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Abstract. This paper presents a new privacy-preserving smart metering system.
Our scheme is private under the differential privacy model and therefore provides
strong and provable guarantees. With our scheme, an (electricity) supplier can pe-
riodically collect data from smart meters and derive aggregated statistics without
learning anything about the activities of individual households. For example, a
supplier cannot tell from a user’s trace whether or when he watched TV or turned
on heating. Our scheme is simple, efficient and practical. Processing cost is very
limited: smart meters only have to add noise to their data andencrypt the results
with an efficient stream cipher.

1 Introduction

Several countries throughout the world are planning to deploy smart meters in house-
holds in the very near future. The main motivation, for governments and electricity sup-
pliers, is to be able to match consumption with generation. Traditional electrical meters
only measure total consumption on a given period of time (i.e., one month or one year).
As such, they do not provide accurate information of when theenergy was consumed.
Smart meters, instead, monitor and report consumption in intervals of few minutes. They
allow the utility provider to monitor, almost in real-time,consumption and possibly ad-
just generation and prices according to the demand. Billingcustomers by how much
is consumed and at what time of day will probably change consumption habits to help
matching consumption with generation. In the longer term, with the advent of smart ap-
pliances, it is expected that the smart grid will remotely control selected appliances to
reduce demand.

Problem statement:Although smart metering might help improving energy manage-
ment, it creates many new privacy problems [2]. Smart metersprovide very accurate
consumption data to electricity providers. As the intervalof data collected by smart me-
ters decreases, the ability to disaggregate low-resolution data increases. Analyzing high-
resolution consumption data, Nonintrusive Appliance LoadMonitoring (NALM) [11]
can be used to identify a remarkable number of electric appliances (e.g., water heaters,
well pumps, furnace blowers, refrigerators, and air conditioners) employing exhaustive
appliance signature libraries. Researchers are now focusing on the myriad of small elec-
tric devices around the home such as personal computers, laser printers, and light bulbs
[14]. Moreover, it has also been shown that even simple off-the-shelf statistical tools can



be used to extract complex usage patterns from high-resolution consumption data [15].
This extracted information can be used to profile and monitorusers for various purposes,
creating serious privacy risks and concerns. As data recorded by smart meters is lower-
ing in resolution, and inductive algorithms are quickly improving, it is urgent to develop
privacy-preserving smart metering systems that provide strong and provable guarantees.

Contributions: We propose a privacy-preserving smart metering scheme thatguarantees
users’ privacy while still preserving the benefits and promises of smart metering. Our
contributions are many-fold and summarized as follows:

– We provide the first provably private and distributed solution for smart metering
that optimizes utility without relying on a trusted third party (i.e., an aggregator).
We were able to avoid the use of a trusted third party by proposing a new distributed
Laplacian Perturbation Algorithm (DLPA).
In our scheme, smart meters are grouped into clusters, wherea cluster is a group of
hundreds or thousands of smart meters corresponding, for example, to a quarter of a
city. Each smart meter sends, at each sampling period, theirmeasures to the supplier.
These measures are noised and encrypted such that the supplier can compute the
noised aggregated electricity consumption of the cluster,at each sampling period,
without getting access to individual values. The aggregateis noised just enough
to provide differential privacy to each participating user, while still providing high
utility (i.e., low error). Our scheme is secure under the differential privacy model
and therefore provides strong and provable privacy guarantees. In particular, we
guarantee that the supplier can retrieve information aboutany user consumption
only up to a predefined threshold, no matter what auxiliary information it knows
about that user. Our scheme is simple, efficient and practical. It requires either one
or two rounds of message exchanges between a meter and the supplier. Furthermore,
processing cost is very limited: smart meters only have to add noise to their data
and encrypt the results with an efficient stream cipher. Finally, our scheme is robust
against smart meter failures and malicious nodes. More specifically, it is secure
even if anα fraction of all nodes of a cluster collude with the supplier,whereα is a
security parameter.

– We implemented a new electricity trace generation tool based on [19] which gener-
ates realistic, one-minute resolution synthetic consumption data of different house-
holds. We used this simulator to evaluate the performance and privacy of our pro-
posal.

Because of space constraint, the security analysis of our scheme is not included in
this paper. This analysis is however included in the longer version of this paper [1]. This
extended version also includes additional performance results.

2 Related Work

Several papers addressed the privacy problems of smart metering in the recent past
[8, 15, 2, 16, 3, 4, 18, 10]. However, only a few of them have proposed technical solutions
to protect users’ privacy. In [2, 3], the authors discuss thedifferent security aspects of



smart metering and the conflicting interests among stakeholders. The privacy of billing
is considered in [18, 15]. Seemingly, the privacy of monitoring the sum consumption of
multiple users may be solved by simply anonymizing individual measurements like in
[8] or using some mixnet. However, these “ad-hoc” techniques are dangerous and do not
provide any real assurances of privacy. Several prominent examples in the history have
shown that ad-hoc methods do not work [12]. Moreover, these techniques require an
existing trusted third party who performs anonymization. The authors in [4] perturb the
released aggregate with random noise and use a different model from ours to analyze the
privacy of their scheme. However, they do not encrypt individual measurements which
means that the added noise must be large enough to guarantee reasonable privacy. As
individual noise shares sum up at the aggregation, the final noise makes the aggregate
useless. In contrast to this, [10] uses homomorphic encryption to guarantee privacy for
individual measurements. However, the aggregate is not perturbed which means that it
is not differential private.

