is the

random variable describing s in slot t). Moreover, if the
distribution of κt is chosen carefully, then one can min-
imize the maximum deficit as well as the information
that is leaked by X̂t: higher/lower noise variance results
in stronger/weaker privacy and lower/higher maximum
deficit with higher/lower satisfiability.

4.2.1 Operation

The algorithm works as follows in a slot t. First, the
client draws a random sample st from an appropriate
distribution and computes X̂t = Xt + st.

• If st ≥ 0, then the client consumes X̂t units. Out
of these, it serves its sub-demands using Xt units,
and stores the rest st units into the buffer.

• If st < 0 (i.e., st > Xt), then the client takes the

following actions depending on the value of X̂t:

– if X̂t ≥ 0, it consumes X̂t units and gets st

units from its buffer to serve its real demand
Xt.

– if X̂t < 0, it gets |st| units from the buffer,
from which it uses Xt units to serve its de-
mand and gives |Xt + st| units back to the
provider.

Note that the client may need to give back resource
to the provider in the last step when X̂t is negative.
In other words, the model defined in Section 3, which
assumed that in each slot C consumes x units and pays
f(x) to P , must be extended. It is now assumed that
in each slot, either C consumes x units and pays f(x)

to P or C gives y units back to P (where x = X̂t and
y = |Xt + st| in the current scheme).

Algorithm 1 SmartBufferLaplace

Require: M - buffer size (capacity), ν - initial buffer
size, λ - scale parameter of the noise

1: L1 := ν // Lt is the buffer level at slot t
2: for all t do
3: st ← L(λ)
4: push max(0, Xt + st)
5: pop min(0, Xt + st)
6: Lt+1 := Lt + τ
7: end for

We believe that this scenario will be realistic in elec-
trical distribution networks in the near future with the
rise of Smart Grid technologies [1]. In Smart Grids,
clients will also be able to produce electrical energy
(e.g., by using solar panels or plug-in hybrid electric
vehicles) and are envisioned to sell the excess to other
clients or the provider itself.

4.2.2 Analysis

Privacy: Let κi be the random variable describing si

in slot i. Following Theorem 1, if κi follows a sym-
metric Laplace distribution with scale parameter λ,
where λ = maxj

∑n
i=1 X

j
i /ε (i.e., ε is calibrated to

the maximum sub-consumption over n slots) and each
κi is drawn independently, then the client obtains ε-
differential privacy (δ = 0) over n slots.

Utility: At first sight, the expected deficit E(
∑n

i=1 κi)
is 0 independently from the client’s demand profile, as
all κi have a mean of 0. However, in that case, the sat-
isfiability is 0.5 as in the very first slot when the buffer
is empty, it has probability 0.5 that s1 < 0. Hence, be-
fore computing s1, the client should ask for ν units to
the provider in order to initialize the buffer. The value
of ν should be calibrated to the maximum client de-
mand (i.e., to maxi Xi). After all, the expected deficit
becomes ν.
In order to compute the exact satisfiability and the

maximum deficit, we need the following lemma.

Lemma 1 Let κi are i.i.d random variables having

Laplace distribution with pdf f(x, λ) = 1
2λe

− |x|
λ . Then,

P (
∑n

i=1 κi > c) ≤ e−
c2

8nλ2 , if 0 < c < 2
√
2nλ.

The proof (as of all Theorems in this paper) is de-
tailed in the Appendix. Using this lemma, we obtain
the following results.

