
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 1

Provably Secure On-demand Source Routing in
Mobile Ad Hoc Networks

GergelyÁcs Levente Buttýan Istv́an Vajda
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics, Hungary

Abstract

Routing is one of the most basic networking functions in mobile ad hoc networks. Hence, an adversary can
easily paralyze the operation of the network by attacking the routing protocol. This has been realized by many
researchers, and several “secure” routing protocols have been proposed for ad hoc networks. However, the security
of those protocols have mainly been analyzed by informal means only. In this paper, we argue that flaws in
ad hoc routing protocols can be very subtle, and we advocate a more systematic way of analysis. We propose
a mathematical framework in which security can be precisely defined, and routing protocols for mobile ad hoc
networks can be proved to be secure in a rigorous manner. Our framework is tailored for on-demand source routing
protocols, but the general principles are applicable to other types of protocols too. Our approach is based on the
simulation paradigm, which has already been used extensively for the analysis of key establishment protocols, but
to the best of our knowledge, it has not been applied in the context of ad hoc routing so far. We also propose a new
on-demand source routing protocol, called endairA, and we demonstrate the usage of our framework by proving
that it is secure in our model.

Index Terms

Mobile ad hoc networks, secure routing, provable security

I. I NTRODUCTION

Routing is one of the most basic networking functions in mobile ad hoc networks. Hence, an adversary
can easily paralyze the operation of the network by attacking the routing protocol. This has been realized
by many researchers, and several “secure” routing protocols have been proposed for ad hoc networks (see
[13] for a survey). However, the security of those protocols have been analyzed either by informal means
only, or with formal methods that have never been intended for the analysis of this kind of protocols (e.g.,
BAN logic [4]). In this paper, we present new attacks on Ariadne, a previously published “secure” routing
protocol [10]. Other attacks can be found in [6]. These attacks clearly demonstrate that flaws can be
very subtle, and therefore, hard to discover by informal reasoning. Hence, we advocate a more systematic
approach to analyzing ad hoc routing protocols, which is based on a rigorous mathematical model, in
which precise definitions of security can be given, and sound proof techniques can be developed.

Routing has two main functions: route discovery and packet forwarding. The former is concerned with
discovering routes between nodes, whereas the latter is about sending data packets through the previously
discovered routes. There are different types of ad hoc routing protocols. One can distinguish proactive (e.g.,
OLSR [7]) and reactive (e.g., AODV [19] and DSR [14]) protocols. Protocols of the latter category are
also called on-demand protocols. Another type of classification distinguishes routing table based protocols
(e.g., AODV) and source routing protocols (e.g., DSR). In this paper,we focus on the route discovery
part of on-demand source routing protocols. However, in [1], we show that the general principles of our
approach are applicable to the route discovery part of other types of protocols too.

At a very informal level, security of a routing protocol means that it can perform its functions even in
the presence of an adversary whose objective is to prevent the correct functioning of the protocol. Since

Accepted for publication in the IEEE Transactions on Mobile Computing. Date of acceptance: November 28, 2005.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 2

we are focusing on the route discovery part of on-demand source routing protocols, in our case, attacks
are aiming at achieving that honest nodes receive “incorrect” routes as a result of the route discovery
procedure. We will make it more precise later what we mean by an “incorrect” route.

Regarding the capabilities of the adversary, we assume that it can mount active attacks (i.e., it can
eavesdrop, modify, delete, insert, and replay messages). However, we make the realistic assumption
that the adversary is not all powerful, by which we mean that it cannot eavesdrop, modify, or control
all communications of the honest participants. Instead, the adversary launches its attacks from a few
adversarial nodes that have similar communication capabilities to the nodes of the honest participants in
the network. This means that the adversary can receive only those messages that were transmitted by
one of its neighbors, and its transmissions can be heard only by its neighbors. The adversarial nodes
may be connected through proprietary, out-of-band channels and share information. We further assume
that the adversary has compromised some identifiers, by which we mean that it has compromised the
cryptographic keys that are used to authenticate those identifiers. Thus, the adversary can appear as an
honest participant under any of these compromised identities.

The mathematical framework that we introduce in this paper is based on the so calledsimulation
paradigm [2], [21]. This has been successfully used in the analysis of some cryptographic algorithms
and some cryptographic protocols (see Section V for a very brief overview). However, it has never been
applied in the context of ad hoc routing protocols.

The main contributions of our work are the following (in order of believed importance):
1) the application of the well established simulation approach in a new context (ad hoc routing protocols);
2) the discovery of as yet unknown attacks against previously published ad hoc routing protocols; and
3) the design of a new on-demand source routing protocol for mobile ad hoc networks, called endairA,

which is provably secure in our model, and which may be of independent interest for practitioners.
Preliminary results of this work have been presented in [6]. However, in that paper, we considered

only a limited adversary that controls a single adversarial node and uses a single compromised identifier,
and we did not allow parallel protocol runs. In this paper, we extend our previous results to a more
powerful adversary that controls multiple adversarial nodes and uses multiple compromised identifiers,
and we allow the simultaneous execution of any number of instances of the route discovery protocol. We
also present two new attacks against Ariadne, as well as some extensions to the endairA protocol, which
have never been published before.

The rest of the paper is organized as follows: In Section II, we present two new attacks on Ariadne. Our
goal is to motivate the need for a rigorous analysis technique. In Section III, we introduce our mathematical
framework, which includes a precise definition of security and the description of our proof technique. In
Section IV, we present endairA, a new on-demand source routing protocol for ad hoc networks, and we
demonstrate the usage of our framework by proving endairA secure. We report on some related work in
Section V, where we also highlight some novelties of our modelling approach with respect to previous
applications of the simulation paradigm. Finally, in Section VI, we conclude the paper.

II. N EW ATTACKS ON ARIADNE

We have already published attacks against Ariadne and SRP in [6]. In this section, we present two new
attacks against Ariadne. One of the attacks works on the basic version of the protocol as it appears in [10];
the other one demonstrates the insecurity of an optimized version proposed in [11]. Our main goal in this
section is to demonstrate that attacks against ad hoc routing protocols can be very subtle, and therefore,
difficult to discover. Consequently, it is also difficult to gain sufficient assurances that a protocol is free
of flaws. The approach of verifying the protocol for a few number of specific configurations can never
be exhaustive, and thus, it is far from being satisfactory as a method for security analysis. The attacks
presented in this section motivate a more rigorous approach for making claims about the security of ad
hoc routing protocols, which is the main theme of this paper.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 3

A. Operation of the basic Ariadne protocol with MACs

Ariadne has been proposed in [10] as a secure on-demand source routing protocol for ad hoc networks.
Ariadne comes in three different flavors corresponding to three different techniques for data authentication.
More specifically, authentication of routing messages in Ariadne can be based on TESLA [20], on digital
signatures, or on MACs (Message Authentication Codes). We discuss Ariadne with MACs.

The initiator of the route discovery generates a route request message and broadcasts it to its neighbors.
The route discovery message contains the identifiers of the initiator and the target, a randomly generated
request identifier, and a MAC computed over these elements with a key shared by the initiator and the
target. This MAC is hashed iteratively by each intermediate node together with its own identifier using
a publicly known one-way hash function. The hash values computed in this way are called per-hop hash
values. Each intermediate node that receives the request for the first time re-computes the per-hop hash
value, appends its identifier to the list of identifiers accumulated in the request, and computes a MAC on
the updated request with a key that it shares with the target. Finally, the MAC is appended to a MAC
list in the request, and the request is re-broadcast. The purpose of the per-hop hash value is to prevent
removal of identifiers from the accumulated route in the route request.

When the target receives the request, it verifies the per-hop hash by re-computing the initiator’s MAC
and the per-hop hash value of each intermediate node. Then it verifies the MAC of each intermediate
node. If all these verifications are successful, then the target generates a route reply and sends it back
to the initiator via the reverse of the route obtained from the route request. The route reply contains the
identifiers of the target and the initiator, the route obtained from the request, and the MAC of the target
on all these elements that is computed with a key shared by the target and the initiator. Each intermediate
node passes the reply to the next node on the route (towards the initiator) without any modification. When
the initiator receives the reply, it verifies the MAC of the target. If the verification is successful, then it
accepts the route returned in the reply.