Three closely related works to ours are [17, 20, 6]. [6] describes protocols for gener-
ating shares of random noise which is secure against malicious participants. However, it
requires communication between users and it uses expensivesecret sharing techniques
resulting in high overhead in case of large number of users. In [17], the authors propose a
scheme to differential privately aggregate sums over multiple slots when the aggregator
is untrusted. However, they use the threshold Paillier cryptosystem [9] for homomor-
phic encryption which is much more expensive compared to [5]that we use. They also
use different noise distribution technique which requiresseveral rounds of message ex-
changes between the users and the aggregator. By contrast, our solution is much more
efficient and simple: it requires only a single message exchange if there are no node
failures, otherwise, we only need one extra round. In addition, our solution does not rely
on expensive public key cryptography during aggregation.

A recent paper [20] proposes another technique to privatelyaggregate time series
data. This work differs from ours as follows: (1) they use a Diffie-Hellman-based en-
cryption scheme, whereas our construction is based on a moreefficient construction that
only use modular additions. This approach is better adaptedto resource constrained de-
vices like smart meters. (2) Although [20] does not require the establishment (and stor-
age) of pairwise keys between nodes as opposed to our approach, it is unclear how [20]
can be extended to tolerate node and communication failures. By contrast, our scheme
is more robust, as the encryption key of non-responding nodes is known to other nodes
in the network that can help to recover the aggregate. (3) Finally, [20] uses a different
noise generation method from ours, but this technique only satisfies the relaxed(ε, δ)-
differential privacy definition. Indeed, in their scheme, each node adds noise probabilis-
tically which means that none of the nodes add noise with somepositive probabilityδ.
Although δ can be arbitrarily small, this also decreases the utility. By contrast, in our
scheme,δ = 0 while ensuring nearly optimal utility.



3 The model

3.1 Network model

The network is composed of four major parts: thesupplier/aggregator, theelectricty
distribution network, thecommunication network, and theusers(customers). Every user
is equipped with an electricity smart meter, which measuresthe electricity consumption
of the user in everyTp long period, and, using the communication network, sends the
measurement to the aggregator at the end of every slot (in practice,Tp is around 1-
30 minutes). Note that the communication and distribution network can be the same
(e.g., when PLC technology is used to transfer data). The measurement of useri in
slot t is denoted byX i

t . The consumption profile of useri is described by the vector
(X i

1, X
i
2, . . .). Privacy directly correlates withTp; finer-grained samples means more

accurate profile, but also entails weaker privacy. The supplier is interested in the sum of

all measurements in every slot (i.e.,
∑N

i=1 X
i
t
def
= Xt).

As in [4], we also assume that smart meters are trusted devices (i.e., tamper-resistant)
which can store key materials and perform crypto computations. This realistic assump-
tion has also been confirmed in [3]. We assume that each node isconfigured with a
private key and gets the corresponding certificate from a trusted third party. For ex-
ample, each country might have a third party that generates these certificate and can
additionally generate the “supplier” certificates to supplier companies [3]. As in [3], we
also assume that public key operations are employed only forinitial key establishment,
probably when a meter is taken over by a new supplier. Messages exchanged between
the supplier and the meters are authenticated using pairwise MACs 1. Smart meters
are assumed to have bidirectional communication channel (using some wireless or PLC
technology) with the aggregator, but the meters cannot communicate with each other.
We suppose that nodes may (randomly) fail, and in these cases, cannot send their mea-
surements to the aggregator. However, nodes are supposed touse some reliable transport
protocol to overcome the transient communication failuresof the channel. Finally, we
note that smart meters also allow the supplier to perform fine-grained billing based on
time-dependant variable tariffs. Here, we are not concerned with the privacy and security
problems of this service. Interested readers are referred to [18, 15].

3.2 Adversary model

In general, the objective of the adversary is to infer detailed information about house-
hold activity (e.g, how many people are in home and what they are doing at a given
time). In order to do that, it needs to extract complex usage patterns of appliances which
include the level of power consumption, periodicity, and duration.

In this paper we consider adishonest-but-non-intrusive (DN) adversary. A DN ad-
versary may not follow the protocol correctly and is allowedto provide false information
to manipulate the collected data. He may also collude with some (malicious) smart me-
ters. However, he is not allowed to access or modify the distribution network to mount

1 Please refer to [16] for a more detailed discussion about keymanagement issues in smart me-
tering systems.



attacks. In particular, he is not allowed to install wiretapping devices to eavesdrop on the
victim’s consumption.