Theorem 2 Let κi are i.i.d random variables having

Laplace distribution with pdf f(x, λ) = 1
2λe

− |x|
λ . Then,

SmartBufferLaplace has satisfiability 1− e−
ν2

8nλ2 if
0 < ν < 2

√
2nλ, expected deficit ν, where ν is the initial

buffer level, and maximum deficit c with confidence 1−
e−

(c−ν)2

8nλ2 if 0 < c− ν < 2
√
2nλ
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The proof is straightforward using Lemma 1 and
the fact that

∑n
i=1 κi is a symmetric random variable,

which means that P (ν +
∑n

i=1 κi < 0) = P (
∑n

i=1 κi >
ν), if κi follows a Laplace distribution.
Observe that both satisfiability and maximum deficit

depend on n, as the probability that
∑n

i=1 κi exceeds a
certain threshold becomes higher by increasing n. This
means that the privacy as well as the utility deterio-
rates over time. Intuitively, the confidence of maximum
deficit M is the probability that the buffer level remains
below the buffer size (i.e, there is no buffer overflow),
and satisfiability is the probability that the buffer level
will not fall below 0 (i.e., there is no buffer underflow)
over n slots.
Note that this random buffering approach is more re-

silient to profile dynamics than the constant rate buffer-
ing scheme. In particular, we only need to know the
maximum sub-consumption (i.e., maxj

∑n
i=1 X

j
i ) to cal-

ibrate the Laplace noise to a given ε, and the maximum
client demand (i.e., maxiXi) to calibrate the initial
buffer level ν to the desired satisfiability value. Both
are easier to estimate than the whole profile which is
needed for constant rate buffering.

4.3 Smart buffering with truncated geometric
noise

This approach improves the performance of the pre-
vious scheme while keeping its resiliency against pro-
file dynamics: it guarantees that the buffer will never
run out (the satisfiability is 1), and it also never ex-
ceeds a certain threshold M (i.e., the maximum deficit
is bounded almost surely). The idea is that instead of
using noise with infinite domain we truncate the noise
into a finite interval such that the buffer level will always
be within [0,M ]. In particular, if the buffer has a size
of M and the buffer level is Li in slot i, then the noise si
is sampled from a distribution that can only take values
from [−Li,M − Li]. This ensures that 0 ≤ Li + si ≤M
for all i.
Before describing the operation, we define the trun-

cated distribution that we use, which is the discrete
approximation of the Laplace distribution. As we will
later see, assuming discrete noise makes the analysis
easier without losing generality: in most practical sce-
narios, continuous values are approximated using inte-
gers.

Definition 2 (Geometric Distribution) Let α > 1
and β ∈ Z. The probability mass function of the
symmetric geometric distribution centred at β is 1−α

1+α ·
α−|x−β| where x takes integer values.

The symmetric geometric distribution corresponds to
the discrete version of the Laplace distribution, where
α = e

1
λ . It is easy to check that using symmetric ge-

ometric distribution in Theoreom 1 instead of the con-

tinuous Laplace, we will have a differentially private
algorithm that outputs integer values.
Let G(α, β) be a random variable having symmet-

ric geometric distribution. Its truncated counterpart
denoted by G̃(α, β, x1, x2) has a conditional probabil-

ity distribution and it is defined as P (G̃(α, β, x1, x2) =

k) = P (G(α,β)=k)
∑x2

i=x1
P (G(α,β)=i)

if x1 ≤ k ≤ x2 and 0 otherwise,

where [x1, x2] (x1, x2 ∈ Z) is the truncation interval.

4.3.1 Operation

Suppose that the buffer size isM , whereM is an even
integer. The buffer level is initialized to M/2. Then, in
each slot t, the client picks up a random sample τ from
G̃(α, Lt, 0,M), where Lt denotes the buffer level in slot t,
and computes the noise as st = τ−Lt. Therefore, Lt+st

will always be in [0,M ]. Afterwards, it performs the
same as SmartBufferLaplace described in Section
4.2.

