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Abstract. This paper presents a new privacy-preserving smart megteyistem.
Our scheme is private under the differential privacy model therefore provides
strong and provable guarantees. With our scheme, an (elggtsupplier can pe-
riodically collect data from smart meters and derive aggred statistics without
learning anything about the activities of individual houslkels. For example, a
supplier cannot tell from a user’s trace whether or when helvesl TV or turned
on heating. Our scheme is simple, efficient and practicalcéysing cost is very
limited: smart meters only have to add noise to their dataeanwlypt the results
with an efficient stream cipher.

1 Introduction

Several countries throughout the world are planning toaeginart meters in house-
holds in the very near future. The main motivation, for gowveents and electricity sup-
pliers, is to be able to match consumption with generatioadifional electrical meters
only measure total consumption on a given period of time, (@ee month or one year).
As such, they do not provide accurate information of whenethergy was consumed.
Smart meters, instead, monitor and report consumptioniémials of few minutes. They
allow the utility provider to monitor, almost in real-timegnsumption and possibly ad-
just generation and prices according to the demand. Billimgtomers by how much
is consumed and at what time of day will probably change compgion habits to help
matching consumption with generation. In the longer teriitt) the advent of smart ap-
pliances, it is expected that the smart grid will remotelntcol selected appliances to
reduce demand.

Problem statementAlthough smart metering might help improving energy manage
ment, it creates many new privacy problems [2]. Smart mgiesside very accurate
consumption data to electricity providers. As the intepfadata collected by smart me-
ters decreases, the ability to disaggregate low-resold#da increases. Analyzing high-
resolution consumption data, Nonintrusive Appliance Ldaehitoring (NALM) [11]
can be used to identify a remarkable number of electric appés (e.g., water heaters,
well pumps, furnace blowers, refrigerators, and air coondérs) employing exhaustive
appliance signature libraries. Researchers are now fogasi the myriad of small elec-
tric devices around the home such as personal computegs pasters, and light bulbs
[14]. Moreover, it has also been shown that even simpletadfshelf statistical tools can



be used to extract complex usage patterns from high-régnlabnsumption data [15].
This extracted information can be used to profile and moniers for various purposes,
creating serious privacy risks and concerns. As data reddogt smart meters is lower-
ing in resolution, and inductive algorithms are quickly iroping, it is urgent to develop
privacy-preserving smart metering systems that providagtand provable guarantees.

Contributions: We propose a privacy-preserving smart metering schemegtizaantees
users’ privacy while still preserving the benefits and prasiof smart metering. Our
contributions are many-fold and summarized as follows:

— We provide the first provably private and distributed santfor smart metering
that optimizes utility without relying on a trusted thirdrpa(i.e., an aggregator).
We were able to avoid the use of a trusted third party by priogasnew distributed
Laplacian Perturbation Algorithm (DLPA).

In our scheme, smart meters are grouped into clusters, vahdtester is a group of
hundreds or thousands of smart meters corresponding, &ongbe, to a quarter of a
city. Each smart meter sends, at each sampling period rttegisures to the supplier.
These measures are noised and encrypted such that theesugagplicompute the
noised aggregated electricity consumption of the clustegach sampling period,
without getting access to individual values. The aggregateoised just enough
to provide differential privacy to each participating usehile still providing high
utility (i.e., low error). Our scheme is secure under thdedédntial privacy model
and therefore provides strong and provable privacy gueeasntin particular, we
guarantee that the supplier can retrieve information aboytuser consumption
only up to a predefined threshold, no matter what auxiliafgrmation it knows
about that user. Our scheme is simple, efficient and prdcticaquires either one
or two rounds of message exchanges between a meter and fHiestqurthermore,
processing cost is very limited: smart meters only have th ramlse to their data
and encrypt the results with an efficient stream cipher.Iinaur scheme is robust
against smart meter failures and malicious nodes. Moreifggly, it is secure
even if ana fraction of all nodes of a cluster collude with the supphenerea is a
security parameter.

— We implemented a new electricity trace generation tool thase[19] which gener-
ates realistic, one-minute resolution synthetic consionptata of different house-
holds. We used this simulator to evaluate the performandepamacy of our pro-
posal.