3.3 Privacy model

We use differential privacy [7] that models the adversary described above. In par-
ticular, differential privacy guarantees that a user’s privacy should not be threatened
substantially more if he provides his measurement to the supplier.

Definition 1 (ε-differential privacy). An algorithmA is ε-differential private, if for all
data setsD1 andD2, whereD1 andD2 differ in at most a single user, and for all subsets
of possible answersS ⊆ Range(A),

P (A(D1) ∈ S) ≤ eε · P (A(D2) ∈ S)

Differential private algorithms produce indistinguishable outputs for similar inputs
(more precisely, differing by a single entry), and thus, themodification of any single
user’s data in the dataset (including its removal or addition) changes the probability of
any output only up to a multiplicative factoreε. The parameterε allows us to control the
level of privacy. Lower values ofε implies stronger privacy, as they restrict further the
influence of a user’s data on the output. Note that this model guarantees privacy for a
user even if all other users’ data is known to the adversary (e.g., it knows all measure-
ments comprising the aggregate except the target user’s), like whenN−1 out ofN users
are malicious and cooperate with the supplier. The definition of differential privacy also
maintains acomposability property: the composition of differential private algorithms
remains differential private and theirε parameters are accumulated. In particular, a pro-
tocol havingt rounds, where each round is individuallyε differential private, is itselft ·ε
differential private.

3.4 Output perturbation: achieving differential privacy

Let’s say that we want to publish in a differentially privateway the output of a
functionf . The following theorem says that this goal can be achieved byperturbing the
output off ; simply adding a random noise to the value off , where the noise distribution
is carefully calibrated to the global sensitivity off , results inε-differential privacy. The
global sensitivity of a function is the maximum ”change” in the value of the function
when its input differs in a single entry. For instance, iff is the sum of all its inputs, the
sensitivity is the maximum value that an input can take.

Theorem 1 ([7]). For all f : D → R
r, the following mechanismA is ε-differential

private: A(D) = f(D) + L(S(f)/ε), whereL(S(f)/ε) is an independently gener-
ated random variable following the Laplace distribution and S(f) denotes the global
sensitivity off2.

2 Formally, letf : D → R
r, then the global sensitivity off isS(f) = max ||f(D1)−f(D2)||1,

whereD1 andD2 differ in a single entry and|| · ||1 denotes theL1 distance.



Example 1.To illustrate these definitions, consider a mini smart metering application, where users
U1, U2, andU3 need to send the sum of their measurements in two consecutiveslots. The mea-
surements ofU1, U2 andU3 are (X1

1 = 300, X1

2 = 300), (X2

1 = 100, X2

2 = 400), and
(X3

1 = 50, X3

2 = 150), resp. The nodes want differential privacy for the releasedsums with
at least aε = 0.5. Based on Theorem 1, they need to addL(λ = maxi

∑
t X

i
t/0.5 = 1200)

noise to the released sum ineachslot. This noise ensuresε =
∑

t
X1

t /λ = 0.5 individual indis-
tinguishability forU1, ε = 0.42 for U2, andε = 0.17 for U3. Hence, the globalε = 0.5 bound is
guaranteed to all. Another interpretation is thatU1 hasε1 = X1

1/λ = 0.25, ε2 = X1

2/λ = 0.25
privacy in each individual slot, andε = ε1 + ε2 = 0.5 considering all two slots following from
the composition property of differential privacy.

3.5 Utility definition

Let f : D → R. In order to measure the utility, we quantify the differencebetween
f(D) and its perturbed value (i.e.,̂f(D) = f(D) +L(λ)) which is the error introduced
by LPA (Laplacian Perturbation Algorithm). A common scale-dependant error measure
is the Mean Absolute Error (MAE), which isE|f(D)− f̂ (D)| in our case. However, the
error should be dependent on the non-perturbed value off(D); if f(D) is greater, the
added noise becomes small compared tof(D) which intuitively results in better utility.
Hence, we rather use a slightly modified version of a scale-independent metric called
Mean Absolute Percentage Error (MAPE), which shows the proportion of the error to
the data, as follows.

Definition 2 (Error function). Let Dt ∈ D denote a dataset in time-slott. Further-

more, letδt = |f(Dt)−f̂(Dt)|
f(Dt)+1 (i.e., the value of the error in slott). The error function

is defined asµ(t) = E(δt). The expectation is taken on the randomness off̂(Dt). The
standard deviation of the error isσ(t) =

√

Var(δt) in timet.

In the rest of this paper, the terms ”utility” and ”error” areused interchangeably.

4 Secure aggregation without aggregator: an overview

Our scheme enables the supplier to calculate the sum of maximumN measurements
(i.e.,

∑N
i=1 X

i
t = Xt in all t) coming fromN different smart meters while ensuring

ε-differential privacy for each user. This is guaranteed if the supplier can only access
Xt + L(λ(t)), whereL(λ(t)) 3 is the Laplacian noise calibrated toε as it has been
described in Section 3.4.