Algorithm 2 SmartBufferGeometric

Require: M - buffer size (capacity), α - scale param-
eter of the noise

1: L1 := M/2
2: for all t do
3: τ ← G̃(α, Lt, 0,M)
4: st := τ − Lt

5: push max(0, Xt + st)
6: pop min(0, Xt + st)
7: Lt+1 := τ
8: end for

4.3.2 Analysis

Observe that the noise distribution may be different
in each slot and the noise samples are not independent
in consecutive slots; the distribution of the noise de-
pends on the current buffer level which is shaped by
the noise sample of the previous slot. In particular,
the buffer level Lt can be described by a discrete time-
homogeneous Markov chain. Indeed, the distribution of
the buffer level in one slot only depends on the buffer
level of the previous slot. The transition matrix of this
Markov chain is M where Mi,j = P (G̃(α, j, 0,M) = i)
(i, j ∈ [0,M ])2 is the probability that the buffer level
changes from j to i after a single slot.

Privacy: Although truncating the noise helps to ensure
that the buffer level will always be within [0,M ], it also
deteriorates privacy. To illustrate this, consider a de-
mand X1 in the first slot and another demand X′

1 which
only differs in a single sub-demand. The added noise in
both cases are drawn from the same distribution which

2To simplify the notation, we directly address an element
of the transition matrix as well as the distribution vectors
with the corresponding buffer level.
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is G̃(α,M/2, 0,M). However, the possible set of outputs
are different. Indeed, w.l.o.g, suppose that X1 < X′

1.
Then, O = X′

1 +M/2 is a possible output with X′
1 but

not with X1, and hence, P (X1 + G̃(α,M/2, 0,M) =

O) = 0 and P (X′
1 + G̃(α,M/2, 0,M) = O) > 0. If O

appears in the output, the two cases are distinguishable
and we will have a privacy breach. The probability of
such outputs is measured by δ in the (ε, δ)-differential
privacy model.

Theorem 3 Let πi denote the distribution of the buffer
levels in slot i and ∆t =

∑t
i=1 maxj X

j
i . Smart-

BufferGeometric is (ε, δ)-private over n slots, where

• ε = ln

(
α∆n ·

∏n
i=1

α
M
2 −chα(M

2 −∆i−1)

shα(M
2 )

)

• δ = 1−
∏n

k=1

(
1− δ(k)

)

where δ(k) =
∑∆k

i=0[πk]i, and shα(x) and chα(x) are

defined as αx−α−x

2 and αx+α−x

2 , resp. (α > 1).

Utility: As 0 ≤ Li+si ≤M holds for all i, it is straight-
forward to compute the utility.

Theorem 4 SmartBufferGeometric has satisfia-
bility of 1, expected deficit M

2 , and maximum deficit M
with confidence 1

5. PERFORMANCE COMPARISON
Figure 1 shows how the probability that the buffer

level remains below the buffer size (i.e., the confidence of
maximum deficit M where M is the buffer size) changes
depending on the buffer size using smart buffering with
Laplace noise. The buffer is initialized to the half of the
buffer size (ν = M/2) which means that buffer overflow
and underflow (i.e., the confidence of maximum deficit
M and satisfiability) for the same M are identical. In
addition, ε is set to 0.1 (δ = 0), and the maximum value
of any sub-demand in a single slot is 1 (i.e., ∆t = t).
The buffer overflow and underflow becomes more likely
for a larger number of time slots as the probability that
the sum of random samples exceeds a fixed threshold
increases by taking the sum of more samples. We can
conclude that the buffer size needs to be 500 times larger
(if n > 20) than the maximum sub-consumption in or-
der to obtain reasonably low probability of buffer over-
flow/underflow (< 0.05).
Figure 2 shows how the privacy changes depending on

the number of slots in smart buffering with truncated
geometric noise. Figure 2(a) plots ε in function of the
buffer size and the number of slots with α = 1.001, while
2(c) depicts ε in function of the distribution parameter
α and the buffer size. Apparently, the buffer size does
not really affect ε: increasing the number of slots, ε
still has acceptable value (i.e., < 0.1) with more than
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Figure 1: The confidence of maximum deficit M
in smart buffering with Laplace noise (ε = 0.1)
depending on M (n = 20). Note that M/2 <
2
√
2n(1/ε).