Because of space constraint, the security analysis of dwianse is not included in
this paper. This analysis is however included in the longesion of this paper [1]. This
extended version also includes additional performanadtges

2 Related Work

Several papers addressed the privacy problems of smartinteie the recent past
[8,15,2,16,3,4,18, 10]. However, only a few of them haveppsed technical solutions
to protect users’ privacy. In [2, 3], the authors discussdifierent security aspects of



smart metering and the conflicting interests among stakielhsl The privacy of billing
is considered in [18, 15]. Seemingly, the privacy of monitgithe sum consumption of
multiple users may be solved by simply anonymizing indigdmneasurements like in
[8] or using some mixnet. However, these “ad-hoc” technicpre dangerous and do not
provide any real assurances of privacy. Several prominarples in the history have
shown that ad-hoc methods do not work [12]. Moreover, theshrtiques require an
existing trusted third party who performs anonymizatione Buthors in [4] perturb the
released aggregate with random noise and use a differerglrnoch ours to analyze the
privacy of their scheme. However, they do not encrypt irdiial measurements which
means that the added noise must be large enough to guaraeasemable privacy. As
individual noise shares sum up at the aggregation, the fimiabrmakes the aggregate
useless. In contrast to this, [10] uses homomorphic eniotypd guarantee privacy for
individual measurements. However, the aggregate is nttifberd which means that it
is not differential private.

Three closely related works to ours are [17, 20, 6]. [6] dessrprotocols for gener-
ating shares of random noise which is secure against madigiarticipants. However, it
requires communication between users and it uses expesegvet sharing techniques
resulting in high overhead in case of large number of useffd.1], the authors propose a
scheme to differential privately aggregate sums over ielslots when the aggregator
is untrusted. However, they use the threshold Palillier tugystem [9] for homomor-
phic encryption which is much more expensive compared teh&] we use. They also
use different noise distribution technique which requ#egeral rounds of message ex-
changes between the users and the aggregator. By contrasplation is much more
efficient and simple: it requires only a single message exghaf there are no node
failures, otherwise, we only need one extra round. In agidjbur solution does not rely
on expensive public key cryptography during aggregation.

A recent paper [20] proposes another technique to privatggregate time series
data. This work differs from ours as follows: (1) they use #iBiHellman-based en-
cryption scheme, whereas our construction is based on aeffarient construction that
only use modular additions. This approach is better adaptegsource constrained de-
vices like smart meters. (2) Although [20] does not requiedstablishment (and stor-
age) of pairwise keys between nodes as opposed to our appibaanclear how [20]
can be extended to tolerate node and communication failBsesontrast, our scheme
is more robust, as the encryption key of non-responding scdienown to other nodes
in the network that can help to recover the aggregate. (3lljrj20] uses a different
noise generation method from ours, but this technique aatigfies the relaxe¢k, §)-
differential privacy definition. Indeed, in their schemack node adds noise probabilis-
tically which means that none of the nodes add noise with qooséive probabilitys.
Although  can be arbitrarily small, this also decreases the utility.cBntrast, in our
schemeg = 0 while ensuring nearly optimal utility.



3 The model

3.1 Network model

The network is composed of four major parts: sugplier/aggregatartheelectricty
distribution networkthecommunication networland theusers(customers). Every user
is equipped with an electricity smart meter, which meastirelectricity consumption
of the user in everyl,, long period, and, using the communication network, sends th
measurement to the aggregator at the end of every slot (ctigeal), is around 1-
30 minutes). Note that the communication and distributietwork can be the same
(e.g., when PLC technology is used to transfer data). Thesurement of usef in
slot ¢ is denoted byX}. The consumption profile of uséris described by the vector
(X{,X3%,...). Privacy directly correlates witff,; finer-grained samples means more
accurate profile, but also entails weaker privacy. The sepislinterested in the sum of

all measurements in every slot (L&~ , X; & X,).

As in [4], we also assume that smart meters are trusted defiiee tamper-resistant)
which can store key materials and perform crypto computatidhis realistic assump-
tion has also been confirmed in [3]. We assume that each nocnfigured with a
private key and gets the corresponding certificate from stedithird party. For ex-
ample, each country might have a third party that generatesetcertificate and can
additionally generate the “supplier” certificates to sigyptompanies [3]. As in [3], we
also assume that public key operations are employed oninittal key establishment,
probably when a meter is taken over by a new supplier. Messagehanged between
the supplier and the meters are authenticated using paiMisCs 1. Smart meters
are assumed to have bidirectional communication chansglgsome wireless or PLC
technology) with the aggregator, but the meters cannot comicate with each other.
We suppose that nodes may (randomly) fail, and in these cesesot send their mea-
surements to the aggregator. However, nodes are suppasse some reliable transport
protocol to overcome the transient communication faillwkethe channel. Finally, we
note that smart meters also allow the supplier to performdiaéned billing based on
time-dependant variable tariffs. Here, we are not conakwith the privacy and security
problems of this service. Interested readers are refeorfiBt 15].

3.2 Adversary model

In general, the objective of the adversary is to infer dethiihformation about house-
hold activity (e.g, how many people are in home and what threydaing at a given
time). In order to do that, it needs to extract complex usageems of appliances which
include the level of power consumption, periodicity, andadion.