A simple solution would be to rely on an aggregator that aggregates theN sam-
ples and adds Laplacian noise before forwarding the result to the supplier. Although
this scheme would be differential private, it only works if the aggregator is trusted. In
particular, the scheme will not be secure if the aggregator omits to add the noise.

Our scheme, instead, does not rely on any centralized aggregator. The noise is added
by each smart meter on their individual data and encrypted insuch a way that the aggre-
gator can only compute the (noisy) aggregate. Note that withour approach the aggrega-
tor and the supplier do need to be separate entities. The supplier can even play the role

3 We will use the notationλ instead ofλ(t) if the dependency on time is obvious in the context.



Node 1 Node 2 . . . NodeN

Supplier/Aggregator

Dec(
∑

i Enc(X
i
t + σi)) = Xt + L(λ)

Enc(X1

t + σ1) Enc(X2

t + σ2) Enc(XN
t + σN)

Fig. 1.Our approach: aggregation without trusted entity. Ifσi = G1(N,λ)+G2(N,λ), whereG1,
G2 are i.i.d gamma noise, then

∑N

i=1
σi = L(λ).

of the aggregator, as the encryption prevents it to access individual measurements, and
the distributed generation of the noise ensures that it cannot manipulate the noise.

Our proposal is composed of 2 main steps: distributed generation of the Laplacian
noise and encryption of individual measurements. These 2 steps are described in the
remainder of this section.

4.1 Distributed noise generation: a new approach

In our proposal, the Laplacian noise is generated in a fully distributed way as is illus-
trated in Figure 4. We use the following lemma that states that the Laplace distribution is
divisible and be constructed as the sum of i.i.d. gamma distributions. As this divisibility
is infinite, it works for arbitrary number of users.

Lemma 1 (Divisibility of Laplace distribution [13]). LetL(λ) denote a random vari-

able which has a Laplace distribution with PDFf(x, λ) = 1
2λe

|x|
λ . Then the distri-

bution ofL(λ) is infinitely divisible. Furthermore, for every integern ≥ 1, L(λ) =
∑n

i=1[G1(n, λ) − G2(n, λ)], whereG1(n, λ) andG2(n, λ) are i.i.d. random variables

having gamma distribution with PDFg(x, n, λ) = (1/λ)1/n

Γ (1/n) x
1

n−1e−x/λ wherex ≥ 0.

The lemma comes from the fact thatL(λ) can be represented as the difference of two
i.i.d exponential random variables with rate parameter1/λ. Moreover,

∑n
i=1 G1(n, λ)−

∑n
i=1 G2(n, λ) = G1(1/

∑n
i=1

1
n , λ)−G2(1/

∑n
i=1

1
n , λ) = G1(1, λ)−G2(1, λ) due to

the summation property of the gamma distribution4. Here,G1(1, λ) andG2(1, λ) are i.i.d
exponential random variable with rate parameter1/λ which completes the argument.

Our distributed sanitization algorithm is simple; useri calculates valuêX i
t = X i

t +
G1(N, λ) − G2(N, λ) in slot t and sends it to the aggregator, whereG1(N, λ) and
G2(N, λ) denote two random values independently drawn from the same gamma dis-
tribution. Now, if the aggregator sums up all values received from theN users of a
cluster, then

∑N
i=1 X̂

i
t =

∑N
i=1 X

i
t +

∑N
i=1[G1(N, λ)−G2(N, λ)] = Xt +L(λ) based

on Lemma 1.
The utility of our distributed scheme is defined asµ(t) = 1

Xt+1E|Xt − Xt +
∑n

i=1[G1(N, λ) − G2(N, λ)]| = E|L(λ)|
Xt+1 = λ

Xt+1 , andδ(t) = λ
Xt+1 .

4 The sum of i.i.d. gamma random variables follows gamma distribution (i.e.,
∑n

i=1
G(ki, λ) =

G(1/
∑n

i=1

1

ki
, λ)).



4.2 Encryption

The previous step is not enough to guarantee privacy as only the sum of the measure-
ments (i.e.,̂Xt) is differential private but not the individual measurements. In particular,
the aggregator has access toX̂ i

t , and even ifX̂ i
t is noisy,G1(N, λ) − G2(N, λ) is usu-

ally insufficient to provide reasonable privacy for individual users ifN ≫ 1. This is
illustrated in Figure 2, where an individual’s noisy and original measurements slightly
differ.
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Fig. 2. The original and noisy measurements of useri, where the added noise isG1(N,λ) −
G2(N,λ) (N = 100, Tp is 10 min).

To address this problem, each contribution is encrypted using a modulo addition-
based encryption scheme, inspired by [5], such that the aggregator can only decrypt the
sum of the individual values, and cannot access any of them. In particular, letki denote
a random key generated by useri inside a cluster such that

∑N
i=1 ki = 0, andki is not

known to the aggregator. Furthermore,Enc() denotes a probabilistic encryption scheme
such thatEnc(p, k,m) = p + k mod m, wherep is the plaintext,k is the encryption
key, andm is a large integer. The adversary cannot decrypt anyEnc(X̂ i

t , ki,m), since it
does not knowki, but it can easily retrieve the noisy sum by adding the encrypted noisy
measurements of all users;

∑N
i=1 Enc(X̂ i

t , ki,m) =
∑N

i=1 X̂
i
t +

∑N
i=1 ki =

∑N
i=1 X̂

i
t

mod m. If z = maxi,t(X̂
i
t) thenm should be selected asm = 2⌈log2

(z·N)⌉ [5]. The
generation ofki is described in Section 5.2.