Although Ariadne does not specify it explicitly, we will nonetheless assume that each node also performs
the following verifications when processing route request and route reply messages:

• When a nodev receives a route request for the first time, it verifies if the last identifier of the
accumulated route in the request corresponds to a neighbor ofv. If no identifiers can be found in the
accumulated route, thenv verifies if the identifier of the initiator corresponds to a neighboring node.

• When a nodev receives a route reply, it verifies if its identifier is included in the route carried by
the reply. In addition, it also verifies if the preceding identifier (or if there is no preceding identifier,
then the identifier of the initiator) and the following identifier (or if there is no following identifier,
then the identifier of the target) in the route correspond to neighbors ofv.

If these verifications fail, then the message is dropped. Note, however, that the intermediate nodes cannot
verify the MACs of the preceding nodes in the route request and the MAC of the target in the route reply,
because they do not possess the necessary keys for that.

B. An attack on Ariadne with MACs

Let us consider the network configuration illustrated in Figure 1. We assume that the adversary controls
two adversarial nodes (represented by the black nodes in the figure), and it uses only a single compromised
identifier Z. In [10], an active adversary that controlsx adversarial nodes and usesy compromised
identifiers is called an Active-y-x adversary. Therefore, our adversary is an Active-1-2 adversary.

We explain the attack when Ariadne is used with standard MACs, but we emphasize that a similar attack
can also be carried out when TESLA is used, or when digital signatures are used and, for efficiency reasons,
intermediate nodes do not verify the signature list in the route request (which is an assumption that is
compliant with the description of Ariadne in [10]).

S initiates a route discovery process towardT . The first adversarial node receives the following route
request:

msg1 = (rreq, S, T, id , hA, (A), (macA))

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 4

S
...

Z Z TA B C D

Fig. 1. Part of a configuration where an Active-1-2 attack against Ariadne is possible

The adversary does not append the MAC ofZ to the request, instead, it putshA on the MAC list, and
re-broadcasts the following request:

msg2 = (rreq, S, T, id , hA, (A,Z), (macA, hA))

Recall that the intermediate nodes cannot verify the MACs in the request. Note also that MAC functions
based on cryptographic hash functions (e.g., HMAC [15]) output a hash value as the MAC, and therefore,
hA looks like a MAC. Hence,B will not detect the attack, and the following request arrives to the second
adversarial node:

msg3 = (rreq, S, T, id , H(C, . . . , H(B, hA)), (A,Z,B, . . . , C), (macA, hA,macB, . . . ,macC))

The adversary removesB, . . . , C from the node list and the corresponding MACs from the MAC list.
The adversary can do this in the following way: By recognizing identifierZ in the accumulated route,
the adversary knows that the request passed through the first adversarial node. By looking at the position
of identifier Z in the node list, the adversary will know wherehA is on the MAC list. FromhA, the
adversary computeshZ = H(Z, hA) and a MAC on(rreq, S, T, id , hZ , (A, Z),macA), and re-broadcasts
the following request:

msg4 = (rreq, S, T, id , hZ , (A,Z), (macA,macZ))

Since the per-hop hash value and both MACs are correct inmsg4, T will receive a correct request, and
returns the following reply:

msg5 = (rrep, T, S, (A,Z,D), macT)

When the reply reaches the second adversarial node, it will forward the following message toC:

msg6 = (rrep, T, S, (A,Z, B, . . . , C, Z, D), macT)

Note thatB, . . . , C cannot verify the MAC inmsg6. In addition, their identifiers are in the route carried
by the reply, and the preceding and following identifiers belong to their neighbors. Therefore, each of
them forwards the reply. Finally, when the first adversarial node receives the reply, it removesB, . . . , C
and one of theZ ’s from the node list:

msg7 = (rrep, T, S, (A,Z,D), macT)

In this way, S receives the route reply thatT sent. This means that the MAC verifies correctly andS
accepts the route(S, A, Z,D, T), which is non-existent.

It must be noted that inmsg6, the compromised identifierZ appears twice in the node list. Note,
however, that Ariadne does not specify that intermediate nodes should check the node list in the reply
for repeating identifiers. If each honest node checks only that its own identifier is in the list and that the
preceding and following identifiers belong to its neighbors, then the attack works. Moreover, a slightly
modified version of the attack would work even if the intermediate nodes checked repeating identifiers in
the reply. In that case, the second adversarial node would send the following reply towardsS:

msg ′6 = (rrep, T, S, (A,X, B, . . . , C, Z, D), macT)

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 5

whereX can be any identifier that is different from the other identifiers in the node list. With non-negligible
probability1, X is a neighbor ofB, and thus,B will pass the reply on, so that the first adversarial node
can overhear it. Then, the adversary can remove the identifiersX, B, . . . , C, and send the reply containing
the node list(A,Z, D) to A. A will process the reply, because it contains no repeating identifiers andZ
is its neighbor. Alternatively, the first adversarial node may send information about the neighborhood of
B to the second adversarial node in a proprietary way.

This is a very powerful attack (more powerful than the attack published in [6]), because despite the
usage of the per-hop hash mechanism, the adversary manages to shorten an existing route, and therefore,
the initiator will probably prefer this short route over others (assuming there are other alternative routes
betweenS andT that are not illustrated in Figure 1). In other words, the adversary is able to divert the
communication betweenS andT through itself, and then control it.

C. An optimized version of Ariadne

In [11], an optimized version of Ariadne is proposed, which does not use a per-hop hash value and a
MAC list in the route request, but instead, a single MAC is updated by the intermediate nodes iteratively.
In this optimized version of Ariadne, the route request re-broadcast by thei-th intermediate nodeFi has
the following form:

(rreq, S, T, id , (F1, . . . , Fi−1, Fi), macFi
)

wheremacFi
is a MAC computed byFi with the key that it shares withT on the route request that it

received fromFi−1:
(rreq, S, T, id , (F1, . . . , Fi−1), macFi−1

)

with the convention thatmacF0 = macS.
The authors of [11] proposed this optimized version, because it is more efficient than the basic protocol

in terms of computational and communication overhead. First, there is no need anymore for the per-hop
hash mechanism, since the MACs computed by the intermediate nodes can play the same role as the per-
hop hash values in the original protocol. Second, route requests are shorter, because they do not contain
a per-hop hash value and they contain only a single MAC instead of a MAC list.

Incidentally, and independently of the authors’ intent, the optimized version also prevents the attack
described in the previous subsection, because the adversary cannot access the MACs of the intermediate
nodes in the same way as it can in the case of a MAC list, and therefore, MACs cannot be removed from
the route request at the adversary’s will. One may be tempted to believe that the optimized version of
Ariadne is more robust than the original one, but unfortunately, it is also vulnerable to attacks.

D. An attack on the optimized version of Ariadne

Let us consider the network configuration illustrated in Figure 2. Now we assume an Active-2-2
adversary, meaning that the adversary controls two adversarial nodes (the black nodes in the figure),
and uses two compromised identifiersX andY .

S initiates a route discovery towardT . The first adversarial node receives the following route request:

msg1 = (rreq, S, T, id , (. . . , A),macS...A)

The adversary follows the protocol and re-broadcasts the following message:

msg2 = (rreq, S, T, id , (. . . , A, X),macS...AX)

Both B and C receivemsg2 and re-broadcast the appropriate route request messages, but those are not
re-broadcast by the second adversarial node.

1In fact, the probability thatX is a neighbor ofB is greater thannB/N , whereN is the number of nodes in the network andnB is the
number ofB’s neighbors.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 6

� � � �� � ��

�

�

�
	 	 	

Fig. 2. Part of a configuration where an Active-2-2 attack against the optimized version of Ariadne is possible

Some time after the first adversarial node broadcast the route request, it creates a fake route reply:

msg3 = (rrep, S, T, id , (. . . , A, X, B, Y, . . .),macS...A)

and sends it toB in the name ofY . SinceB has processed the route request, it is in a state where it is
ready to receive a corresponding route reply. In addition,Y is a neighbor ofB, andB is on the node list
in msg3. Therefore,B accepts the reply. Note thatmsg3 contains the MACmacS...A, which was computed
by A on the route request, butB does not notice this, because intermediate nodes are not supposed to
verify MACs in route reply messages (as those are normally computed with a key shared by the initiator
and the target of the route discovery).

