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Abstract—Set-valued dataset contains different types of
items/values per individual, for example, visited locations,
purchased goods, watched movies, or search queries. As it is
relatively easy to re-identify individuals in such datasets, their
release poses significant privacy threats. Hence, organizations
aiming to share such datasets must adhere to personal data
regulations. In order to get rid of these regulations and also
to benefit from sharing, these datasets should be anonymized
before their release.

In this paper, we revisit the problem of anonymizing set-
valued data. We argue that anonymization techniques targeting
traditional km-anonymity model, which limits the adversarial
background knowledge to at most m items per individual, are
impractical for large real-world datasets. Hence, we propose
a probabilistic relaxation of km-anonymity and present an
anonymization technique to achieve it. This relaxation also im-
proves the utility of the anonymized data. We also demonstrate
the effectiveness of our scalable anonymization technique on a
real-world location dataset consisting of more than 4 million
subscribers of a large European telecom operator. We believe
that our technique can be very appealing for practitioners
willing to share such large datasets.

I. INTRODUCTION

Today digital data about individuals are being collected
on a large scale by different actors. This vast amount of
data, termed as big data in the literature, could be of
great use for social or economical development if shared.
Set-valued data is a renowned form of big data, which
contains a set of items/values per individual, for exam-
ple, visited locations, purchased items, watched movies, or
search queries. Although set-valued data typically do not
include any direct personal identifiers, their release can still
lead to a privacy breach if an adversary learns a subset
of items of an individual from other sources. In particular,
the adversary might be able to re-identify individuals if the
known subset of items is unique or not shared by many
people. For instance, de Montjoye et al. have shown that four
spatio-temporal positions are enough to uniquely identify
an individual 95% of the times in a dataset of one and a
half million users [7]. Similar re-identification attacks have
been demonstrated on credit-card metadata [8] and movie
ratings [20]. These attacks pose significant privacy threats,
as the adversary can learn about all items of individuals
after identifying their records, which may uncover potential

sensitive information such as their health and sex life or
political beliefs [20].

In the literature, different privacy models are proposed
for privacy-preserving data release. One of the first of these
models was k-anonymity [22], [23], which was originally
proposed for relational databases. However, k-anonymity is
not a meaningful privacy model for set-valued data, where
attributes cannot be separated into quasi-identifiers (which
the adversary might already know from external sources
about an individual) and sensitive attributes (which the
adversary intends to learn). Rather, every item can equally
serve as a quasi-identifier as well as a sensitive attribute. As
a straw man approach of k-anonymization, one can consider
all items of an individual as quasi-identifiers. However, it
is unreasonable to assume that the adversary knows all
the items of an individual, especially if there are many
of them. Moreover, k-anonymity suffers from the curse of
dimensionality [3], i.e., datasets with many attributes require
excessive modification in order to satisfy k-anonymity. As
set-valued data are typically large-dimensional and sparse,
this would render most of such data practically useless.

As a result, km-anonymity has been proposed in [24],
which has a weaker but more reasonable guarantee than k-
anonymity; any subset of m items must be shared by 0 or
at least k individuals in the dataset. In [24], Manolis et al.
also proposed algorithms to achieve km-anonymity but these
solutions are not applicable for large datasets. That is, the
running time of their apriori-based anonymization remains
exponential in m in the worst case, and therefore impractical
for larger values of m.

In this paper, we propose a probabilistic version of km-
anonymity which is suitable for big data. This comes at the
cost of a bit relaxation of privacy requirements as it provides
a probabilistic guarantee on km-anonymity. Roughly saying,
our model guarantees that any m items of an individual are
shared by at least k − 1 other individuals with a certain
probability σ. Here, the value of σ is typically very close
or even equal to 1. If σ = 1 our model boils down to
the standard km-anonymity model [24] providing the same
privacy guarantee. We propose an anonymization technique
based on random sampling to achieve probabilistic km-
anonymity with a worst-case complexity that is linear in



the number of individuals and quadratic in m. Therefore,
our solution becomes practical for any values of m, and it
is also sufficiently flexible to provide different guarantees
for different values of m. Indeed, it is rational to have
stronger privacy guarantee (i.e., larger k and/or larger σ) for
smaller values of m, which are always easier to acquire from
external sources than larger number of items. This allows
to further improve utility meanwhile providing reasonable
privacy guarantee even for large values of m.