5 Protocol description

5.1 System setup

In our scheme, nodes are grouped into clusters of sizeN , whereN is a parameter.
The protocol requires the establishment of pairwise keys between each pair of nodes
inside a cluster that can be done by using traditional Diffie-Hellman key exchange as
follows. When a nodevi is installed, it provides a self-signed DH component and its
certificate to the supplier. Once all the nodes of a cluster are installed, or a new node
is deployed, the supplier broadcasts the certificates and public DH components of all
nodes. Finally, each nodevi of the cluster can compute a pairwise keyKi,j shared with
any other nodevj in the networks.



5.2 Smart meter processing

Each nodevi sends at timet its periodic measurement,X i
t , to the supplier as follows:

Phase 1 (Data sanitization):Nodevi calculates valuêX i
t = X i

t+G1(N, λ)−G2(N, λ),
whereG1(N, λ) andG2(N, λ) denote two random values independently drawn from
the same gamma distribution andN is the cluster size.

Phase 2 (Data encryption):Each noisy datâX i
t is then encrypted intoEnc(X̂ i

t) using
the modulo addition-based encryption scheme detailed in Section 4.2. The following
extension is then applied to generate the encryption keys: Each node,vi, selectsℓ
other nodes randomly, such that ifvi selectsvj , thenvj also selectsvi. Afterwards,
both nodes generate a common dummy keyk from their pairwise keyKi,j; vi addsk
toEnc(X̂ i

t ) andvj adds−k toEnc(X̂j
t ). As a result, the aggregator cannot decrypt

the individual ciphertexts (it does not know the dummy keyk). However, it adds
all the ciphertexts of a given cluster, the dummy keys cancelout and it retrieves
the encrypted sum of the (noisy) contributions. The more formal description is as
follows:
1. nodevi selects some nodes of the cluster randomly (we call them participating

nodes) using a secure pseudo random function (PRF) such thatif vi selectsvj ,
thenvj also selectsvi. In particular,vi selectsvj if mappingPRF (Ki,j , r1)
to a value between 0 and 1 is less or equal thanwN−1 , wherer1 is a public
value changing in each slot. We denote byℓ the number of selected participating
nodes, andindi[j] (for j = 1, . . . , ℓ) denotes the index of theℓ nodes selected
by nodevi. Note that, for the supplier, the probability thatvi selectsvj is w

N−1
as it does not knowKi,j . The expected value ofℓ is w.

2. vi computes for each of itsℓ participating nodes adummy key. A dummy key
betweenvi andvj is defined asdkeyi,j = (i−j)/|i−j| ·PRF(Ki,j , r2), where
Ki,j is the key shared byvi andvj , andr2 6= r1 is public value changing in
each slot. Note thatdkeyi,j = −dkeyj,i.

3. vi then computesEnc(X̂ i
t) = X̂ i

t +K ′
i +

∑ℓ
j=1 dkeyi,indi[j] (mod m), where

K ′
i is the keystream shared byvi and the aggregator which can be established

using the DH protocol as above, andm is a large integer (see [5]). Note thatm
must be larger than the sum of all contributions (i.e., final aggregate) plus the
Laplacian noise.5

Note thatX̂ i
t is encrypted multiple times: it is first encrypted with the keystream

K ′
i and then with several dummy keys.K ′

i is needed to ensure confidentiality
between a user and the aggregator. The dummy keys are needed to prevent the
aggregator (supplier) from retrievinĝX i

t .
4. Enc(X̂ i

t) is sent to the aggregator (supplier).

5.3 Supplier processing

Phase 1 (Data aggregation):At each slot, the supplier aggregates theN measurements
received from the cluster smart meters by summing them, and obtains

∑N
i=1 Enc(X

i
t).

5 Note that the noise is a random value from an infinite domain and this sum might be larger
thanm. However, choosing sufficiently largem, the probability that the sum exceedsm can be
made arbitrary small due to the exponential tail of the Laplace distribution.



In particular,Enc(X̂t) =
∑N

i=1(X̂
i
t + K ′

i) +
∑N

i=1

∑ℓ
j=1 dkeyi,indi[j] (mod m),

where
∑N

i=1

∑ℓ
j=1 dkeyi,indi[j] = 0 becausedkeyi,j = −dkeyj,i. Hence,Enc(X̂t) =

∑N
i=1(X̂

i
t +K ′

i) =
∑N

i=1 Enc(X̂
i
t).