Next, B forwardsmsg3 to X. The second adversarial node overhears this transmission, since it is a
neighbor ofB. In this way, the second adversarial node learnsmacS...A, and now it can generate a route
request message:

msg4 = (rreq, S, T, id , (. . . , A, X, Y),macS...AXY)

by first computing the MACmacS...AX on (rreq, S, T, id , (. . . , A, X),macS...A) with the compromised
key of X, and then computing the MACmacS...AXY on (rreq, S, T, id , (. . . , A,X, Y),macS...AX) with
the compromised key ofY . This request is broadcast by the second adversarial node, and it is processed
by D and all subsequent nodes.

Since the iterated MAC verifies correctly at the targetT , it creates a route reply:

msg5 = (rrep, S, T, id , (. . . , A, X, Y, D, . . .),macT)

wheremacT is a MAC computed on the reply with the key shared byS andT . When this reply reaches
the second adversarial node, it modifies it as follows:

msg6 = (rrep, S, T, id , (. . . , A, X, C, Y, D, . . .),macT)

and sends it toC. SinceC cannot verify the MAC in the reply, it does not notice the modification made
by the second adversarial node. In addition,C has not received any reply yet, and therefore, it accepts
msg6 and forwards it toX. Then, the first adversarial node removesC from the node list, and sends the
original msg5 to A. At the end,S receives the same reply sent byT , therefore the MAC verifies correctly,
andS accepts the route(S, . . . , A, X, Y, D, . . . , T), which is non-existent.

Just like in the case of the attack described in Subsection II-B, the adversary managed to shorten an
existing route between the initiator and the target despite the usage of the iterative MAC technique.

III. T HE PROPOSED FRAMEWORK

The attacks in the previous section (and those in [6]) clearly show that security flaws in ad hoc routing
protocols can be very subtle. Consequently, making claims about the security of a routing protocol based
on informal arguments only is dangerous. In this section, we propose a mathematical framework, which
allows us to define the notion of routing security precisely and to prove that a protocol satisfies our
definition of security. It is important to emphasize that the proposed framework is best suited for proving

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 7

that a protocol is secure (if it really is), but it is not directly usable to discover attacks against routing
protocols that are flawed. We note, however, that such attacks may be discovered indirectly by attempting
to prove that the protocol is secure, and examining where the proof fails. Indeed, that is the way in which
we discovered the attacks on Ariadne described in the previous section.

Before indulging in the description of the proposed framework, we give a high level overview of our
approach here. Our framework is based on the simulation paradigm [2], [21]. In this approach, two models
are constructed for the protocol under investigation: areal-world model, which describes the operation
of the protocol with all its details in a particular computational model, and anideal-world model, which
describes the protocol in an abstract way mainly focusing on the services that the protocol should provide.
One can think of the ideal-world model as a description of a specification, and the real-world model as
a description of an implementation. Both models contain adversaries. The real-world adversary is an
arbitrary process, while the abilities of the ideal-world adversary are usually constrained. The ideal-world
adversary models thetolerable imperfectionsof the system; these are attacks that are unavoidable or very
costly to defend against, and hence, they should be tolerated instead of being completely eliminated.
The protocol is said to be secure if the real-world and the ideal-world models are equivalent, where the
equivalence is defined as some form of indistinguishability (e.g., statistical or computational) from the
point of view of the honest protocol participants. Technically, security of the protocol is proven by showing
that the effects of any real-world adversary on the execution of the real protocol can besimulatedby an
appropriately chosen ideal-world adversary in the ideal-world model.

In the rest of this section, we describe the construction of the real-world model and the ideal-world
model, we give a precise definition of security, and briefly discuss a proof technique, which can be used
to prove that a given routing protocol satisfies our definition. We begin the description of the models by
introducing two important notions:configurationsandplausible routes.

A. Configurations and plausible routes

As we mentioned earlier, the adversary launches its attacks from adversarial nodes that have similar
communication capabilities to the non-adversarial nodes. In addition, we allow the adversarial nodes to
communicate with each other via out-of-band channels. We make the observation that if some adversarial
nodes are allowed to share information in real-time via out-of-band channels, then essentially they can
appear as a single “super node” to the rest of the network. In particular, they can establish out-of-band
“tunnels” between themselves that would be transparent to the route discovery mechanism, and hence,
impossible to discover by any means (at least at the level of routing). Our model takes this fact into
consideration as follows.

We model the ad hoc network (in a given instance of time) as an undirected graphG(V,E), whereV
is the set of vertices, andE is the set of edges. Each vertex represents either a single non-adversarial
node, or a set of adversarial nodes that can share information among themselves by communicating via
direct wireless links or via out-of-band channels. The former is called a non-adversarial vertex, while the
latter is called an adversarial vertex. The set of adversarial vertices is denoted byV ∗, andV ∗ ⊂ V .

There is an edge between two non-adversarial vertices if the corresponding non-adversarial nodes
established a wireless link between themselves by successfully running the neighbor discovery protocol.
Furthermore, there is an edge between a non-adversarial vertexu and an adversarial vertexv∗ if the
non-adversarial node that corresponds tou established a wireless link with at least one of the adversarial
nodes that correspond tov∗. Finally, there is no edge between two adversarial vertices inG. The rationale
is that edges represent direct wireless links, and if two adversarial verticesu∗ and v∗ were connected,
then there would be at least two adversarial nodes, one corresponding tou∗ and the other corresponding
to v∗, that could communicate with each other directly. That would mean that the adversarial nodes inu∗

andv∗ could share information via those two connected nodes, and thus, they should belong to a single
vertex inG.

This model can capture the situation when all the adversarial nodes are connected via out-of-band
channels. In that case, there is a single adversarial vertex inG, which is connected to all the non-adversarial

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 8

vertices such that the corresponding non-adversarial nodes can communicate with the adversarial nodes
via direct wireless links. In addition, our model can also capture the more general situation when there
are multiple disjoint sets of adversarial nodes that can communicate via out-of-band channels only within
their sets; in that case, each of those sets are represented by an adversarial vertex inG. The attacks
presented in Section II belong to this latter case, because they are carried out without any out-of-band
communication between the adversarial nodes.

We assume that nodes are identified by identifiers in the neighbor discovery protocol and in the routing
protocol. The identifiers are authenticated during neighbor discovery, and therefore, the possibility of a
Sybil attack [8] is excluded. We also assume that wormholes [12] are detected at the neighbor discovery
level, which means that nodes that are not within each other’s radio range are not able to run the neighbor
discovery protocol successfully. Hence, the edges inE represent pure radio links.

We assume that the adversary has compromised some identifiers, by which we mean that the adversary
has compromised the cryptographic keys that are necessary to authenticate those identifiers. We assume
that all the compromised identifiers are distributed to all the adversarial nodes, and they are used in the
neighbor discovery protocol and in the routing protocol. On the other hand, we assume that each non-
adversarial node uses a single and unique identifier, which is not compromised. We denote the set of all
identifiers byL, and the set of the compromised identifiers byL∗.

Let L : V → 2L be a labelling function, which assigns to each vertex inG a set of identifiers in such a
way that for every vertexv ∈ V \V ∗, L(v) is a singleton, and it contains the non-compromised identifier
` ∈ L \L∗ that is used by the non-adversarial node represented by vertexv; and for every vertexv ∈ V ∗,
L(v) containsall the compromised identifiers inL∗.

A configurationis a triplet(G(V,E), V ∗,L). Figure 3 illustrates a configuration, where the solid black
vertices are the vertices inV ∗, and each vertex is labelled with the set of identifiers thatL assigns to it.
Note that the vertices inV ∗ are not neighboring.

� � �
� � �

� � � 	
 �

�
 � � � �

� � � � � � � � � �
� � �

� � ! " #

$
%

& '

()

* +, -
. /

Fig. 3. Illustration of a configuration. Adversarial verticesu∗ and v∗ are represented by solid black dots. Labels on the vertices are
identifiers used by the corresponding nodes. Note that adversarial vertices are not neighboring.

We make the assumption that the configuration is static (at least during the time interval that is
considered in the analysis). Thus, we view the route discovery part of the routing protocol as a distributed
algorithm that operates on this static configuration.

Intuitively, the minimum that one may require from the route discovery part of the routing protocol
is that it returns only existing routes. Our definition of routing security is built on this intuition. We
understand that security of routing may be viewed more broadly, including other issues such as detecting
and avoiding nodes that drop data packets. However, we deliberately restrict ourselves to the minimum
requirement, because it is already challenging to properly formalize that.