In this paper we consideraishonest-but-non-intrusive (DN) adversafyDN ad-
versary may not follow the protocol correctly and is allovtegrovide false information
to manipulate the collected data. He may also collude withes@malicious) smart me-
ters. However, he is not allowed to access or modify theilligipn network to mount

! Please refer to [16] for a more detailed discussion abounkayagement issues in smart me-
tering systems.



attacks. In particular, he is not allowed to install wirgiaqy devices to eavesdrop on the
victim’s consumption.

3.3 Privacy model

We use differential privacy [7] that models the adversargcdibed above. In par-
ticular, differential privacy guarantees that a user'sgoey should not be threatened
substantially more if he provides his measurement to thplgrp

Definition 1 (e-differential privacy). An algorithmA is e-differential private, if for all
data setsD; and D, whereD; and D, differ in at most a single user, and for all subsets
of possible answerS C Range(A),

P(A(Dy) € 8) < ¢ - P(A(Ds) € 8)

Differential private algorithms produce indistinguist@butputs for similar inputs
(more precisely, differing by a single entry), and thus, thedification of any single
user’s data in the dataset (including its removal or addjt@hanges the probability of
any output only up to a multiplicative factef. The parameter allows us to control the
level of privacy. Lower values of implies stronger privacy, as they restrict further the
influence of a user’s data on the output. Note that this modatantees privacy for a
user even if all other users’ data is known to the adversagy, (i knows all measure-
ments comprising the aggregate except the target uséwsyyhenN — 1 out of N users
are malicious and cooperate with the supplier. The defmiicdifferential privacy also
maintains acomposability propertythe composition of differential private algorithms
remains differential private and theiparameters are accumulated. In particular, a pro-
tocol havingt rounds, where each round is individuadldifferential private, is itself -
differential private.

3.4 Output perturbation: achieving differential privacy

Let's say that we want to publish in a differentially privatay the output of a
function f. The following theorem says that this goal can be achievegkoyurbing the
output of f; simply adding a random noise to the valuefofvhere the noise distribution
is carefully calibrated to the global sensitivity ff results ine-differential privacy. The
global sensitivity of a function is the maximum “"change” hretvalue of the function
when its input differs in a single entry. For instancef ils the sum of all its inputs, the
sensitivity is the maximum value that an input can take.

Theorem 1 ([7]). For all f : D — R", the following mechanisml is e-differential
private: A(D) = f(D) + L(S(f)/e), whereL(S(f)/e) is an independently gener-
ated random variable following the Laplace distributiondafi( /) denotes the global
sensitivity off2.

2 Formally, letf : D — R", then the global sensitivity of is S(f) = max || f(D1) — f(D2)||1,
whereD; and D differ in a single entry ang] - ||, denotes thd.; distance.



Example 1.Toillustrate these definitions, consider a mini smart miegesipplication, where users
Ui, Uz, andUs need to send the sum of their measurements in two consealbitge The mea-
surements of/;, Us and Uz are (X = 300,X3 = 300), (X{ = 100, X7 = 400), and
(X3 = 50, X3 = 150), resp. The nodes want differential privacy for the releasams with
at least & = 0.5. Based on Theorem 1, they need to a@ith = max; Y, X{/0.5 = 1200)
noise to the released sumeéachslot. This noise ensures= ", X/ /X = 0.5 individual indis-
tinguishability forUs, e = 0.42 for Us, ande = 0.17 for Us. Hence, the globat = 0.5 bound is
guaranteed to all. Another interpretation is thathase; = X{ /) = 0.25,e2 = X3 /X = 0.25
privacy in each individual slot, and = £, 4+ €2 = 0.5 considering all two slots following from
the composition property of differential privacy.

3.5 Utility definition

Let f : D — R. In order to measure the utility, we quantify the differefhetween
f(D) and its perturbed value (i.ef(D) = f(D) + £()\)) which is the error introduced
by LPA (Laplacian Perturbation Algorithm). A common scdkependant error measure
is the Mean Absolute Error (MAE), which 8| f (D) — f(D)] in our case. However, the
error should be dependent on the non-perturbed valyd& BY); if f(D) is greater, the
added noise becomes small compared (D) which intuitively results in better utility.
Hence, we rather use a slightly modified version of a scalependent metric called
Mean Absolute Percentage Error (MAPE), which shows the qumtggn of the error to
the data, as follows.

Definition 2 (Error function). Let D, € D denote a dataset in time-slot Further-

more, letd; = % (i.e., the value of the error in sla)). The error function

is defined agu(t) = E(6;). The expectation is taken on the randomnesp(d,). The
standard deviation of the error is(t) = / Var(d:) in timet.

In the rest of this paper, the terms "utility” and "error” arsed interchangeably.