Phase 2 (Data decryption):The aggregator then decrypts the aggregated value by sub-
tracting the sum of the node’s keystream, and retrieves the sum of the noisy mea-
sures:

∑N
i=1 Enc(X̂

i
t)−

∑N
i=1 K

′
i =

∑N
i=1 X̂

i
t (mod m)where

∑N
i=1 X̂

i
t =

∑N
i=1 X

i
t+

∑N
i=1 G1(N, λ)−

∑N
i=1 G2(N, λ) =

∑N
i=1 X

i
t + L(λ) based on Lemma 1.

The main idea of the scheme is that the aggregator is not able to decrypt the individual
encrypted values because it does not know the dummy keys. However, by adding the
different encrypted contributions, dummy keys cancel eachother and the aggregator can
retrieve the sum of the plaintext. The resulting plaintext is then the perturbed sums of
the measurements, where the noise ensures the differentialprivacy of each user.

Complexity: Let b denote the size of the pairwise keys (i.e.,Ki,j). Our scheme has
O(N · b) storage complexity, as each node needs to storeℓ ≤ N pairwise keys. The
computational overhead is dominated by the encryption and the key generation com-
plexity. The encryption is composed ofℓ ≤ N modular addition oflog2 m bits long
integers, while the key generation needs the same number of PRF executions. This re-
sults in a complexity ofO(N · (log2 m + c(b))), wherec(b) is the complexity of the
applied PRF function.6

6 Adding robustness

We have assumed so far that all theN nodes of a cluster participated in the protocol.
However, it might happen that, for several different reasons (e.g., node or communica-
tion failures) some nodes are not able to participate in eachepoch. This would have two
effects: first, security will be reduced since the sum of the noise added by each node
will not be equivalent toL(λ). Hence, differential privacy may not be guaranteed. Sec-
ond, the aggregator will not be able to decrypt the aggregated value since the sum of the
dummy keys will not cancel out.

In this section, we extend our scheme to resist node failures. We propose a scheme
which resists the failure of up toM out ofN nodes, whereM is a configuration param-
eter. We will study later the impact of the valueM on the scheme performance.

Sanitization phase extension In order to resist the failure ofM nodes, each node
should add the following noise to their individual measurement:G1(N−M,λ)−G2(N−

M,λ). Note that
∑N−M

i=1 [G1(N − M,λ) − G2(N − M,λ)] = L(λ). Therefore, this
sanitization algorithm remains differential private, if at leastN−M nodes participate in

6 For instance, iflog
2
m = 32 bits (which should be sufficient in our application),b = 128, and

N = 1000, a node needs to store 16 Kb of key data and perform maximum 1000 additions
along with 1000 subtractions (for modular reduction) on 32 bits long integers, and maximum
1000 PRF executions. This overhead should be negligible even on constrained embedded de-
vices.



the protocol. Note that in that case each node adds extra noise to the aggregate in order
to ensure differential privacy even if fewer thanM nodes fail to send their noise share
to the aggregator.

Encryption phase extensionThe encryption phase consists of two rounds. In the first
round, each node adds a secret random value to its encrypted value before releasing it.
In the second round, every node reveals its random value along with the missing dummy
keys that it knows:

1. Each nodevi sendsEnc(X̂ i
t) = X̂ i

t+K ′
i+

∑ℓ
j=1 dkeyi,indi[j]+Ci (mod m) where

Ci is the secret random key ofvi generated randomly in each round.
2. After receiving all measurements, the aggregator asks all nodes for their random

keys and the missing dummy keys through broadcasting the id of the non-responding
nodes.

3. Each nodevi verifies whether any ids in this broadcast message are in its participat-
ing node list, where the set of the corresponding participating nodes is denoted by
S. Then,vi replies with

∑

j∈S dkeyi,indi[j] + Ci (mod m).

4. The aggregator subtracts all received values from
∑N

i=1 Enc(X̂
i
t) which results in

∑N
i=1(X̂

i
t +K ′

i), as the random keys as well as the dummy keys cancel out.

The main idea of this scheme is thatCi prevents the supplier to recover̂X i
t by

combining the messages of nodes. Indeed, ifvi did not addCi to its messages in Step 1
and 3, the supplier could easily getX̂ i

t by subtracting the responses ofvi’s participating
nodes (andK ′

i that it knows), received in Step 3, fromEnc(X̂ i
t), which is received in

Step 1. However, since the supplier does not know the random keys, it cannot remove
them from any messages but only from the final aggregate; subtracting the response of
each node, received in Step 3, from the aggregate, all the dummy keys and secret random
keys cancel out and the supplier obtainsX̂t. Although the supplier can still recover̂X i

t

if it knows vi’s participating nodes (the supplier simply asks for all thedummy keys of
vi in Step 2 and subtractsvi’s response in Step 4 fromEnc(X̂ i

t )), this probability can
be made practically small by adjustingw andN correctly (see [1] for details).