Now, we make it more precise what we mean by an existing route. If there was no adversary, then a
sequencè1, `2, . . . , `n (n ≥ 2) of identifiers would be an existing route given that each of the identifiers
`1, `2, . . . , `n are different, and there exists a sequencev1, v2, . . . , vn of vertices inV such that(vi, vi+1) ∈
E for all 1 ≤ i < n andL(vi) = {`i} for all 1 ≤ i ≤ n. However, the situation is more complex due to the

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 9

adversary that can use all the compromised identifiers inL∗. Essentially, we must take into account that
the adversary can always extend any route that passes through an adversarial vertex with any sequence
of compromised identifiers. This is a fact that our definition of security must tolerate, since otherwise we
cannot hope that any routing protocol will satisfy it. This observation leads to the following definition:

Definition 1 (Plausible route) Let (G(V,E), V ∗,L) be a configuration. A sequence`1, `2, . . . , `n of iden-
tifiers is a plausible route with respect to(G(E, V), V ∗,L) if each of the identifiers̀ 1, `2, . . . , `n is
different, and there exists a sequencev1, v2, . . . , vk (2 ≤ k ≤ n) of vertices inV and a sequence
j1, j2, . . . , jk of positive integers such that

1) j1 + j2 + . . . + jk = n,
2) {`Ji+1, `Ji+2, . . . , `Ji+ji

} ⊆ L(vi) (1 ≤ i ≤ k), whereJi = j1 + j2 + . . . + ji−1 if i > 1 and Ji = 0 if
i = 1,

3) (vi, vi+1) ∈ E (1 ≤ i < k).

Intuitively, the definition above requires that the sequence`1, `2, . . . , `n of identifiers can be partitioned
into k sub-sequences of lengthji (condition 1) in such a way that each of the resulting partitions is a
subset of the identifiers assigned to a vertex inV (condition 2), and in addition, these vertices form a
path inG (condition 3).

As an example let us consider again the configuration in Figure 3. It is easy to verify that(`1, `2, `3, `4, `5) =
(A,X, Y, G, C) is a plausible route, because it can be partitioned into four partitions{A}, {X,Y }, {G},
and{C}, such that{A} ⊆ L(a), {X, Y } ⊂ L(u∗), {G} ⊆ L(g), and{C} ⊆ L(c), and verticesa, u∗, g,
and c form a path in the graph. In this example,k = 4, j1 = 1, j2 = 2, j3 = 1, andj4 = 1, furthermore,
J1 = 0, J2 = j1 = 1, J3 = j1 + j2 = 3, andJ4 = j1 + j2 + j3 = 4.

B. Real-world model

Next, we need to define a computational model that can be used to represent the possible executions
of the route discovery part of the routing protocol. We will base this model on the well-known concept
of interactive Turing machines. One may find the following models too tedious, but we emphasize that
this level of details is indispensable for a precise definition of security in the simulation approach.

The real-world model that corresponds to a configurationconf = (G(V, E), V ∗,L) and adversaryA
is denoted bySys real

conf ,A, and it is illustrated on the left side of Figure 4.Sys real
conf ,A consists of a set

{M1, . . . ,Mn, A1, . . . , Am, H, C} of interacting Turing machines, where the interaction is realized via
common tapes. EachMi represents a non-adversarial vertex inV \ V ∗ (more precisely the corresponding
non-adversarial node), and eachAj represents an adversarial vertex inV ∗ (more precisely the correspond-
ing adversarial nodes).H is an abstraction of higher-layer protocols run by the honest parties, andC
models the radio links represented by the edges inE. All machines apart fromH are probabilistic.

Each machine is initialized with some input data, which determines its initial state. In addition, the
probabilistic machines also receive some random input (the coin flips to be used during the operation).
Once the machines have been initialized, the computation begins. The machines operate in a reactive
manner, which means that they need to be activated in order to perform some computation. When a
machine is activated, it reads the content of its input tapes, processes the received data, updates its
internal state, writes some output on its output tapes, and goes back to sleep (i.e., starts to wait for the
next activation). Reading a message from an input tape removes the message from the tape, while writing
a message on an output tape means that the message is appended to the current content of the tape. Note
that each tape is considered as an output tape for one machine and an input tape for another machine. The
machines are activated inroundsby a hypotheticscheduler(not illustrated in Figure 4). In each round,
the scheduler activates the machines in the following order:A1, . . . , Am, H, M1, . . . , Mn, C. In fact, the
order of activation is not important, apart from the requirement thatC must be activated at the end of the
round. Thus, the round ends whenC goes back to sleep.

Now, we describe the operation of the machines in more detail:

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 10

M1

. .
 .

C

Mn

H

req1

res1

reqn

resn

ext1

out1

in1

outn

inn

out*1

in*1

M1'

. .
 .

Mn'

H

req1

res1

reqn

resn

out1

in1'

outn

inn'

T

C'
. .

 .

Am

out*m

in*m

A1

extm

ext1

out*1

in*1

. .
 .

Am

out*m

in*m

A1

extm

Fig. 4. Interconnection of the machines inSys real
conf ,A (on the left side) and inSys ideal

conf ,A (on the right side)

• MachineC: This machine is intended to model the broadcast nature of radio communications. Its task
is to read the content of the output tape of each machineMi andAj and copy it on the input tapes
of all the neighboring machines, where the neighbor relationship is determined by the configuration
conf . Clearly, in order forC to be able to work, it needs to be initialized with some random input,
denoted byrC , and configurationconf .

• MachineH: This machine models higher-layer protocols (i.e., protocols above the routing protocol)
and ultimately the end-users of the non-adversarial devices.H can initiate a route discovery process
at any machineMi by placing a request(ci, `tar) on tapereq i, whereci is a sequence number used
to distinguish between different requests sent toMi, and `tar ∈ L is the identifier of the target of
the discovery. A response to this request is eventually returned via taperes i. The response has the
form (ci, routes), whereci is the sequence number of the corresponding request, androutes is the
set of routes found. In some protocols,routes is always a singleton, in others it may contain several
routes. If no route is found, thenroutes = ∅.
In addition toreq i andres i, H can access the tapesext j. These tapes model an out-of-band channel
through which the adversary can instruct the honest parties to initiate route discovery processes.
The messages read fromext j have the form(`ini , `tar), where`ini , `tar ∈ L are the identifiers of the
initiator and the target, respectively, of the route discovery requested by the adversary. WhenH reads
(`ini , `tar) from ext j, it places a request(ci, `tar) in req i wherei is the index of the machineMi that
has identifier`ini assigned to it (see also the description of how the machinesMi are initialized).
In order for this to work,H needs to know which identifier is assigned to which machineMi; it
receives this information as an input in the initialization phase.

• MachineMi (1 ≤ i ≤ n): These machines represent the non-adversarial vertices inV \ V ∗. The
operation ofMi is essentially defined by the routing algorithm.Mi communicates withH via its
input tapereq i and its output taperes i. Through these tapes, it receives requests fromH for initiating
route discoveries and sends the results of the discoveries toH, as described above.
Mi communicates with the other protocol machines via its output tapeout i and its input tapein i.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 11

Both tapes can contain messages of the form(sndr , rcvr ,msg), wheresndr ∈ L is the identifier of
the sender,rcvr ∈ L∪{∗} is the identifier of the intended receiver (∗ meaning a broadcast message),
and msg ∈ M is the actual protocol message. Here,M denotes the set of all possible protocol
messages, which is determined by the routing protocol under investigation.
WhenMi is activated, it first reads the content ofreq i. For each request(ci, `tar) received fromH,
it generates a route requestmsg , updates its internal state according to the routing protocol, and
then, it places the message(L(Mi), ∗,msg) on out i, whereL(Mi) denotes the identifier assigned to
machineMi.
When all the requests found onreq i have been processed,Mi reads the content ofin i. For each
message(sndr , rcvr ,msg) found onin i, Mi checks ifsndr is its neighbor andrcvr ∈ {L(Mi), ∗}.
If these verifications fail, thenMi ignoresmsg . Otherwise,Mi processesmsg and updates its internal
state. The way this is done depends on the particular routing protocol in question.
We describe the initialization ofMi after describing the operation of machinesAj.