4 Secure aggregation without aggregator: an overview

Our scheme enables the supplier to calculate the sum of niaxilimeasurements
(i.e., Zi\il X} = X, in all t) coming fromN different smart meters while ensuring
e-differential privacy for each user. This is guaranteedh# supplier can only access
X; + L(\(t)), whereL(\(t)) ¥ is the Laplacian noise calibrated toas it has been
described in Section 3.4.

A simple solution would be to rely on an aggregator that aggtes theV sam-
ples and adds Laplacian noise before forwarding the resuhe supplier. Although
this scheme would be differential private, it only workshk&taggregator is trusted. In
particular, the scheme will not be secure if the aggregatoroto add the noise.

Our scheme, instead, does not rely on any centralized aggredhe noise is added
by each smart meter on their individual data and encrypteddh a way that the aggre-
gator can only compute the (noisy) aggregate. Note thatevitrapproach the aggrega-
tor and the supplier do need to be separate entities. Théisupan even play the role

3 We will use the notation instead ofA(t) if the dependency on time is obvious in the context.



Enc( X, +o01) Enc( Xf +02) Enc( X, +on)

Supplier/Aggregator

I

Dec(Y>; Enc(Xt +0i)) = Xe + L(N)

Fig. 1. Our approach: aggregation without trusted entity:;I= G1 (N, X) + G2(N, \), wheregy,
G» are i.i.d gamma noise, thén ", o; = L()\).

of the aggregator, as the encryption prevents it to accelbgdual measurements, and
the distributed generation of the noise ensures that it@ananipulate the noise.

Our proposal is composed of 2 main steps: distributed gé&oaraf the Laplacian
noise and encryption of individual measurements. These@ssare described in the
remainder of this section.

4.1 Distributed noise generation: a new approach

In our proposal, the Laplacian noise is generated in a fudiyriduted way as is illus-
trated in Figure 4. We use the following lemma that statesttieal aplace distribution is
divisible and be constructed as the sum of i.i.d. gammaibligtons. As this divisibility
is infinite, it works for arbitrary number of users.

Lemma 1 (Divisibility of Laplace distribution [13]). Let£(A ) ) denote a random vari-
able which has a Laplace distribution with PDF(z,\) = 5se ¢S, Then the distri-
bution of £(\) is infinitely divisible. Furthermore, for every integer > 1, £L(\) =

S [Gi(n, A) = Ga(n, N)], whereG,(n, ) and Ga(n, \) are i.i.d. random variables

having gamma distribution with PDE(z, n, A) = (}/(i)/;/;m ~le=*/A wherezx > 0.

The lemma comes from the fact that\) can be represented as the difference of two
i.i.d exponential random variables with rate parameger. Moreover,Y """ | Gi(n, \) —
> G2(nN) = Gi(1/ 300, 5. N) = G2(1/ 20, 5. A) = Gi(L,A) — Ga(1, ) due to
the summation property of the gamma distribufiddere,G; (1, \) andGs (1, \) are i.i.d
exponential random variable with rate parameétéx which completes the argument.

Our distributed sanitization algorithm is simple; usealculates valu&; = X7 +
G1(N,)\) — G2(N, ) in slot ¢t and sends it to the aggregator, whe&rg N, \) and
G2(N, A) denote two random values independently drawn from the samerm dis-
tribution. Now, if the aggregator sums up all values recgifrem the N users of a
cluster, therEiJ\;1 Xi= Zi\il Xi+ Zf;l[gl (N, A) — Ga(N, N)] = Xy + L(A) based
onLemma 1.

The utility of our distributed scheme is defined @ag) = ﬁ]E|Xt - X +

SILIGHN,A) = Go(N V)] = SEN = A andd(t) = 52

4 The sum of i i.d. gamma random variables follows gammaiblistion (i.e.,> ", G(ki, A) =

G/ 3y 7 N)-




4.2 Encryption

The previous step is not enough to guarantee privacy asloalgum of the measure-
ments (i.e.X,) is differential private but not the individual measurertsein particular,
the aggregator has accessX, and even ifX/ is noisy,G; (N, \) — Go(N, ) is usu-
ally insufficient to provide reasonable privacy for indival users ifN > 1. This is
illustrated in Figure 2, where an individual’s noisy andgimal measurements slightly
differ.

Energy (Wh)

Energy (Wh)

0000 02:00 0400 06:00 08:00 10:00 1200 1400 16:00 18:00 20:00 2200 00:00 0000 02:00 0400 06:00 08:00 10:00 1200 1400 16:00 18:00 20:00 2200 00:00
Time Time

(@ Xi (b) Xi + Gi(N,A) = G2(N, A)

Fig. 2. The original and noisy measurements of usewhere the added noise & (N, \) —
G2(N, \) (N = 100, T}, is 10 min).