20 slots. However, this is not the case for δ: Figure 2(b)
shows that δ rapidly increases by increasing the number
of slots. Namely, if the buffer size is 300 and n > 20,
delta exceeds 0.5 (i.e., the probability that there is a
privacy breach over 20 slots is 0.5). Intuitively, privacy
breach occurs when the buffer level falls below a certain
threshold (i.e., when such output appears that cannot
appear after adding a new user). The probability of this
increases by summing more noise samples. Also note
that increasing the buffer size improves δ. However, the
buffer size needs to be much larger than 300 in order to
have reasonably low δ for n > 20 slots.
Finally, Figure 3 compares smart buffering with con-

stant rate buffering (CRB). We assumed that the client
can compute the maximum sub-demand in each slot
(which is 1 now) and also knows the maximum number
of sub-demands, denoted by x, which can occur in a sin-
gle slot. However, it cannot predict how many and what
sub-demands will appear in each slot exactly.3 Suppos-
ing this case, in CRB, the constant rate c needs to be
x ·maxi,j X

j
i (i.e., the client prepares for the worst case

and always consumes its maximum sum of sub-demand
that it can have in a single slot).
Figure 3 plots the buffer size depending on x for n =

10 time slots. In smart buffering, the buffer size can
be calculated from the desired privacy bound (ε and δ).

While, in CRB, it is the product of n and x ·maxi,j X
j
i ,

which is 10 · x in the current example (maxi,j X
j
i = 1).

This is because, in the worst case, when there is no any
demand over the n slots, all the resource asked to the
provider has to be stored in the buffer.
As both smart buffering techniques are independent

3Clearly, it is a pessimistic assumption since the client usu-
ally has more a priori knowledge about its demand profile
(e.g., the consumption of gas or electricity is lower at night
than in daylight in most households) though this knowledge
is application dependant. The modelling of such knowledge
for specific applications (like gas or electricity distribution)
belongs to future work.
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Figure 2: Smart buffering with truncated geometric noise (∆ = 1).

from the number of sub-demands per slot, their buffer
size is indepedent from x. SmartBufferLaplace

with ε = 0.06 needs roughly the same size of buffer
as SmartBufferGeometric with ε = 0.06 and δ =
0.09. In other words, the guarantee that there is
no buffer overflow/underflow comes at the expense of
δ = 0.09 (i.e., there is one privacy breach over 10 slots
on average).
Figure 3 also shows that CRB is not scalable since

the buffer needs to be expanded by having more sub-
demands (and time slots). By contrast, the buffer size
in smart buffering is independent from the number of
sub-demands as the noise used to perturb the client’s
demand is only calibrated to the maximum sub-demand
value and not to n and x. On the other hand, CRB
can still have smaller buffer if the number of maximum
sub-demands per slot is low: in Figure 3, CRB needs
smaller buffer than smart buffering if x < 50, and smart
buffering (with ε = 0.06 and δ = 0.09) needs smaller
buffer than CRB only if x > 50. On the other hand,
recall that CRB always provides perfect privacy and
there cannot be buffer overflow or underflow.
We can conclude that

• CRB is not scalable (the buffer size is a linear
function of the number of sub-demands per slot)
and can require large buffer if n and x is high.

However, it provides perfect privacy and guaran-
tees that there is no buffer overflow and underflow.
Furthermore CRB is more practical (i.e., requires
smaller buffer) than smart buffering if the number
of sub-demands is low.

• SmartBufferLaplace is much more scalable
(the buffer size is independent from the number
of sub-demands per slot) and allows the client to
adjust privacy to the probability of buffer over-
flow/underflow. However, the privacy deteriorates
over time, and meaningful privacy (ε < 0.1) is
achievable only for large buffers (500 times larger
than the maximum sub-demand) with reasonably
low probability of buffer overflow/underflow (<
0.05).