• MachineAj (1 ≤ j ≤ m): These machines represent the adversarial vertices inV ∗. Regarding its
communication capabilities,Aj is identical to any machineMi, which means that it can read from
in∗j and write onout∗j much in the same way asMi can read from and write onin i and out i,
respectively. In particular, this means thatAj cannot receive messages that were sent by machines
that are not neighbors ofAj. It also means that “rushing” is not allowed in our model (i.e.,Aj must
send its messages in a given round before it receives the messages of the same round from other
machines). We intend to extend our model and study the effect of “rushing” in our future work.
While its communication capabilities are similar to that of the non-adversarial machines,Aj may
not follow the routing protocol faithfully. In fact, we place no restrictions on the operation ofAj

apart from being polynomial-time in the security parameter (e.g., the key size of the cryptographic
primitives used in the protocol) and in the size of the network (i.e., the number of vertices). This
allows us to consider arbitrary attacks during the analysis. In particular,Aj may delay or delete
messages that it would send if it followed the protocol faithfully. In addition, it can modify messages
and generate fake ones.
In addition, Aj may send out-of-band requests toH by writing on ext j as described above. This
gives the power to the adversary to specify who starts a route discovery process and towards which
target. Here, we make the restriction that the adversary initiates a route discovery only between
non-adversarial machines, or in other words, for each request(`ini, `tar) that Aj places onext j,
`ini, `tar ∈ L \ L∗ holds.
Note that eachAj can write several requests onext j, which means that we allow several parallel
runs of the routing protocol. On the other hand, we restrict eachAj to write on ext j only once, at
the very beginning of the computation (i.e., before receiving any messages from other machines).
This essentially means that we assume that the adversary isnon-adaptive; it cannot initiate new
route discoveries as a function of previously observed messages. We intend to extend our model with
adaptive adversaries in our future work.

As it can be seen from the description above, eachMi should know its own assigned identifier, and
those of its neighbors inG. Mi receives these identifiers in the initialization phase. Similarly, eachAj

receives the identifiers of its neighbors and the setL∗ of compromised identifiers.
In addition, the machines may need some cryptographic material (e.g., public and private keys) de-

pending on the routing protocol under investigation. We model the distribution of this material as fol-
lows. We assume a functionI, which takes only random inputrI , and it produces a vectorI(rI) =
(κpub , κ1, . . . , κn, κ

∗). The componentκpub is some public information that becomes known to allAj and
all Mi. κi becomes known only toMi (1 ≤ i ≤ n), andκ∗ becomes known to allAj (1 ≤ j ≤ m). Note
that the initialization function can model the out-of-band exchange of initial cryptographic material of
both asymmetric and symmetric cryptosystems. In the former case,κpub contains the public keys of all
machines, whileκi contains the private key that corresponds to the non-compromised identifierL(Mi),
and κ∗ contains the private keys corresponding to the compromised identifiers inL∗. In the latter case,

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 12

κpub is empty,κi contains the symmetric keys known toMi, andκ∗ contains the symmetric keys known
to the adversary (i.e., allAj).

Finally, all Mi and allAj receive some random input in the initialization phase. The random input of
Mi is denoted byri, and that ofAj is denoted byr∗j .

The computation ends whenH reaches one of its final states. This happens whenH receives a
response to each of the requests that it placed on the tapesreq i (1 ≤ i ≤ n). The output ofSys real

conf ,A
is the sets of routes found in these responses. We will denote the output byOut real

conf ,A(r), wherer =

(rI , r1, . . . , rn, r
∗
1, . . . , r

∗
m, rC). In addition,Out real

conf ,A will denote the random variable describingOut real
conf ,A(r)

whenr is chosen uniformly at random.

C. Ideal-world model

The ideal-world model that corresponds to a configurationconf = (G(V, E), V ∗,L) and adversaryA
is denoted bySys ideal

conf ,A, and it is illustrated on the right side of Figure 4. One can see that the ideal-world
model is very similar to the real-world one. Just like in the real-world model, here as well, the machines
are interactive Turing machines that operate in a reactive manner, and they are activated by a hypothetic
scheduler in rounds. The tapes work in the same way as they do in the real-world model. There is only a
small (but important) difference between the operation ofM ′

i andMi, and that ofC ′ andC. Below, we
will focus on this difference.

Our notion of security is related to the requirement that the routing protocol should return only plausible
routes. The differences between the operation ofM ′

i and Mi, and C ′ and C, will ensure that this
requirement is always satisfied in the ideal-world model. In fact, the ideal-world model is meant to
be ideal exactly in this sense.

The main idea is the following: SinceC ′ is initialized with conf , it can easily identify and mark
those route reply messages that contain non-plausible routes. A marked route reply is processed by each
machineM ′

i in the same way as a non-marked one (i.e., the machines ignore the marker) except for the
machine that initiated the route discovery process to which the marked route reply belongs. The initiator
first performs all the verifications on the route reply that the routing protocol requires, and if the message
passes all these verifications, then it also checks if the message is marked as non-plausible. If so, then it
drops the message, otherwise it continues processing (e.g., returns the received route toH). This ensures
that in the ideal-world model, every route reply that contains a non-plausible route is caught and filtered
out by the initiator of the route discovery2.

Now, we describe the operation ofM ′
i andC ′ in more detail:

• MachineM ′
i (1 ≤ i ≤ n): The main difference betweenM ′

i andMi is thatM ′
i is prepared to process

messages that contain aplausibility flag. The messages that are placed on tapein ′i have the form
(sndr , rcvr , (msg , pf)), wheresndr , rcvr , andmsg are defined in the same way as in the real-world
model, andpf ∈ {true, false, undef} is the plausibility flag, which indicates whethermsg is a route
request (pf = undef), or it is a route reply and it contains only plausible routes (pf = true) or it
contains a non-plausible route (pf = false). When machineM ′

i reads(sndr , rcvr , (msg , pf)) from
in ′i, it verifies if sndr is its neighbor andrcvr ∈ {L(M ′

i), ∗}. If these verifications are successful,
then it performs the verifications required by the routing protocol onmsg (e.g., it checks digital
signatures, MACs, the route or route segment inmsg , etc.). In addition, ifmsg is a route reply that
belongs to a route discovery that was initiated byM ′

i , thenM ′
i also checks ifpf = false. If so, then

M ′
i dropsmsg , otherwise it continues processing it. Ifmsg is not a route reply orM ′

i is not the
initiator, thenpf is ignored. The messages generated byM ′

i have no plausibility flag attached to
them, and they are placed inout i.

2Of course, marked route reply messages can also be dropped earlier during the execution of the protocol for other reasons. What we
mean is that if they are not caught earlier, then they are surely removed at latest by the initiator of the route discovery to which they belong.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 13

• MachineC ′: Just likeC, C ′ copies the content of the output tape of eachM ′
i andAj onto the input

tapes of the neighboring machines. However, before copying a message(sndr , rcvr ,msg) on any
tapein ′i, C ′ attaches a plausibility flagpf to msg . This is done in the following way:

– if msg is a route request, thenC ′ setspf to undef;
– if msg is a route reply and all routes carried bymsg are plausible with respect to the configuration

conf , thenC ′ setspf to true;
– otherwiseC ′ setspf to false.

Note thatC ′ does not attach plausibility flags to messages that are placed on the tapesin∗j . Hence,
the input and the output tapes of allAj contain messages of the same format as in the real-world
model, which makes it easy to “plug” a real-world adversary into the ideal-world model.

Before the computation begins, each machine is initialized with some input data. This is done in the
same way as in the real-world model. The computation ends whenH reaches one of its final states. This
happens whenH receives a response to each of the requests that it placed on the tapesreq i 1 ≤ i ≤ n.
The output ofSys ideal

conf ,A is the sets of routes returned in these responses. We will denote the output
by Out ideal

conf ,A(r), where r = (rI , r1, . . . , rn, r∗1, . . . , r
∗
m, rC). Out ideal

conf ,A will denote the random variable
describingOut ideal

conf ,A(r) whenr is chosen uniformly at random.

D. Definitions of routing security

Now, we are ready to introduce our definition of secure routing:

Definition 2 (Statistical security) A routing protocol is said to be statistically secure if, for any con-
figuration conf and any real-world adversaryA, there exists an ideal-world adversaryA′, such that
Out real

conf ,A
s
= Out ideal

conf ,A′, where
s
= means “statistically indistinguishable”3.