Utility evaluation If all N nodes participate in the protocol, the added noise will be
larger thanL(λ) which is needed to ensure differential privacy. In particular,

∑N
i=1[G1(N−

M,λ)− G2(N −M,λ)] = L(λ) +
∑M

i=1[G1(N −M,λ)− G2(N −M,λ)], where the
last summand is the extra noise needed to tolerate the failure of maximumM nodes.
Clearly, this extra noise increases the error if allN nodes operate correctly and add their
noise shares faithfully. In what follows, we calculate the error and its standard deviation
if we add this extra noise to the aggregate.

Theorem 2. Letα = M/N andα < 1. Then,µ(t) ≤ 2
B(1/2, 1

1−α )
· λ(t)
Xt+1 andσ(t) ≤

√

(

2
1−α − 4

B(1/2, 1

1−α )2

)

· λ(t)
Xt+1 , whereB(x, y) = Γ (x)Γ (y)

Γ (x+y) is the beta function.



The derivation can be found in the full version of this paper [1]. Based on Theorem

2,σ(t) = µ(t) ·
(

2
B(1/2, 1

1−α )

)−1

·

√

(

2
1−α − 4

B(1/2, 1

1−α )2

)

. It is easy to check thatσ(t)

is always less or equal thanµ(t). In particular, ifα = 0 (there are no malicious nodes
and node failures), thenσ(t) = µ(t). If α > 0 thenσ(t) < µ(t) butσ(t) ≈ µ(t).

7 Simulation results

7.1 Electricity trace simulator

Due to the lack of high-resolution real world data, we implemented an electricity
trace simulator that can generate realistic one-minute resolution synthetic consumption
traces. It is an extended version of the simulator developedin [19]. The simulator in-
cludes 33 different appliances. A trace is associated to a household and generated as
follows: (1) A number of active persons is selected according to some distribution de-
rived from real statistics. This number may vary as some members can enter or leave the
house. (2) A set of appliances is then selected and activatedat different time of the day
according to an other distribution, which was also derived from real statistics.

Using this simulator, we generated 3000 electricity tracescorresponding to different
households, where the number of residents in each householdwas randomly selected
between 1 and 5. Each trace was then sanitized according to our scheme. The noise
added in each slot (i.e.,λ(t)) was set to the maximum consumption in the slot (i.e.,
λ(t) = max1≤i≤N X i

t where the maximum is taken on all users in the cluster). This
amount of noise ensuresε = 1 indistinguishability for individual measurements in all
slots. Although one can increaseλ(t) to get better privacy, the error will also increase.
Note that the errorµε′(t) for otherε′ 6= ε values ifµε(t) is given isµε′(t) =

ε
ε′ · µε(t).

We assume thatλ(t) = maxi X
i
t is known a priori.

7.2 Performance analysis: error according to the cluster size

The error introduced by our scheme depends on the cluster sizeN . In this section,
we present how the error varies according toN . Table 1 shows the average error value
and its standard deviation, resp., depending on the size of the cluster in case of different
values ofα. The average error of a given cluster sizeN is the average ofmeant(µ(t))
of all N -sized clusters7. Obviously, higherN causes smaller error. Furthermore, a high
α results in larger noise added by each meters, as described inSection 6, which also
implies larger error. Interestingly, increasing the sampling period (i.e.,Tp) results in
slight error decrease8, hence, we only considered 10 min sampling period. Otherwise
noted explicitly, we assume 10 min sampling period in the sequel.

7 In fact, the average error is approximated in Table 1: we picked up 200 different clusters for
eachN , and plotted the average of theirmeant(µ(t)). 200 is chosen according to experimental
analysis. Above 200, the average error does not change significantly.

8 This increase is less than 0.01 even ifN is small when the sampling period is changed from 5
min to 15 min.



N
α = 0 α = 0.1 α = 0.3 α = 0.5

meandev meandev meandev meandev

100 0.1180.021 0.1350.023 0.1500.0260.1770.032
300 0.0470.004 0.0500.005 0.0540.0060.0700.007
500 0.0290.002 0.0310.002 0.0360.0020.0440.003
800 0.0190.001 0.0200.001 0.0230.0010.0280.001
10000.0150.00080.0160.00080.0190.0010.0230.001

Table 1. The error depending onN andα using random clustering. The sampling period is 10
min.

7.3 Privacy evaluation

Privacy over multiple slots So far, we have considered the privacy of individual slots,
i.e. added noise to guaranteeε = 1 privacy in each slot of size 10 minutes. However,
a trace is composed of several slots. For instance, if a user watches TV during multiple
slots, we have guaranteed that an adversary cannot tell if the TV is watched in any
particular slot (up toε = 1). However, by analysings consecutive slots corresponding
to a given period, it may be able to tell whether the TV was watched during that period
(the privacy bound of this isεs = ε · s due to the composition property of differential
privacy). Based on Theorem 1, we need to add noiseλ(t) =

∑s
i=1 maxiX

i
t to each

aggregate to guaranteeεs = 1 bound in consecutives slots, which, of course, results in
higher error than in the case ofs = 1 that we have assumed so far. Obviously, using the
LPA technique, we cannot guarantee reasonably low error ifs increases, as the necessary
noiseλ(t) =

∑s
i=1 maxi X

i
t can be large. In order to keep the errorλ(t)/

∑N
i=1 X

i
t low

while ensuring better privacy thanεs = s ·ε, one can increase the number of users inside
each cluster (i.e.,N ).