To address this problem, each contribution is encryptedguai modulo addition-
based encryption scheme, inspired by [5], such that theegadpwr can only decrypt the
sum of the individual values, and cannot access any of thepaiticular, let:; denote
a random key generated by ugdnside a cluster such th@ivzl k; = 0, andk; is not
known to the aggregator. Furthermofe;c() denotes a probabilistic encryption scheme
such thatEnce(p, k,m) = p + k mod m, wherep is the plaintextk is the encryption
key, andm is a large integer. The adversary cannot decryptlézme;()?ti, ki, m), since it
does not know;, but it can easily retrieve the noisy sum by adding the erted/poisy
measurements of all usefs} | Enc(X{, ki,m) = S Xi+ SN ki = S0, Xi
mod m. If z = max; ;(X}) thenm should be selected as = 2/1°22(= N1 [5]. The
generation of; is described in Section 5.2.

5 Protocol description

5.1 System setup

In our scheme, nodes are grouped into clusters of SizeshereN is a parameter.
The protocol requires the establishment of pairwise keywden each pair of nodes
inside a cluster that can be done by using traditional DHfehman key exchange as
follows. When a node; is installed, it provides a self-signed DH component and its
certificate to the supplier. Once all the nodes of a clusterirestalled, or a new node
is deployed, the supplier broadcasts the certificates abticobDH components of all
nodes. Finally, each nodeg of the cluster can compute a pairwise Ky ; shared with
any other node; in the networks.



5.2 Smart meter processing
Each node; sends at timeits periodic measurement;, to the supplier as follows:

Phase 1 (Data sanitization):Nodev; calculates valug&’; = X/+G; (N, \)—Ga(N, \),
whereG; (N, \) andG, (N, A) denote two random values independently drawn from
the same gamma distribution andis the cluster size.

Phase 2 (Data encryption): Each noisy dataf(} is then encrypted inttEnc(Xf) using
the modulo addition-based encryption scheme detaileddtic@e4.2. The following
extension is then applied to generate the encryption kegsh Bodey;, selects!
other nodes randomly, such thavifselects;, thenv; also selects;. Afterwards,
both nodes generate a common dummykéym their pairwise keys; ;; v; addsk
to Enc(X?) andv; adds—k to Enc(X7). As a result, the aggregator cannot decrypt
the individual ciphertexts (it does not know the dummy KeyHowever, it adds
all the ciphertexts of a given cluster, the dummy keys canogland it retrieves
the encrypted sum of the (noisy) contributions. The morenfidrdescription is as
follows:

1. nodev; selects some nodes of the cluster randomly (we call thencjpaating
nodes) using a secure pseudo random function (PRF) sucth thatelectsy;,
thenv; also selects;. In particular,v; selectsv; if mapping PRF (K, j,r1)
to a value between 0 and 1 is less or equal th#h, wherer; is a public
value changing in each slot. We denoteflilre number of selected participating
nodes, andind;[j] (for j = 1,...,¢) denotes the index of thenodes selected
by nodev;. Note that, for the supplier, the probability thatselectsy; is 1“5
as it does not knowk’; ;. The expected value dfis w.

2. v; computes for each of ité participating nodes dummy keyA dummy key
betweenv; andv; is defined aslkey, ; = (i—j)/|i — j|- PRF(K; ;,2), where
K; ; is the key shared by; andv;, andry # 7 is public value changing in
each slot. Note thatkey, ; = —dkey; ;.

3. v; then computenc(X}) = Xj + K]+ 3, dkey, j.q.1;) (mod m), where
K/ is the keystream shared by and the aggregator which can be established
using the DH protocol as above, andis a large integer (see [5]). Note that
must be larger than the sum of all contributions (i.e., firgdragate) plus the
Laplacian noisé.

Note thatX/ is encrypted multiple times: it is first encrypted with thg&eam
K/ and then with several dummy keyK! is needed to ensure confidentiality
between a user and the aggregator. The dummy keys are neepievé¢nt the
aggregator (supplier) from retrievinfgti.

4. Enc(X}) is sent to the aggregator (supplier).

5.3 Supplier processing

Phase 1 (Data aggregation)At each slot, the supplier aggregates feneasurements
received from the cluster smart meters by summing them, hmzjvzl Enc(X}).

® Note that the noise is a random value from an infinite domaih tais sum might be larger
thanm. However, choosing sufficiently large, the probability that the sum exceedscan be
made arbitrary small due to the exponential tail of the Lepldistribution.



In particular, Enc(X;) = YN (Xi+ K!) + XN, Z§:1 dkey; ing;(;) (mod m),
Wherezzj.\[:1 Z§:1 dkey; ing,[;] = 0 becausekey, ; = —dkey; ;. Hence Enc(X,;) =
Yisy (X + K7) = Y00, Bne(X)).