Intuitively, statistical security of a routing protocol means that the effect of any real-world adversary
in the real-world model can besimulated“almost perfectly” by an ideal-world adversary in the ideal-
world model. Since, by definition, no ideal-world adversary can achieve that a non-plausible route is
accepted in the ideal-world model, it follows that no real-world adversary can exist that can achieve that
a non-plausible route is accepted with non-negligible probability in the real-world model, because if such
a real-world adversary existed, then no ideal-world adversary could simulate it “almost perfectly”. In
other words, if a routing protocol is statistically secure, then it can return non-plausible routes only with
negligible probability in the real-world model. This negligible probability is related to the fact that the
adversary can always forge the cryptographic primitives (e.g., generate a valid digital signature) with a
very small probability.

E. Proof technique

In order to prove the security of a given routing protocol, one has to find the appropriate ideal-world
adversaryA′ for any real-world adversaryA such that Definition 2 is satisfied. Due to the constructions
of our models, a natural candidate isA′ = A. This is because for any configurationconf , the operation
of Sys real

conf ,A can easily besimulatedby the operation ofSys ideal
conf ,A assuming that the two systems were

initialized with the same random inputr. In order to see this, let us assume for a moment that no message
is dropped due to its plausibility flag beingfalse in Sys ideal

conf ,A. In this case,Sys real
conf ,A and Sys ideal

conf ,A are
essentially identical, meaning that in each step the state of the corresponding machines and the content
of the corresponding tapes are the same (apart from the plausibility flags attached to the messages in

3Two random variables are statistically indistinguishable if theL1 distance of their distributions is negligibly small. In fact, it is possible
to give a weaker definition of security, where instead of statistical indistinguishability, we require computational indistinguishability. Two
random variables are computationally indistinguishable if no feasible algorithm can distinguish their samples (although their distribution
may be completely different). Clearly, statistical indistinguishability implies computational indistinguishability, but not vice versa, therefore,
computational security is a weaker notion. In this paper, we will only use the concept of statistical security.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 14

Sys ideal
conf ,A). Since the two systems are identical,Out real

conf ,A(r) = Out ideal
conf ,A(r) holds for everyr, and thus,

we haveOut real
conf ,A

s
= Out ideal

conf ,A. 4

However, if some route reply messages are dropped inSys ideal
conf ,A due to their plausibility flags being

set to false, thenSys real
conf ,A andSys ideal

conf ,A may end up in different states and their further steps may not
match each other, since those messages are not dropped inSys real

conf ,A (by definition, they have already
successfully passed all verifications required by the routing protocol). We call this situation asimulation
failure. In case of a simulation failure, it might be thatOut real

conf ,A(r) 6= Out ideal
conf ,A(r). Nevertheless, the

definition of statistical security can still be satisfied, if simulation failures occur only with negligible
probability. Hence, when trying to prove statistical security, one tries to prove that for any configuration
conf and adversaryA, the event of dropping a route reply inSys ideal

conf ,A due to its plausibility flag being
set tofalse can occur only with negligible probability.

Note that if the above statement cannot be proven, then the protocol can still be secure, because it
might be possible to prove the statement for another ideal-world adversaryA′ 6= A. In practice, however,
failure of a proof in the case ofA′ = A usually indicates a problem with the protocol, and often, one
can construct an attack by looking at where the proof failed.

IV. ENDAIRA: A PROVABLY SECURE ON-DEMAND SOURCE ROUTING PROTOCOL

Inspired by Ariadne with digital signatures5, we designed a routing protocol that can be proven to be
statistically secure. We call the protocol endairA (which is the reverse of Ariadne), because instead of
signing the route request, we propose that intermediate nodes should sign the route reply. In the next
subsection, we describe the operation of the basic endairA protocol, and we prove it to be statistically
secure. We discuss possible extensions and variants of endairA in Subsection IV-B.

A. The basic endairA protocol

The operation and the messages of endairA are illustrated in Figure 5. In endairA, the initiator of the
route discovery process generates a route request, which contains the identifiers of the initiator and the
target, and a randomly generated request identifier. Each intermediate node that receives the request for
the first time appends its identifier to the route accumulated so far in the request, and re-broadcasts the
request. When the request arrives to the target, it generates a route reply. The route reply contains the
identifiers of the initiator and the target, the accumulated route obtained from the request, and a digital
signature of the target on these elements. The reply is sent back to the initiator on the reverse of the
route found in the request. Each intermediate node that receives the reply verifies that its identifier is
in the node list carried by the reply, and that the preceding identifier (or that of the initiator if there is
no preceding identifier in the node list) and the following identifier (or that of the target if there is no
following identifier in the node list) belong to neighboring nodes. Each intermediate node also verifies
that the digital signatures in the reply are valid and that they correspond to the following identifiers in
the node list and to the target. If these verifications fail, then the reply is dropped. Otherwise, it is signed
by the intermediate node, and passed to the next node on the route (towards the initiator). When the
initiator receives the route reply, it verifies if the first identifier in the route carried by the reply belongs
to a neighbor. If so, then it verifies all the signatures in the reply. If all these verifications are successful,
then the initiator accepts the route.

The proof of the following theorem illustrates how the framework introduced in Section III can be used
in practice.

Theorem 1 endairA is statistically secure if the signature scheme is secure against chosen message
attacks.

4In fact, in this case the two random variables have exactly the same distribution.
5Ariadne with digital signatures is similar to Ariadne with MACs presented in Section II with the difference that instead of computing

MACs, the intermediate nodes digitally sign the route request before re-broadcasting it.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 15

S → ∗ : (rreq, S, T, id , ())
A → ∗ : (rreq, S, T, id , (A))
B → ∗ : (rreq, S, T, id , (A,B))
T → B : (rrep, S, T, (A,B), (sigT))
B → A : (rrep, S, T, (A,B), (sigT , sigB))
A → S : (rrep, S, T, (A,B), (sigT , sigB, sigA))

Fig. 5. An example for the operation and messages of endairA. The initiator of the route discovery isS, the target isT , and the intermediate
nodes areA andB. id is a randomly generated request identifier.sigA, sigB , andsigT are digital signatures ofA, B, andT , respectively.
Each signature is computed over the message fields (including the signatures) that precede the signature.

Proof: We provide only a sketch of the proof. We want to show that for any configurationconf =
(G(V,E), V ∗,L) and any adversaryA, a route reply message inSys ideal

conf ,A is dropped due to its plausibility
flag set tofalse with negligible probability.

In what follows, we will refer to non-adversarial machines with their identifiers. Let us suppose that
the following route reply is received by a non-adversarial machine`ini in Sys ideal

conf ,A:

msg = (rrep, `ini , `tar , (`1, . . . , `p), (sig `tar , sig `p
, . . . , sig `1))

Let us suppose thatmsg passes all the verifications required by endairA at`ini , which means that all
signatures inmsg are correct, and̀ini has a neighbor that uses the identifier`1. Let us further suppose
that msg has been received with a plausibility flag set tofalse, which means that(`ini , `1, . . . , `p, `tar) is
a non-plausible route inconf . Hence,msg is dropped due to its plausibility flag beingfalse.

Recall that, by definition, adversarial vertices cannot be neighbors. In addition, each non-adversarial
vertex has a single and unique non-compromised identifier assigned to it. It follows that every route,
including (`ini , `1, . . . , `p, `tar), has a uniquemeaningfulpartitioning, which is the following: each non-
compromised identifier, as well as each sequence of consecutive compromised identifiers should form a
partition.

Let P1, P2, . . . , Pk be the unique meaningful partitioning of the route(`ini , `1, . . . , `p, `tar). The fact
that this route is non-plausible implies that at least one of the following two statements holds:

• Case 1:There exist two partitionsPi = {`j} and Pi+1 = {`j+1} such that both̀ j and `j+1 are
non-compromised identifiers, and the corresponding non-adversarial vertices are not neighbors.

• Case 2:There exist three partitionsPi = {`j}, Pi+1 = {`j+1, . . . , `j+q}, andPi+2 = {`j+q+1} such
that `j and `j+q+1 are non-compromised and̀j+1, . . . , `j+q are compromised identifiers, and the
non-adversarial vertices that correspond to`j and `j+q+1, respectively, have no common adversarial
neighbor.

We show that in both cases, the adversary must have forged the digital signature of a non-adversarial
machine.