Moreover, our model perfectly complies with current
personal data regulations and therefore can be a compelling
choice for the purpose of anonymization in practice. In
particular, the central concept of such regulations is re-
identifiability of individuals likewise in our model. For
example, if re-identifiability rate can be proved to fall below
a particular threshold (see the United States HIPAA Privacy
Rule Safe Harbor de-identification standard1), then the data
is not considered to be personal any more and the regulation
does not apply. Similarly, the European Data Protection
law (Directive 95/46/EC) [1] defines personal data as “any
information relating to an identified or identifiable natural
person”. In determining whether a person is identifiable
“account should be taken of all the means likely reasonably
to be used either by the controller or by any other person
to identify the said person” [1]. Our model provides a
straightforward interpretation of these privacy requirements
through the fine-tuning of its parameters (i.e., m, k, and σ).

Contributions: More specifically, the contributions of this
paper are as follows:

1) We propose a probabilistic relaxation of km-
anonymity in order to anonymize large set-valued
datasets efficiently. The parameters of our model can
be fine-tuned to the desired privacy requirements.

2) We design an anonymization technique which uses
generalization to achieve our probabilistic privacy
guarantees. The running time of our approach is linear
in the number of records, the maximum number of
generalizations, and quadratic in m. Hence, it remains
scalable even for big data regardless what general-
ization method is used. Our scheme is based on the
random sampling of different subsets of items and can
optimize the utility with respect to any error function.
To this end, we use a Markov Chain Monte Carlo
sampling technique, whose worst-case running time
(aka., mixing time) is known.

3) We evaluate our anonymization solution on the loca-
tion data of more than 4 million individuals in a large
European city. This location data is derived from their
call data records, and consists of the set of visited cell
towers per individual. We show that the localization
error due to anonymization with reasonable anonymity
guarantees falls below a few hundred meters, and the

1http://aspe.hhs.gov/admnsimp/final/PvcFR06.txt#

resolution ranges from 100 to 400 partitions of the
city which has a total area of 128 km2. This makes an
average localization accuracy between 0.3 and 1 km2

depending on the applied privacy parameters.

II. RELATED WORK

In this section, we briefly review the related work on
the anonymization of set-valued data (i.e., excluding the
problem of attribute inference). Many works divide items
into sensitive attributes and quasi-identifiers, and assume that
the adversary’s background knowledge is confined to quasi-
identifiers [11], [12], [4], [18], [26], [27]. Similarly to [24],
[25], our approach does not have such a limitation as all
items can equally be sensitive and also quasi-identifier in
our model.

In [24], [25], Terrovitis et al. propose the model of km-
anonymity as well as different anonymization algorithms
using global and local recoding. However, these algorithms
do not scale well for large datasets as their computational
cost is exponential in m in the worst case (see Section
V-C for details). km-anonymity has also been applied on
trajectory data in [21], but this solution suffers from the same
drawbacks as [25]. Another approach of anonymization of
set-valued data were proposed in [17], where the privacy
constraints need to be specified in advance in the form of
specific itemsets which must satisfy k-anonymity. However,
the proposed solutions have a cost which is exponential in
m if the privacy constraints are composed of all subsets of
items with size m.

He et al. propose a top-down generalization algorithm
in [13] to provide k-anonymity for set-valued data. However,
as [25] also points out, this approach underperforms the
anonymization techniques proposed for km-anonymity in
[25], if m is less than the average record size. Also, k-
anonymity has an unnecessarily strong assumption for set-
valued data as the adversary is unlikely to know all the items
of an individual.

Set-valued data have also been sanitized under differen-
tial privacy. Instead of releasing microdata, these solutions
publish the noisy occurrence counts of certain items [15]
or itemsets [5] in the dataset. Due to the injected noise,
these techniques do not preserve data truthfulness, and hence
cannot be used in several applications [9], [17]. Moreover,
the solution proposed in [5] releases the noisy occurrence
counts of complete records which provides weak utility if
the records are unique in the dataset (which is the case for
most real-world large datasets like in Section VI-A).