• SmartBufferGeometric is a trade-off solu-
tion between CRB and SmartBufferLaplace:
Compared to SmartBufferLaplace, it guaran-
tees that there is no buffer overflow and underflow
at the expense of some privacy degradation (which
is measured by δ) while retaining the scalability
and flexibility of SmartBufferLaplace. How-
ever, the buffer size is also large (the same as for
SmartBufferLaplace with less privacy).
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Figure 3: Comparison of different schemes (n =
10 slots).

6. CONCLUSION
In this paper, we made the first steps toward a

privacy-aware resource distribution scheme and pro-
posed three possible anti-monitoring approaches. The
results show that there is no practical solution (yet):
constant rate buffering can provide satisfactory perfor-
mance if the client’s profile originates from limited num-
ber of sub-demands (e.g., appliances) and/or the client’s
profile is known a priori. Although our new approaches,
called smart buffering, is more scalable to the number
of sub-demands and is resilient against profile dynam-
ics, it provides reasonable privacy (or utility) only for
larger buffer size.
We stress that our work is still preliminary and we

acknowledge that more research is needed in this new
area. It still remains an open question whether more ef-
ficient schemes exist. Furthermore, this work does not
consider the financial cost of the schemes. Resources,
such as electricity, gas, are getting more and more ex-
pensive. Furthermore, their price tend to vary with
time according to the consumption need/peek. These
dynamic pricing might have an impact on the cost of the
proposed schemes. Designing resource anti-monitoring
solutions that are secure and that optimize resource us-
age remains a challenging and exciting problem.
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APPENDIX

A. PROOF OF LEMMA 1

Proof. We derive a Chernoff bound. The moment
generating function of κi is E(et·κi) = 1

1−t2λ2 , if |t| <
1/λ. In addition, 1

1−x ≤ 1+2x ≤ e2x for all 0 < x < 1
2 .

Hence, E(et·κi) ≤ e2t
2λ2

, if 0 < t < 1√
2λ
. Then,

P

(
n∑

i=1

κi > c

)
= P

(
et·

∑
n
i=1 κi > et·c

)

≤ inf
0<t< 1√

2λ

e−t·c
n∏

i=1

E(et·κi)

≤ inf
0<t< 1√

2λ

e−t·c+2t2nλ2

= e−
c2

8nλ2

where the last equality holds if c < 2
√
2nλ.

B. PROOF THEOREM 3

Lemma 2 (Truncated geometric distribution)

Let G̃(α, β,−M/2,M/2) denote a random variable
having geometric distribution truncated to

[
−M

2 , M
2

]
.

Then,

P (G̃(α, β,−M/2,M/2) = k) =
α−|k−β|

1 + 2

α
M
2
· α

M
2 −chα(β)
α−1

where chα(x) is defined as αx+α−x

2 and α > 1.

Proof of Lemma 2. We will compute the density
function of G̃(α, β) in interval [−M/2,M/2]:

P (G̃(α, β) = k) =
P (G(α, β) = k)

∑M/2
i=−M/2 P (G(α, β) = i)

=

=
1−α
1+αα

−|k−β|

1−α
1+α

∑M
2

i=−M
2

α−|i−β|

We compute the denominator as follows:

M
2∑

i=−M
2

α−|i−β| =
β−1∑

i=−M
2

α−|i−β| + 1 +

M
2∑

i=β+1

α−|i−β| =

=

M
2 +β∑

i=1

α−i+1+

M
2 −β∑

i=1

α−i = 1+
1

α

1− 1

α
M
2

+β

1− 1
α

+
1

α

1− 1

α
M
2

−β

1− 1
α

= 1 +
1

α
M
2 (α− 1)

(
2α

M
2 − 2

(
αβ + α−β

2

))

Here, chα(x) is αx+α−x

2 by definition. Thus, we obtain:

P (G̃(α, β) = k) =
α−|k−β|

1 + 2

α
M
2

α
M
2 −chα(β)
α−1

Lemma 3 Let k, ℓ > 0. Then, the function f :
R → R defined below is increasing on the interval[
−M