Phase 2 (Data decryption): The aggregator then decrypts the aggregated value by sub-
tracting the sum of the node’s keystream, and retrievesuhed the noisy mea-
SureSZZiN:l EnC(XtZ)*ZZJ\;l K= sz\il XZ (mod m) WheeriN:l th = sz\il Xi+
SN LGN A) =N Go(N,N) =N X7 4 £()\) based on Lemma 1.

The main idea of the scheme is that the aggregator is not aloledrypt the individual
encrypted values because it does not know the dummy keysetwby adding the
different encrypted contributions, dummy keys cancel edbkr and the aggregator can
retrieve the sum of the plaintext. The resulting plaintexthien the perturbed sums of
the measurements, where the noise ensures the differeritiaty of each user.

Complexity: Let b denote the size of the pairwise keys (i.&; ;). Our scheme has
O(N - b) storage complexity, as each node needs to store N pairwise keys. The
computational overhead is dominated by the encryption hadkey generation com-
plexity. The encryption is composed 6f< N modular addition ofog, m bits long
integers, while the key generation needs the same numbeéRBfeRRecutions. This re-
sults in a complexity oD(N - (log, m + ¢(b))), wherec(b) is the complexity of the
applied PRF functiorf

6 Adding robustness

We have assumed so far that all tNenodes of a cluster participated in the protocol.
However, it might happen that, for several different reas@ng., node or communica-
tion failures) some nodes are not able to participate in epoich. This would have two
effects: first, security will be reduced since the sum of tbs& added by each node
will not be equivalent ta(\). Hence, differential privacy may not be guaranteed. Sec-
ond, the aggregator will not be able to decrypt the aggregatkie since the sum of the
dummy keys will not cancel out.

In this section, we extend our scheme to resist node failWWespropose a scheme
which resists the failure of up tdf out of N nodes, wher@/ is a configuration param-
eter. We will study later the impact of the valdé on the scheme performance.

Sanitization phase extensionIn order to resist the failure oM nodes, each node
should add the following noise to their individual measueatng, (N — M, \) —Ga (N —
M, \). Note thaty" N MG (N — M, \) — Go(N — M, \)] = L()). Therefore, this
sanitization algorithm remains differential private, if@astN — M nodes participate in

® For instance, ifog, m = 32 bits (which should be sufficient in our applicatioh)= 128, and
N = 1000, a node needs to store 16 Kb of key data and perform maximur@ a6@itions
along with 1000 subtractions (for modular reduction) on 82 long integers, and maximum
1000 PRF executions. This overhead should be negligible emeconstrained embedded de-
vices.



the protocol. Note that in that case each node adds extra twthe aggregate in order
to ensure differential privacy even if fewer thah nodes fail to send their noise share
to the aggregator.

Encryption phase extensionThe encryption phase consists of two rounds. In the first
round, each node adds a secret random value to its encrygligel lvefore releasing it.

In the second round, every node reveals its random valug alih the missing dummy
keys that it knows:

1. Eachnode; sendsinc(X{) = Xj+ K|+ ;_, dkey, jpq,;; +Ci (mod m) where
C; is the secret random key of generated randomly in each round.

2. After receiving all measurements, the aggregator asksodles for their random
keys and the missing dummy keys through broadcasting thietemon-responding
nodes.

3. Each node; verifies whether any ids in this broadcast message are iaitgjpat-
ing node list, where the set of the corresponding partigigatodes is denoted by
S.Then,v; replies withy s dkey; ;nq.1;) + Ci (mod m).

4. The aggregator subtracts all received values @ﬁil Enc(X?) which results in
Zf;l(f(f + K}), as the random keys as well as the dummy keys cancel out.

The main idea of this scheme is th@t prevents the supplier to recovéfti by
combining the messages of nodes. Indeed, dfid not addC;; to its messages in Step 1
and 3, the supplier could easily gﬁf by subtracting the responses@k patrticipating
nodes (andx? that it knows), received in Step 3, frofnc(X7), which is received in
Step 1. However, since the supplier does not know the randeys, it cannot remove
them from any messages but only from the final aggregateraathitg the response of
each node, received in Step 3, from the aggregate, all thexyudays and secret random
keys cancel out and the supplier obtakis Although the supplier can still recovéfg'
if it knows v;’s participating nodes (the supplier simply asks for all duenmy keys of
v; in Step 2 and subtracts’s response in Step 4 frotinc(X?)), this probability can
be made practically small by adjustingand N correctly (see [1] for details).

Utility evaluation If all N nodes participate in the protocol, the added noise will be
larger thanZ(\) which is needed to ensure differential privacy. In part‘m[f;l [G1(N—
M,A) = Go(N — M, N)] = L) + M [G1(N — M, \) — Go(N — M, )], where the
last summand is the extra noise needed to tolerate thedadfumaximumM nodes.
Clearly, this extra noise increases the error ifdlhodes operate correctly and add their
noise shares faithfully. In what follows, we calculate theeand its standard deviation

if we add this extra noise to the aggregate.