Finally, similarly to [21], our scheme does not require
a pre-computed generalization hierarchy for anonymization
but rather a set of more general constraints describing the
desired output. This provides a wide applicability to our
approach which is also demonstrated in Section VI.

http://aspe.hhs.gov/admnsimp/final/PvcFR06.txt#


Rec# Items
1 {LA}
2 {LA, Seattle}
3 {New York, Boston}
4 {New York, Boston}
5 {LA, Seattle, New York}
6 {LA, Seattle, New York}
7 {LA, Seattle, New York, Boston}

Table I: Example for a set-valued dataset, where I =
{LA,Boston,New York,Seattle}.

III. MODEL

Let I denote the universe of all items (e.g., set of visited
locations, purchased items, etc.). A dataset D ⊆ 2I\{} is the
ensemble of all items of some set of individuals, where |D|
denotes the number of individuals in D. A record Du, which
is a non-empty subset of I, refers to all items of an individual
u in D. A set of items with cardinality m is shortly called
as an m-itemset henceforth. The set of all m-itemsets over
I is denoted as Im. A set-valued dataset containing the set
of visited cities per individual is illustrated in Table I.

The goal of the adversary is to re-identify a targeted user u
in D such that at most m items of u (i.e, a single m-itemset
from u’s record) are known to the adversary. We assume that
the adversary has no other available background knowledge
about u.

An itemset is k-anonym in D, if the number of records
containing that itemset is either 0 or at least k. km-
anonymity [24] guarantees that all m-itemsets are k-
anonym. In other words, if the adversary knows any m-
itemset which occurs in at least one record of D, then
there are at least k − 1 other records which also contain
that itemset. For example, the dataset in Table I is not 22-
anonym, as {LA,Boston} and {Seattle,Boston} only occur
in the last record.

In the following definition, we relax km-anonymity and
require that any itemset, up to size m, which is known by
the adversary must be k-anonym with large probability.

Definition 1 (σ-km-anonymity) Let supp(x,D) denote
the support of x ∈ Im in D, i.e., the number of records
in D which contain x. Let Ω` denote the set of all `-
itemsets which occur in at least one record in D, i.e.,
Ω` = {x : x ∈ I` ∧ supp(x,D) ≥ 1}, and let B` denote
a random variable describing a probability distribution
over Ω`. A dataset D is σ-km-anonym with respect to the
ensemble of B1,B2, . . . ,Bm, if Pr[supp(B`, D) ≥ k] ≥ σ
for all 1 ≤ ` ≤ m.

σ-km-anonymity requires that any `-itemset (` ≤ m) cho-
sen from the distribution of B` is k-anonym with probability
at least σ. In particular, the adversary has a probability
distribution of B` over all `-itemsets, which represents the
likelihood that a particular `-itemset is learned by the adver-
sary from external sources. Then, the adversary picks one
itemset x from this distribution, and the attack is successful

if x is not k-anonym (i.e., supp(x,D) < k). In Definition
1, 1− σ measures the success probability of this attack.

In order to ease presentation, Definition 1 requires the
same privacy guarantee (i.e., identical values of σ and k)
for all `-itemsets where ` ≤ m. However, we stress that
the privacy guarantee may depend on the size of itemsets
in reality. That is, larger values of ` may need less privacy
protection and hence smaller values of σ and k, as the adver-
sary may be less capable to acquire large number of items
from external sources. Therefore, in a more general sense,
σ and k can be vectors with size m, i.e., (σ1, σ2, . . . , σm)
and (k1, k2, . . . , km) requiring an `-itemset drawn from B`
to be k`-anonym with probability at least σ`.

Finally, we note that the k-anonymity of m-itemsets does
not imply that of shorter itemsets in general, and hence the
identical and explicit privacy requirement for all `-itemsets,
where ` < m, in Definition 1. Indeed, there is no guarantee
that records with size shorter than m also occur in longer
records.

IV. SAMPLING FOR ANONYMITY

The basic idea of our anonymization approach is to sample
a set S of `-itemsets from the distribution of B` for all
1 ≤ ` ≤ m, and perform anonymization only if any itemset
in S for any ` ≤ m violates k-anonymity. It follows from
standard sampling complexity bounds that if all itemsets
in S are k-anonym and |S| is O(ln(1/δ)/ε2) then all `-
itemsets are k-anonym in the entire dataset as well with an
error of ε and confidence 1− δ. Importantly, the number of
required samples is independent of the size of Ωm, which
is exponential in m in the worst case.