In Case 1, machinèj+1 does not sign the route reply, since it is non-adversarial and it detects that the
identifier that precedes its own identifer in the route does not belong to a neighboring machine. Hence,
the adversary must have forgedsig `j+1

in msg .
In Case 2, the situation is more complicated. Let us assume that the adversary has not forged the

signature of any of the non-adversarial machines. Machine`j must have received

msg ′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig `tar , sig `p
, . . . , sig `j+1

))

from an adversarial neighbor, sayA, since `j+1 is compromised, and thus, a non-adversarial machine
would not send out a route reply message withsig `j+1

. In order to generatemsg ′, machineA must have
received

msg ′′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig `tar , sig `p
, . . . , sig `j+q+1

))

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 16

because by assumption, the adversary has not forged the signature of`j+q+1, which is non-compromised.
SinceA has no adversarial neighbor, it could have receivedmsg ′′ only from a non-adversarial machine.
However, the only non-adversarial machine that would send outmsg ′′ is `j+q+1. This would mean thatA is
a common adversarial neighbor of`j and`j+q+1, which contradicts the assumption of Case 2. This means
that our original assumption cannot be true, and hence, the adversary must have forged the signature of
a non-adversarial machine.

It should be intuitively clear that if the signature scheme is secure, then the adversary can forge a
signature only with negligible probability, and thus, a route reply message inSys ideal

conf ,A is dropped due to
its plausibility flag set tofalse only with negligible probability. Nevertheless, we sketch how this could be
proven formally. The proof is indirect. We assume that there exist a configurationconf and an adversary
A such that a route reply message inSys ideal

conf ,A is dropped due to its plausibility flag set tofalse with
probability ε, and then, based on that, we construct a forgerF that can break the signature scheme with
probability ε/n. If ε is non-negligible, then so isε/n, and thus, the existence ofF contradicts with the
assumption about the security of the signature scheme.

The construction ofF is the following. Letpuk be an arbitrary public key of the signature scheme.
Let us assume that the corresponding private keyprk is not known toF , but F has access to a signing
oracle that produces signatures on submitted messages usingprk . F runs a simulation ofSys ideal

conf ,A where
all machines are initialized as described in the model, except that the public key of a randomly selected
non-adversarial machinèi is replaced withpuk . During the simulation, whenever`i signs a messagem,
F submitsm to the oracle, and replaces the signature of`i on m with the one produced by the oracle. This
signature verifies correctly on other machines later, since the public verification key of`i is replaced with
puk . By assumption, with probabilityε, the simulation ofSys ideal

conf ,A will result in a route reply message
msg such that all signatures inmsg are correct andmsg contains a non-plausible route. As we saw above,
this means that there exists a non-adversarial machine`j such thatmsg contains the signaturesig `j

of `j,
but `j has never signed (the corresponding part of)msg . Let us assume thati = j. In this case,sig `j

is
a signature that verifies correctly with the public keypuk . Since`j did not sign (the corresponding part
of) msg , F did not call the oracle to generatesig `j

. This means thatF managed to produce a signature
on a message that verifies correctly withpuk . SinceF selected̀ i randomly, the probability ofi = j is
1
n
, and hence, the success probability ofF is ε/n.
Besides being provably secure, endairA has another significant advantage over Ariadne (and similar

protocols): it is more efficient, because it requires less cryptographic computation overall from the nodes.
This is because in endairA, only the processing of the route reply messages involves cryptographic
operations, and a route reply message is processed only by those nodes that are in the node list carried
in the route reply. In contrast to this, in Ariadne, the route request messages need to be digitally signed
by all intermediate nodes; however, due to the way a route request is propagated, this means that each
node in the network must sign each and every route request.

B. Practical extensions to the basic endairA protocol

Note that in our model presented in Section III, we made the assumption that the nodes are static
(at least during the period of time that is analyzed). The proof of security of endairA relies on this
assumption. More precisely, in the proof, we show that if a route is returned by endairA to an honest
node, then that route must exist in the graph that represents the network with overwhelming probability.
Moreover, once a route has been returned, it remains valid forever, because the graph does not change.
This means that under the assumption of static nodes, the basic endairA protocol is not vulnerable to
replay attacks. However, if we relax this assumption, and we allow the nodes to move, then the basic
protocol has a problem. In that case, when a node initiates a route discovery process and the adversary
receives a route request, it can replay an old route reply, and if that reply reaches the initiator, then it
will be accepted, despite the fact that it may contain outdated information (i.e., a route that does not exist
anymore due to the mobility of the nodes).

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 17

Fortunately, we can easily extend the basic endairA protocol to mitigate this problem. All we need to
do is to require the target of the route discovery to insert the random request identifierid (received in the
route request) in the route reply. Hence, in the extended endairA protocol, the route reply that is passed
from intermediate nodeFi to nodeFi−1 looks as follows:

(rrep, S, T, id , (F1, . . . , Fn), (sigT , sigFn
, . . . , sigFi

))

Now, when the initiator receives a route reply, it also verifies if it received back the request identifier that
it sent in the route request. This makes it practically impossible for the adversary to successfully replay
an old route reply that belongs to a previous route discovery process. Of course, when nodes are allowed
to move, it is possible that a route reply contains a non-existent route even if there was no attack at all. In
order to alleviate this problem, the time interval within which the initiator accepts a reply with a specific
request identifier should be appropriately limited.

Another problem with the basic endairA protocol is that it is vulnerable to malicious route request
flooding attacks. This is because the route request messages are not authenticated in any way, and hence,
an adversary (even without compromising any identity) can initiate route discovery processes in the name
of honest nodes. These forged route discovery processes will be carried out completely, including the
flooding of the route requests in the whole network, because only the impersonated initiators can detect
that they are forged. In order to prevent this, the route request can be digitally signed by the initiator,
and rate limiting techniques similar to the one used for Ariadne [10] can be applied with endairA too.
Naturally, such extensions put more burden on the nodes, since now they also need to verify the initiator’s
signature in each route request message and to maintain information that is required by the rate limiting
mechanism.

Finally, we note that endairA can be optimized with respect to communication overhead by replacing the
signature list in the route reply with a single aggregate signature (e.g., [3]) computed by the intermediate
nodes iteratively in a similar way as in the case of the iterated MAC technique in the optimized version
of Ariadne. The details of this optimization and its security analysis is left for future work.

V. RELATED WORK

There are several proposals for secure ad hoc routing protocols (see [13] for a recent overview). However,
most of these proposals come with an informal security analysis with all the pitfalls of informal security
arguments. In this section, we report on a few exceptions, where some attempts are made to use formal
methods for the verification of ad hoc routing protocols.

In [23], the authors try to reach a goal similar to ours but with a different approach. They propose a
formal model for ad hoc routing protocols with the aim of representing insider attacks (which correspond
to our notion of adversarial nodes). Their model is similar to the strand spaces model [9], which has been
developed for the formal verification of key exchange protocols. Routing security is defined in terms of a
safety and a liveness property. The liveness property requires that it is possible to discover routes, while
the safety property requires that discovered routes do not contain adversarial nodes. In contrast to this,
our definition of security allows the protocol to return routes that pass through adversarial nodes, because
it seems to be impossible to guarantee that discovered routes do not contain any adversarial node given
that adversarial nodes can behave correctly and follow the routing protocol faithfully. Our definition of
security corresponds to the informal definitions given in [18] and [10].

Another approach, presented in [17], is based on a formal method, called CPAL-ES, which uses a
weakest precondition logic to reason about security protocols. Unfortunately, the work presented in [17]
is very much centered around the analysis of SRP [18], and it is not general enough. For instance, the
author defines a security goal that is specific to SRP, but no general definition of routing security is given.
In addition, the attack discovered by the author on SRP is not a real attack, because it essentially consists
in setting up a wormhole between two non-adversarial nodes, and SRP is not supposed to defend against
this. In our opinion, wormhole attacks are attacks against the neighbor discovery mechanism and not

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 18

against routing (although they affect routing). On the other hand, the advantage of the approaches of [17]
and [23] is that they can be automated.

We must also mention that in [18], SRP has been analyzed by its authors using BAN logic [4]. However,
BAN logic has never been intended for the analysis of routing protocols. It has been developed for verifying
authentication properties, and there is no easy way to represent the requirements of routing security in it.
In addition, BAN logic assumes that the protocol participants are trustworthy [5]. This assumption does
not hold in the typical case that we are interested in, namely, when there are adversarial nodes in the
network controlled by the adversary that may not follow the routing protocol faithfully.