()
X+

Theorem 2. Leta = M/N anda < 1. Then,u(t) < 2

B1/2, ) ;ando(t) <

\/(% — B(l/zf‘ﬁ)z) - oy, whereB(z,y) = S22 is the beta function.



The derivation can be found in the full version of this pagddr Based on Theorem

2 B 2 4 ;
2,0’(t> = [,L(t) (m) (E — m) It IS easytO Chethhai(t)
is always less or equal thar{t). In particular, ifa. = 0 (there are no malicious nodes
and node failures), them(t) = u(t). If a > 0theno(t) < u(t) buto(t) ~ u(t).

7 Simulation results

7.1 Electricity trace simulator

Due to the lack of high-resolution real world data, we impégrted an electricity
trace simulator that can generate realistic one-minutdu#en synthetic consumption
traces. It is an extended version of the simulator develdapgti9]. The simulator in-
cludes 33 different appliances. A trace is associated tousdimld and generated as
follows: (1) A number of active persons is selected accardinsome distribution de-
rived from real statistics. This number may vary as some negetan enter or leave the
house. (2) A set of appliances is then selected and actieatgifferent time of the day
according to an other distribution, which was also derivedifreal statistics.

Using this simulator, we generated 3000 electricity tramgsesponding to different
households, where the number of residents in each houselsidandomly selected
between 1 and 5. Each trace was then sanitized accordingrtechbeme. The noise
added in each slot (i.e)(t)) was set to the maximum consumption in the slot (i.e.,
A(t) = maxj<;<ny X; where the maximum is taken on all users in the cluster). This
amount of noise ensures= 1 indistinguishability for individual measurements in all
slots. Although one can increa€t) to get better privacy, the error will also increase.
Note that the errop../ () for othere’ # ¢ values ify. (t) is givenisp. (t) = 5 - p(t).

We assume that(t) = max; X, is known a priori.

7.2 Performance analysis: error according to the cluster gie

The error introduced by our scheme depends on the cluseeAsimn this section,
we present how the error varies accordingMoTable 1 shows the average error value
and its standard deviation, resp., depending on the sizeeafltister in case of different
values ofa. The average error of a given cluster si¥eis the average ofean,(u(t))
of all N-sized clusters Obviously, highetV causes smaller error. Furthermore, a high
« results in larger noise added by each meters, as describ@ection 6, which also
implies larger error. Interestingly, increasing the sampbperiod (i.e.,7},) results in
slight error decrea8ehence, we only considered 10 min sampling period. Otherwis
noted explicitly, we assume 10 min sampling period in thauséq

" In fact, the average error is approximated in Table 1: wequickp 200 different clusters for
eachNV, and plotted the average of theikan; (1.(¢)). 200 is chosen according to experimental
analysis. Above 200, the average error does not changdisanly.

8 This increase is less than 0.01 evemVifis small when the sampling period is changed from 5
min to 15 min.



a=0 a=0.1 a=0.3 a=20.5
mearjdev |mearldev [mearjdev [meardev
100 {0.1180.021 {0.1350.023 {0.1500.0260.17710.032
300 |0.0470.004 |0.0500.005 |0.0540.0060.0770.007
500 |0.0290.002 |0.0310.002 |0.0360.0020.0440.003
800 |0.0190.001 |{0.0200.001 |0.0230.0010.0280.001
10000.0150.00080.0160.00080.0190.0010.0230.001
Table 1. The error depending oV and« using random clustering. The sampling period is 10
min.

N

7.3 Privacy evaluation

Privacy over multiple slots So far, we have considered the privacy of individual slots,
i.e. added noise to guarantee= 1 privacy in each slot of size 10 minutes. However,
a trace is composed of several slots. For instance, if a usthes TV during multiple
slots, we have guaranteed that an adversary cannot telg ifthis watched in any
particular slot (up te& = 1). However, by analysing consecutive slots corresponding
to a given period, it may be able to tell whether the TV was Wetcduring that period
(the privacy bound of this is; = ¢ - s due to the composition property of differential
privacy). Based on Theorem 1, we need to add naig¢ = > ._, max; X; to each
aggregate to guaranteg = 1 bound in consecutive slots, which, of course, results in
higher error than in the case of= 1 that we have assumed so far. Obviously, using the
LPA technique, we cannot guarantee reasonably low ersdnifreases, as the necessary
noiseA(t) = >.7_, max; X; can be large. In order to keep the erigt)/ Zi\il X} low
while ensuring better privacy than = s- ¢, one can increase the number of users inside
each cluster (i.ely).