2 + ℓ, M
2

]
.

f(x) =
k − chα(x− ℓ)

k − chα(x)

Proof of Lemma 3.

df(x)

dx
=

ln(α) · (2k · shα(ℓ)chα(2x− ℓ)− shα(ℓ))

(k − chα(x))2

=
ln(α) · shα(ℓ) · (2k · chα(2x− ℓ)− 1)

(k − chα(x))2
> 0

Proof of Theorem 3. Let D1 = (X1,X2, . . . ,Xn)
and D2 = (X′

1,X
′
2, . . . ,X

′
n) be two datasets that differ

in only one sub-demand over n slots. Without loss of
generality, we assume that D2 has one more sub-demand
than D1 (along n slots). We partition the possible out-
puts into two subsets S = S1 ∪ S2, where S1 contains
the outputs that can appear in both A(D1) and A(D2),
while the outputs in S2 can appear only inA(D2), where
A denotes algorithm SmartBufferGeometric. In
slot i, the buffer levels are denoted by Li and L

′
i, and

the picked random values are si and s
′
i used by A with

D1 and D2, resp.

9



We have

P (A(D1) ∈ S)

P (A(D2) ∈ S)
≤ P (A(D1) ∈ S1)

P (A(D2) ∈ S1)
+

P (A(D1) ∈ S2)

P (A(D2) ∈ S)

We first show that P (A(D1) ∈ S1) ≤ eε · P (A(D2) ∈
S1), where ε = ln

(
α∆n ·

∏n
i=1

α
M
2 −chα(M

2 −∆i−1)

shα(M
2 )

)
. Let

(O1, . . . , On) ∈ S1 be a possible output of A(D1) and
A(D2). In addition, ui denotes the additional sub-

demand in D2 in slot i, where 0 ≤ ui ≤ maxj X
j
i for

all i.

P (X1 + s1 = O1, . . . ,Xn + sn = On) =

= P (s1 = O1 −X1, . . . , sn = On −Xn) =

= P (L1 = O1 −X1, . . . , Ln =

n∑

k=1

(Ok −Xk)) =

= P (L1 = a1) · P (L2 = a2|L1 = a1) · . . .
. . . · P (Ln = an|Ln−1 = an−1)

where ai =
∑i

k=1(Ok −Xk). Similarly,

P (X′
1 + s

′
1 = O1, . . . ,X

′
n + s

′
n = On) =

= P (L′1 = a′1) · P (L′2 = a′2|L′2 = a′1) · . . .
. . . · P (L′n = a′n|L′n−1 = a′n−1)

where a′i = ai −
∑i

j=1 uj . Thus,

P (Li = ai|Li−1 = ai−1)

P (L′i = a′i|L′i−1 = a′i−1)
≤ P (G̃(α, ai−1, 0,M) = ai)

P (G̃(α, a′i−1, 0,M) = a′i)
=

=
P (G̃(α, ai−1 −M/2,−M/2,M/2) = ai −M/2)

P (G̃(α, a′i−1 −M/2,−M/2,M/2) = a′i −M/2)
≤

(based on Lemma 2)

≤ αui

1 + 2

α
M
2

α
M
2 −chα(ai−1−

∑i−1
k=1 ui−M/2)

α−1

1 + 2

α
M
2

α
M
2 −chα(ai−1−M/2)

α−1

≤

≤ αui · α
M
2 − chα(ai−1 −

∑i−1
k=1 ui −M/2)

α
M
2 − chα(ai−1 −M/2)

≤

(based on Lemma 3)

≤ αui ·
α

M
2 − chα(M −

∑i−1
k=1 ui − M

2 )

α
M
2 − chα(M − M

2 )
≤

≤ αmaxj Xj
i ·

α
M
2 − chα(M2 −∆i−1)

α
M
2 − chα(M2 )

Thus,

P (A(D1) ∈ S1)