Another set of papers deal with provable security for cryptographic algorithms and protocols (see Parts
V and VI of [16] for a survey of the field). However, these papers are not concerned with ad hoc routing
protocols. The papers that are the most closely related to the approach we used in this paper are [2],
[22], and [21]. These papers apply the simulation paradigm for different security problems: [2] and [22]
deal with key exchange protocols, and [21] is concerned with security of reactive systems in general, and
secure message transmission in particular. To the best of our knowledge, we are the first who applied the
notions of provable security and used the simulation-based approach in the context of routing protocols
for wireless ad hoc networks. The main novelties of our model with respect to the models proposed so
far for the analysis of cryptographic protocols are the following:

• Our communication model does not abstract away the multi-hop operation of the network. In addition,
we model the broadcast nature of radio communications, which allows a node to overhear the
transmission of a message that was not intended to him. We also take into account that a radio
transmission can usually be received only in a limited range around the sender.

• In contrast to previous models, where the adversary has full control over the communications of the
honest nodes, in our model, the adversary can hear only those messages that were transmitted by
neighboring nodes, and similarly, the transmissions of the adversary are heard only by its neighbors.

• In our model, it is a hypothetic scheduler, and not the adversary, that schedules the activities of
the honest nodes. In addition, this activation is done in rounds. This leads to a sort of synchronous
model, where each participant is aware of a global time represented by the current round number.
However, this knowledge has never been exploited in our analysis. The advantage is that we can
retain the simplicity of a synchronous model, without arriving to conclusions that are valid only in
synchronous systems.

• The simulation-based approach requires the definition of an ideal-world model, which focuses onwhat
the system should do, and it is less concerned abouthow it is done. As a consequence, the ideal-world
model usually contains a trusted entity that provides the intended services of the system in a “magical”
way. In our model, the role of this trusted entity is played byC ′, which marks route reply messages
that contain non-plausible routes. In addition, we do not limit the capabilities of the ideal-world
adversary, but those are the same as the capabilities of a real-world adversary. Consequently, and in
contrast to other models, the tolerable imperfections (unavoidable vulnerabilities) of the system are
not captured in the capabilities of the ideal-world adversary, but they are embedded in the definition
of the plausible route.

VI. CONCLUSION AND FUTURE WORK

The main message of this paper is that attacks against ad hoc routing protocols can be subtle and difficult
to discover by informal reasoning about the properties of the protocol. We demonstrated this by presenting
novel attacks on Ariadne. Another message is that it is possible to adopt rigorous techniques developed for
the security analysis of cryptographic algorithms and protocols, and apply them in the context of ad hoc
routing protocols in order to gain more assurances about their security. We demonstrated this by proposing
a simulation based framework for on-demand source routing protocols that allows us to give a precise
definition of routing security, to model the operation of a given routing protocol in the presence of an
adversary, and to prove (or fail to prove) that the protocol is secure. We also proposed a new on-demand

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 19

source routing protocol, endairA, and we demonstrated the usage of the proposed framework by proving
that it is secure in our model. Originally, we developed endairA for purely illustrative purposes, however,
it has some noteworthy features that may inspire designers of future protocols. In this paper, we focused
on on-demand source routing protocols, but similar principles can be applied to other types of protocols
too [1]. In our future work, we intend to automate parts of the proofs.

VII. A CKNOWLEDGEMENT

The work presented in this paper has partially been supported by the Hungarian Scientific Research
Fund (T046664). The first author has been further supported by the HSN Lab. The second author has
been supported by IKMA and by the Hungarian Ministry of Education (BÖ2003/70).

The authors are thankful to Markus Jakobsson and Jean-Pierre Hubaux for their comments on earlier
versions of this paper. Special thanks goes to one of the anonymous reviewers who encouraged us to
prove the security of the optimized version of Ariadne; this led to the discovery of the attack presented
in this paper.

REFERENCES

[1] G. Ács, L. Buttýan, and I. Vajda. Provable security of on-demand distance vector routing in wireless ad hoc networks. InProceedings
of the European Workshop on Security and Privacy in Ad Hoc and Sensor Networks (ESAS), July 2005.

[2] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and analysis of authentication and key exchange protocols.
In Proceedings of the ACM Symposium on the Theory of Computing, 1998.

[3] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably encrypted signatures from bilinear maps. InAdvances in
Cryptology - Eurocrypt 2003, Springer LNCS, 2003.

[4] M. Burrows, M. Abadi, and R. Needham. A logic of authentication.ACM Transactions on Computer Systems, 8(1):18–36, February
1990.

[5] M. Burrows, M. Abadi, and R. Needham. Rejoinder to Nessett.ACM Operating Systems Review, 24(2):39–40, April 1990.
[6] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing protocols. InProceedings of the ACM Workshop on Security in

Ad Hoc and Sensor Networks (SASN), October 2004.
[7] T. Clausen and P. Jacquet. Optimized Link State Routing Protocol (OLSR). Internet RFC 3626, October 2003.
[8] J. R. Douceur. The Sybil attack. InProceedings of the 1st International Workshop on Peer-to-Peer Systems (IPTPS), 2002.
[9] J. Guttman. Security goals: packet trajectories and strand spaces. InFoundations of Security Analysis and Design, edited by R. Focardi

and R. Gorrieri, Springer LNCS 2171, 2000.
[10] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc networks. InProceedings of the ACM

Conference on Mobile Computing and Networking (Mobicom), 2002.
[11] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol for ad hoc networks. to appear inACM Wireless

Networks
[12] Y.-C. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against wormhole attacks in wireless ad hoc networks. InProceedings

of the INFOCOM Conference, April 2003.
[13] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing.IEEE Security and Privacy Magazine, 2(3):28–39, May/June 2004.
[14] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. InMobile Computing, edited by Tomasz Imielinski

and Hank Korth, Chapter 5, pages 153–181. Kluwer Academic Publisher, 1996.
[15] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed hashing for message authentication. Internet RFC 2104, February 1997.
[16] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2004.
[17] J. Marshall. An Analysis of the Secure Routing Protocol for mobile ad hoc network route discovery: using intuitive reasoning and

formal verification to identify flaws. MSc thesis, Department of Computer Science, Florida State University, April 2003.
[18] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. InProceedings of SCS Communication Networks and

Distributed Systems Modelling Simulation Conference (CNDS), 2002.
[19] C. Perkins and E. Royer. Ad-hoc on-demand distance vector routing. InProceedings of the IEEE Workshop on Mobile Computing

Systems and Applications (WMCSA), February 1999.
[20] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and signing of multicast streams over lossy channels. In

Proceedings of the IEEE Symposium on Security and Privacy, May 2000.
[21] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its application to secure message transmission. In

Proceedings of the IEEE Symposium on Security and Privacy, May 2001.
[22] V. Shoup. On formal models for secure key exchange (version 4), revision of IBM Research Report RZ 3120, November 1999.
[23] S. Yang and J. Baras. Modeling vulnerabilities of ad hoc routing protocols. InProceedings of the ACM Workshop on Security of Ad

Hoc and Sensor Networks, October 2003.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. A, NO. B, MONTH-YEAR 20

PLACE
PHOTO
HERE

Gergely Ács received the M.Sc. degree in Computer Science from the Budapest University of Technology and
Economics (BME) in 2005. Currently, he is a Ph.D. student in the Laboratory of Cryptography and Systems Security
(CrySyS) at BME. His research topic is secure routing in wireless ad hoc and sensor networks.

PLACE
PHOTO
HERE

Levente Buttyán received the M.Sc. degree in Computer Science from the Budapest University of Technology and
Economics (BME) in 1995, and the Ph.D. degree from the Swiss Federal Institute of technology – Lausanne (EPFL)
in 2002. In 2003, he joined the Department of Telecommunications at BME, where he currently holds a position
as Assistant Professor and works in the Laboratory of Cryptography and Systems Security (CrySyS). His research
interests are in the design and analysis of security protocols for wired and wireless networks, including wireless sensor
networks and ad hoc networks. More information is available at http://www.hit.bme.hu/∼buttyan/

PLACE
PHOTO
HERE

István Vajda is a Professor at the Department of Telecommunications, Budapest University of Technology and Eco-
nomics (BME). He is the Head of the Laboratory of Cryptography and Systems Security (CrySyS). His research interests
are in Cryptography and Coding Theory. He has teaching experience in Algebraic Coding Theory, Cryptography, and
Information Theory.