Let's say that we want to compute the privacy of a useetween 14:00 and 18:00.
If e(t) = X;/\(t) denotes the bound in a single siothen, based on the composition
property of differential privacy, the bourrd for the s = 24 slots between 14:00 (84th
slot) and 18:00 (108th slot) 5,5, £(t). In generalg, (t) = S-177 ().

Table 2 shows what average privacy of a user, in our dataset,fanction of the
cluster size and valug As the cluster size increases, the privacy bound decréiases
privacy increases). The reason is that when the clusteris&zeases, the maximum
consumption also increases with high probability. Sineatbise is calibrated according
to the maximum consumption within the cluster, it will bedar. This results in better
privacy.

s =3(30min)|s =24 (4h)|s = 48 (8h)|s = 144 (24 h)
meal dev |mean dev |mear] dev mear] dev
100|2.34| 0.40 |9.05| 2.59|14.18 3.94|26.24 4.52
300|2.02| 0.44 |7.60| 2.69|11.81 4.14|20.95 4.62
500(1.87| 0.45 |7.04| 2.76 {10.9Q 4.25(19.01 4.85
800|1.76] 0.45 |6.64| 2.79|10.27 4.34(17.56 5.10
100Q 1.67| 0.47 |6.35| 2.87|9.83| 4.47|16.55 5.40
Table 2.¢, of users considering all appliances depending\oands. T, is 10 min.

N




Privacy of appliances In the previous section, we analysed how a user’s privadgsar
over time. In this section, we consider the privacy of théedént appliances. For exam-
ple, we aim at answering the following questiarat was my privacy when | was watch-
ing TV last evening between 18:00 and 20:00°rder to compute the corresponding
privacy (i.ee;), we comput@jﬁo108 e(t), wheres(t) = {TV's consumption int} /A(¢).

We summarized some of the appliance privaay Table 3. Each value is computed
by averaging the privacy provided in our 3000 traces.

The appliances can be divided into two major groups: theaieégctive appliances
indicate that the user is at home and uses the appliance ¢gresumption significantly
changes during their active usage such as iron, vacuunte kett.), whereas passive
appliances (like fridge, freezers, storage heater, et Imore or less identical con-
sumption regardless the user is at home or not.

s =3(30min)|s =24 (4h)|s = 48 (8 h)|s = 144 (24 h)

mear) dev |mear] dev [mear] dev [mear dev

Lighting|0.91| 1.28 |2.68| 1.82| 3.63| 2.29|4.89| 2.97

Cassette / CD Player0.02| 0.04 |0.05| 0.05|0.07| 0.05|0.09| 0.07

Vacuum| 1.67| 7.59 |[1.82| 7.58|1.90| 7.60|1.94| 7.63

Personal computer 0.21| 0.32 |0.83| 0.49|1.09| 0.58| 1.42| 0.83

TV|[0.15] 0.47 |0.37| 0.52|0.45]| 0.58|0.50| 0.63

Microwave| 1.13| 4.23 |1.26| 4.24|1.29| 4.27|1.31| 4.29

Kettle| 0.55| 2.71 |0.72| 2.73]0.83| 2.76| 1.02| 2.79

Washing maching 1.23| 1.43 |1.96| 1.63|2.55| 1.76| 3.07| 2.07

DESWH) 3.34| 14.01 |6.13|14.06/ 7.83|14.23{10.84 14.57

Storage heater8.22| 0.32 |20.2Q 1.99(30.45 4.23(30.45 4.23

Refrigerator0.44| 0.22 |1.06| 0.49|1.40| 0.64|1.92| 0.80

Table 3., of different appliances in case of differentV.= 100 andT,, is 10 min. The name of
active devices are in bold.

Previous tables show two different, and conflicting, resdiable 2 shows that it may
actually be difficult to hide the presence of activities inaubehold. In fact, computed
¢ values are quite high, even for large clusters. Howeveultepresented in Table 3
are more encouraging. They show that, although, it mightiffieult to hide a user’s
presence, it is still possible to hide his actual activityfdct, appliances privacy bounds
(e values) are quite small, which indicates that an adverséhhave difficulty telling
whether the user is, for example, using his computer or vigchV during a given
period of time. Furthermore, results show that it is evenewdfficult for an adversary
to tell when a given activity actually started. Finally, wecall that in order to keep
the error\(t)/ Zf;l X} low while ensuring better privacy one can always increase th
number of users inside each cluster. For instance, doublifrgm 100 to 200 allows to
double the noise while keeping approximately the same egaioe (0.118 in Table 1 if

9 Because of space constraint, we are only able to display ksanaple of our results. A larger
table can be found in [1]



«a = 0). This results in much better privacy, since, on averagebtilog the noise halves
the privacy parametet,.

Although more work and research is needed, we believe thi®iscouraging result
for privacy. Protecting users’ privacy against smart metesystems might not be a
dream after all!
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