A. Sufficient requirement of σ-km-anonymity

Theorem 1 D is km-anonym with probability at least σ
with respect to B1,B2, . . . ,Bm, if, for each 1 ≤ ` ≤ m,
there exists S ⊆ Ω` such that

1) each element of S is independently drawn from the
distribution of B`,

2) each element of S is k-anonym in D,

3) |S| ≥ ln(1/x)
2

(
1− σ

1−x

)−2

, where x satisfies x2 +

2xσ ln(x) + (σ − 2)x− σ + 1 = 0 and σ ≥ 0.5

Proof: Let Ĥk denote the relative frequency of `-
itemsets in S which do not satisfy k-anonymity in D.
Furthermore, let Hk = Pr[supp(B`, D) < k]. As each
element of S is drawn independently from the distribution
of B` (Condition 1), Ĥk is an unbiased estimator of Hk,
i.e., E[Ĥk] = Hk. It follows from the Chernoff-Hoeffding
inequality [14] that Pr

[
Ĥk −Hk ≥ ε

]
≤ e−2|S|ε2 , or

equivalently, Pr
[
Ĥk −Hk < ε

]
≥ 1 − e−2|S|ε2 . Since

Ĥk = 0 in our case (Condition 2), we obtain that

Pr [Hk < ε] ≥ 1− e−2|S|ε2



where δ = e−2|S|ε2 . Therefore, D is km-anonym with
probability at least σ, if

|S| ≥ ln (1/δ)

2ε2

and

(1− ε)(1− δ) ≥ σ (1)

Our goal is to minimize the number of samples |S| mean-
while satisfying the constraint in Inequality (1). Therefore,
we can formulate the following simple optimization problem

minimize
ε,δ

f(ε, δ) =
ln (1/δ)

2ε2

subject to (1− ε)(1− δ) ≥ σ,
0 < ε, δ ≤ 1

This is a convex non-linear optimization problem, and there-
fore the Karush-Kuhn-Tucker (KKT) conditions are neces-
sary for a solution to be optimal. Indeed, if 0 < δ ≤ 0.5,
the leading principal minors of the Hessian matrix H of
f is strictly positive on ε ∈ (0, 1] which means that H is
positive definite. Hence, f is convex when ε ∈ (0, 1] and
δ ∈ (0, 0.5]. Solving the KKT-conditions yields Condition 3
of the theorem.

In the rest of the paper, we assume that B` is the uniform
distribution over all `-itemsets in D (i.e., the adversary can
learn any `-itemset in the dataset with equal probability). Al-
though the adversary can always learn certain `-itemsets of
some users with larger probability, the uniform distribution
over all possible `-itemsets of any user is the most general
assumption in practice.

B. Uniform sampling of `-itemsets

As B` has uniform distribution over Ω`, our task is to
sample an element from Ω` uniformly at random for any
1 ≤ ` ≤ m. A first (naive) approach could be to use
rejection sampling, i.e., sample a candidate `-itemset from
I` uniformly at random, and then accept this candidate as
a valid sample only if it also occurs in D. Otherwise,
repeat the process until a candidate is accepted. Although
sampling a candidate from I` is straightforward, it is very
likely to be non-existent in D (especially if ` is large),
and hence its running complexity is O(|I|`) in the worst
case. An alternative approach could be to enumerate Ω`,
and choosing one element directly from Ω` uniformly at
random. However, the complexity of this approach is still
O(|D|(maxu |Du|)`/`!) (recall that Du denotes the record
of user u in D). Unfortunately, these naive methods provide
acceptable performance only if ` is small.

We instead use a sampling technique from [2] based on the
Metropolis-Hastings algorithm [19], [6], which is a Markov
Chain Monte Carlo (MCMC) method. This technique has a
worst-case complexity which is roughly linear in the number

of records and `, and hence it remains reasonably fast even
for larger values of `.

In particular, an ergodic Markov chain, which is denoted
by M and detailed in Algorithm 1, is constructed such
that its stationary distribution π is the uniform distribution
over Ω` that we want to sample from. Each `-itemset in Ω`

corresponds to a state of M, and we simulate M until it
gets close to π, at which point the current state of M can
be considered as a sample from π.