P (A(D2) ∈ S1)
=

P (X1 + s1 = O1, . . . ,Xn + sn = On)

P (X′
1 + s′1 = O1, . . . ,X′

n + s′n = On)
≤

≤ α∆n

n∏

i=1

α
M
2 − chα(M2 −∆i−1)

α
M
2 − chα(M2 )

Now consider the ratio P (A(D1)∈S2)
P (A(D2)∈S) . Assuming that

∆i =
∑i

t=1 maxj X
j
t , A(D1) has output from S2, if

Li ∈ [0,∆i] (if it happens, there is a privacy breach).
The probability of this is denoted by δ(i) in slot i and
it is bounded by the probability that the buffer level is
within [0,∆i] in slot i. Recall that Mk

i,j is the probabil-
ity that the buffer level changes from j to i after k slots.
If the initial distribution of the buffer level is π0, which
is 0 for all coordinates of [0,M ] except for coordinate
M/2 which is 1, then the distribution of the buffer level
after k slots can be computed as πk = Mkπ0. Thus,
δ(k) =

∑∆k

i=0[πk]i, and we obtain:

P (A(D2) ∈ S1)

P (A(D2) ∈ S)
≤ 1−

∏n
k=1(1− δ(k))

P (A(D2) ∈ S)

Due to the symmetry property of πk (see Theorem 4),

it is easy to show that P (A(D2)∈S2)
P (A(D1)∈S) ≤ 1+

1−∏n
k=1(1−δ(k))

P (A(D1)∈S)

which completes the proof.
Note that if the total sub-demand over n slots is more

than the buffer size then δ(n) = 1 and the privacy breach
is certain. The probability of a privacy breach (and so
the δ) can be decreased by expanding the buffer.

C. PROOF THEOREM 4

Proof. The proofs of satisfiability and maximum
deficit are trivial. We will show that the expected value
of the buffer level with transition matrix M and initial
distribution π0, where all coordinates are zero except
the (M/2)th which is 1, is M/2. This implies that the
expected deficit is M/2.
Note that the distribution of the buffer level after k

slots can be computed as πk = Mkπ0. Since π0 is a
symmetrical distribution (i.e. πM/2+i = πM/2−i where
i ∈ [0,M/2]), using induction, it is sufficient to show
that if π is a symmetrical distribution then π′ = M ·
π is also symmetrical. Let π be such a symmetrical
distribution. By definition,

π′
M/2+i =

M∑

j=0

MM/2+i,j · πj

π′
M/2−i =

M∑

j=0

MM/2−i,j · πj

Recall that Mi,j = P (G̃(α, j, 0,M) = i) = P (G̃(α, j−
M/2,−M/2,M/2) = i −M/2). We have:

π′
M/2−i =

M∑

j=0

α−|M/2−i−M/2−j+M/2|πj

1 + 2

α
M
2

α
M
2 −chα(j−M/2)

α−1

=
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=

M/2∑

j=0

α−|−i−j|πM/2+j

1 + 2

α
M
2

α
M
2 −chα(j)
α−1

+

M/2∑

j=0

α−|−i+j|πM/2−j

1 + 2

α
M
2

α
M
2 −chα(−j)

α−1

Similarly,

π′
M/2+i =

M∑

j=0

α−|M/2+i−M/2−j+M/2|πj

1 + 2

α
M
2

α
M
2 −chα(j−M/2)

α−1

=

=

M/2∑

j=0

α−|i−j|πM/2+j

1 + 2

α
M
2

α
M
2 −chα(j)
α−1

+

M/2∑

j=0

α−|i+j|πM/2−j

1 + 2

α
M
2

α
M
2 −chα(−j)

α−1

Since α−|i−j| = α−|j−i|, α−|i+j| = α−|−j−i|, chα(−j) =
chα(j), and πM/2+i = πM/2−i, we obtain

π′
M/2+i = π′

M/2−i
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