Let’s say that we want to compute the privacy of a useri between 14:00 and 18:00.
If ε(t) = X i

t/λ(t) denotes the bound in a single slott, then, based on the composition
property of differential privacy, the boundεs for thes = 24 slots between 14:00 (84th
slot) and 18:00 (108th slot) is

∑108
t=84 ε(t). In general,εs(t) =

∑t+s
i=t ε(i).

Table 2 shows what average privacy of a user, in our dataset, as a function of the
cluster size and values. As the cluster size increases, the privacy bound decreases(i.e.
privacy increases). The reason is that when the cluster sizeincreases, the maximum
consumption also increases with high probability. Since the noise is calibrated according
to the maximum consumption within the cluster, it will be larger. This results in better
privacy.

N
s = 3 (30min) s = 24 (4 h) s = 48 (8 h) s = 144 (24 h)
mean dev mean dev mean dev mean dev

100 2.34 0.40 9.05 2.59 14.18 3.94 26.24 4.52
300 2.02 0.44 7.60 2.69 11.81 4.14 20.95 4.62
500 1.87 0.45 7.04 2.76 10.90 4.25 19.01 4.85
800 1.76 0.45 6.64 2.79 10.27 4.34 17.56 5.10
1000 1.67 0.47 6.35 2.87 9.83 4.47 16.55 5.40

Table 2.εs of users considering all appliances depending onN ands. Tp is 10 min.



Privacy of appliances In the previous section, we analysed how a user’s privacy varies
over time. In this section, we consider the privacy of the different appliances. For exam-
ple, we aim at answering the following question:what was my privacy when I was watch-
ing TV last evening between 18:00 and 20:00?In order to compute the corresponding
privacy (i.e.εs), we compute

∑120
t=108 ε(t), whereε(t) = {TV’s consumption int}/λ(t).

We summarized some of the appliance privacy9 in Table 3. Each value is computed
by averaging the privacy provided in our 3000 traces.

The appliances can be divided into two major groups: the usage of active appliances
indicate that the user is at home and uses the appliance (their consumption significantly
changes during their active usage such as iron, vacuum, kettle, etc.), whereas passive
appliances (like fridge, freezers, storage heater, etc.) have more or less identical con-
sumption regardless the user is at home or not.

s = 3 (30min) s = 24 (4 h) s = 48 (8 h) s = 144 (24 h)
mean dev mean dev mean dev mean dev

Lighting 0.91 1.28 2.68 1.82 3.63 2.29 4.89 2.97
Cassette / CD Player0.02 0.04 0.05 0.05 0.07 0.05 0.09 0.07

Vacuum 1.67 7.59 1.82 7.58 1.90 7.60 1.94 7.63
Personal computer 0.21 0.32 0.83 0.49 1.09 0.58 1.42 0.83

TV 0.15 0.47 0.37 0.52 0.45 0.58 0.50 0.63
Microwave 1.13 4.23 1.26 4.24 1.29 4.27 1.31 4.29

Kettle 0.55 2.71 0.72 2.73 0.83 2.76 1.02 2.79
Washing machine 1.23 1.43 1.96 1.63 2.55 1.76 3.07 2.07

DESWH 3.34 14.01 6.13 14.06 7.83 14.23 10.85 14.57
Storage heaters3.22 0.32 20.20 1.99 30.45 4.23 30.45 4.23

Refrigerator0.44 0.22 1.06 0.49 1.40 0.64 1.92 0.80
Table 3.εs of different appliances in case of differents. N = 100 andTp is 10 min. The name of
active devices are in bold.

Previous tables show two different, and conflicting, results. Table 2 shows that it may
actually be difficult to hide the presence of activities in a household. In fact, computed
ε values are quite high, even for large clusters. However, results presented in Table 3
are more encouraging. They show that, although, it might be difficult to hide a user’s
presence, it is still possible to hide his actual activity. In fact, appliances privacy bounds
(ε values) are quite small, which indicates that an adversary will have difficulty telling
whether the user is, for example, using his computer or watching TV during a given
period of time. Furthermore, results show that it is even more difficult for an adversary
to tell when a given activity actually started. Finally, we recall that in order to keep
the errorλ(t)/

∑N
i=1 X

i
t low while ensuring better privacy one can always increase the

number of users inside each cluster. For instance, doublingN from 100 to 200 allows to
double the noise while keeping approximately the same errorvalue (0.118 in Table 1 if

9 Because of space constraint, we are only able to display a small sample of our results. A larger
table can be found in [1]



α = 0). This results in much better privacy, since, on average, doubling the noise halves
the privacy parameterεs.

Although more work and research is needed, we believe this isa encouraging result
for privacy. Protecting users’ privacy against smart metering systems might not be a
dream after all!
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