Specifically, at each state transition,M picks a candidate
next state C (i.e., an `-itemset) independently of the current
state S (in Line 6-7 of Algorithm 1). In Line 8, the candidate
is either accepted (and M moves to C) or rejected with
certain probability (in which case the candidate state is
discarded, and M stays at S). The main idea is that, at
each state, we use a fast but biased sampling mechanism
to propose a candidate C (in Line 6-7); we first sample a
record uniformly at random in D, and then an `-itemset
from this record also uniformly at random. This sampling is
more likely to select any `-itemset which occurs in multiple
records (assuming records have similar sizes). We correct
this bias by adjusting the acceptance/rejection probability
(in Line 8) accordingly; M is more likely to accept such
states which are less likely to be proposed in Line 6-7.

Algorithm 1 MCMC sampling (M)
1: Input: Dataset D, `, # of iterations t
2: Output: A sample S ∈ Ω`

3: Let U := {Du : |Du| ≥ ` ∧Du ∈ D}
4: Let S be an arbitrary `-itemset in Ω`

5: for k = 1 to t do
6: Select a record r ∈ U uniformly at random
7: Select a subset of items C ⊆ r uniformly at random such

that |C| = `
8: Let S := C with probability min (1, q(S)/q(C)), where

q(x) =
∑
∀u:Du⊇x

∏`
i=1

1
|Du|−`+i

9: return S

Theorem 2 ([2]) M in Algorithm 1 is an ergodic Markov
chain whose unique stationary distribution is the uniform
distribution over Ω` for any `.

Convergence of M: To compute t in Algorithm 1,
we need to know how many transitions M should do in
order to “forget” its initial state and get “close enough” to
its stationary distribution, i.e., the uniform distribution over
Ω`. The time that M takes to converge to its stationary
distribution π is known as the mixing time of M, and is
measured in terms of the total variation distance between
the distribution at time t and π.

Definition 2 (Mixing time) For ξ > 0, the mixing time
τM(ξ) of Markov chain M is

τM(ξ) = min{t′ : ||P tM − π||tv ≤ ξ,∀t ≥ t′}
where ||P tM−π||tv = maxx∈Ω`

1
2

∑
y∈Ω |P tM(x, y)−π(y)|



defines the total variation distance. P tM(x, y) denotes the t-
step probability of going from state x to y, and P tM denotes
the t-step probability distribution over all states.

The next theorem shows that τM(ξ) is
O(|D| log(1/ξ)/R∗` ), where |D| is the dataset size
and R∗` is the uniqueness of `-itemsets from the largest
record of D, i.e., the probability that an `-itemset selected
from the largest record uniformly at random occurs only
once in D. As the uniqueness of `-itemsets is usually large
in practice, especially if ` is large, M is fast-mixing in
general2. Indeed, in our dataset detailed in Section VI-A,
R∗` = 0.07 when ` = 5, and it increases to 0.75 (` = 11).

Theorem 3 (Mixing time of M [2]) Let R∗` denote the
probability that a set of ` items selected from the largest
record (i.e., having the most items) in D uniformly at random
is unique. Then, τM(ξ) ≤ |D| ln(1/ξ)/R∗` for any `.

Notice that q in Algorithm 1 can be computed rapidly
in practice by precomputing a table T , where each row
corresponds to an item in D, and row i contains the sorted
list of all records which have item i. Hence, the set of records
which have a common specific `-itemset can be computed
by taking the intersection of the corresponding rows in T in
time O(`|imax|), where |imax| is the maximum row size in
T . Fast implementations of the intersection of sorted integers
are described in [16].

Supposing that ln(1/ξ) � imax � |D| and 1/R∗` is a
constant close to 1, the total running complexity of M is
roughly O(`|D|). Therefore, a “good” uniform sample from
Ω` can be obtained roughly after O(`|D|) iterations in most
practical cases.

V. ANONYMIZATION ALGORITHM

We perform anonymization through the generalization of
items in D. Our goal is to find a generalization function
R : I→ 2I \ {}, which maps an item I ∈ I to a non-empty
subset of I. An anonymized dataset 〈R, D〉 is obtained by
applying R on the original dataset D, i.e., each item i
occurring in D is replaced with R(i) (i.e., global recoding
is applied on D). The idea is that if multiple items are
mapped to the same subset of I, then the records containing
these items become indistinguishable w.r.t these items after
generalization. A possible (deterministic) anonymization of
the example dataset from Table I is illustrated in Figure 1.

In this paper, we assume that the image of R must
correspond to a partitioning of I. That is, for any i, j ∈ I,
either R(i) = R(j) or R(i)∩R(j) = ∅, and

⋃
∀iR(i) = I.

In order to find a partitioning of I, which results in σ-km-
anonymity meanwhile maximizes utility, the algorithm needs

2The uniqueness of `-itemsets from a single record can easily be ap-
proximated with the Chernoff-Hoeffding inequality using uniform samples
over all `-itemsets from the record. This sampling is straightforward to
implement by choosing ` items from the record without replacement.

to be provided with the set of allowed generalization func-
tions, i.e., a subset C of possible partitionings. In general,
C can be succinctly described in the form of constraints.
For example, in Figure 1, the constraint is specified in the
form of a generalization hierarchy, i.e., Image(R) must be
a partitioning of I which corresponds to a horizontal cut of
the specified hierarchy.

We define the hamming distance on the set of general-
izations as disth(R1,R2) = |{i ∈ I : R1(i) 6= R2(i)}|,
i.e., the number of items on which R1 and R2 differ.
Two generalization functions R1,R2 ∈ C are neighbors
at item i ∈ I, if R1(i) 6= R2(i) and disth(R1,R2) =
minR′∈C disth(R1,R

′) = minR′∈C disth(R′,R2). For ex-
ample, function R in Figure 1 is the neighbor of function
R′ at item “New York” and also at item “Boston”, where
R′ maps each city to itself (i.e., R′(i) = {i} for all i ∈ I)3.

All (US) = West US ∪ East US

West US = {New York,Boston} East US = {LA, Seattle}

New York SeattleLABoston

R(New York) = West US
R(Boston) = West US

R(LA) = LA
R(Seattle) = Seattle

Rec# Items

1 {LA}
2 {LA, Seattle}
3 {West US}
4 {West US}
5 {LA, Seattle, West US}
6 {LA, Seattle, West US}
7 {LA, Seattle, West US}

Figure 1: Anonymized dataset (left) generated from Table
I in order to guarantee 22-anonymity. R (right) corresponds
to a horizontal cut of the above generalization hierarchy
(denoted by dashed line).

Furthermore, err : 2I×22I → R denotes an error function
measuring some distance between the original dataset D and
its anonymized version 〈R, D〉. err represents the utility
loss due to applying R on D. For example, in Figure 1, a
possible error function is the average distance between cities
and the centroid of their aggregate regions (i.e., the centroid
of West US for Boston and New York).

Given an input dataset D and constraint C, our goal
is to find R ∈ C (i.e., a partitioning of I) such that
err(D, 〈R, D〉) is minimized and 〈R, D〉 satisfies σ-km-
anonymity.

A. Operation

Our proposal, denoted by A, is detailed in Algorithm
2. We perform a randomized greedy search on the set of
generalizations in C; it starts from the identity mapping of
all items (i.e., when there is no generalization) and it always
proceeds to a random neighboring generalization by merging
partitions following the given constraint. The search stops
as soon as we find a generalization R such that 〈R, D〉
satisfies σ-km-anonymity, or no more generalization can be
done because Image(R) is a singleton.

3Recall that a function R, where R(Boston) = West US but
R(New York) = New York, is not a valid generalization function as
Image(R) is not a partitioning of I.



In particular, A first generalizes D by considering shorter
itemsets and then proceeds with larger itemsets till the size
of m. A maintains a generalization function R which is
initialized to the identity mapping of all items in I (in
Line 4), and updates R if a sampled `-itemset violates k-
anonymity (Line 12-14). Specifically, A picks an `-itemset
s from the original dataset D uniformly at random usingM
(in Line 8). If the generalized `-itemset s′ (Line 10) occurs
at least k times in the anonymized dataset 〈R, D〉, then it is
added to the set S of found k-anonym samples (Line 11) and
R is left unchanged. Otherwise, all generalizations R′ ∈ C
are identified such that (1) R′ is the neighbor of the current
generalization R at an item j ∈ s, i.e., there exists j ∈ s
where they differ, and (2) |Image(R′)| < |Image(R)|, i.e.,
R′ is obtained from R by merging the partition of an item
j ∈ s with another partition in Image(R) specified by the
constraint. Then, we update R to the generalization which
minimizes the error and satisfies both requirements. Notice
that Requirement (2) guarantees that the algorithm will ter-
minate after finite number of steps due to the monotonicity
property of k-anonymity [24].

If at least γ samples4 of `-itemsets satisfy k-anonymity,
or no more generalizations can be applied because only a
single set of items occurs in each record (i.e., Image(R) is
a singleton), A stops (Line 7) and proceeds to itemsets with
size `+1 as long as ` ≤ m−1 (Line 5). Since γ is adjusted
according to Theorem 1, and S contains itemsets selected
by M uniformly at random, it follows from Theorem 1 and
2 that the output of A satisfies σ-km-anonymity.

Notice that in Line 8 of Algorithm 2, the uniform samples
are always taken from the original dataset D and not from
its anonymized version 〈R, D〉. Recall that, in Definition 1,
the adversary’s background knowledge is assumed to be at
most m items from I (and not from Image(R)).

Example 1 Consider the anonymization of the dataset from
Table I with σ = 0.99, k = 2, m = 2, err is the geographic
distance, and each valid generalization in C corresponds to
a horizontal cut of the hierarchy in Figure 1. First, A checks
all 1-itemsets. As all cities are present in at least 2 records,
A proceeds to 2-itemsets. Suppose that A samples s =
{LA,Boston}, which fails 2-anonymity. Hence, A considers
all possible neighboring generalizations of R, where R is
the identity mapping of cities, and finds two valid neighbors;
R1 at item Boston (i.e., Boston is merged with New York),
and R2 at item LA (i.e., LA is merged with Seattle). In partic-
ular, R1(New York) = R1(Boston) = West, R1(LA) = LA,
R1(Seattle) = Seattle, and R2(Seattle) = R2(LA) = East,
R2(New York) = New York, R2(Boston) = Boston. Since
Boston is closer to New York than LA to Seattle, A chooses
R1 which results in the least error. The resulting dataset
〈R1, D〉, which is also shown in Figure 1, is 22-anonym

4γ can be efficiently computed with any numerical root-finding method
(e.g., Newton’s method)

and hence returned by A.

B. Amplifying utility

It can be shown that finding the optimal generalization
function R, which results in the least error and also provides
km-anonymity, is NP-hard [24]. Although A tends to output
datasets with low error, it is not guaranteed to find a dataset
which is “close” to the optimal solution. However, as A
is randomized, we can approach such a solution if A is
executed multiple times.

Algorithm 2 Anonymization A
1: Input: D, C, m, k, σ, t
2: Output: Anonymized dataset 〈R, D〉
3: γ := ln(1/x)

2

(
1− σ

1−x

)−2

, where x satisfies
x2 + 2xσ ln(x) + (σ − 2)x− σ + 1 = 0

4: R(i) := {i} for all i ∈ I
5: for ` = 1 to m do
6: S := {} // set of found k-anonym itemsets
7: while |S| ≤ γ ∧ |Image(R)| > 1 do
8: s =M(D, `, t) // see Algorithm 1
9: s′ = {R(i) | ∀i ∈ s}

10: if supp(s′, 〈R, D〉) ≥ k then
11: S := S ∪ {s}
12: else
13: V := {R′ ∈ C : R′ is neighbor ofR at an item j ∈

s, and |Image(R′)| < |Image(R)|}
14: R := arg minR′∈V err(D, 〈R′, D〉)
15: S := {}
16: return 〈R, D〉

In particular, we amplify the utility of A by multiple
independent trials. Consider A(r) which executes A in-
dependently r times, and selects the output among the r
executions which has the best utility (i.e., the least error).
Notice that multiple executions do not deteriorate anonymity,
but rather improve utility. Indeed, A(r) can find a dataset
which is closer to the optimal solution if r is sufficiently
large. Moreover, this approach is independent of the error
function err .

Theorem 4 A(r) achieves σ-km-anonymity in
O
(
rm2|D||I|(1− σ)−2 ln

(
1

1−σ

))
steps.

Proof: A picks γ samples maximum |I| − 1 times
in the worst case for any C. In addition, γ =

O
(

(1− σ)−2 ln
(

1
1−σ

))
. Indeed, γ = O

(
ln(1/δ)/ε2

)
,

where (1 − ε)(1 − δ) ≥ σ. This means that ε = (1 − σ)/2
implies δ = (1 − σ)/(1 + σ) which results in γ <

ln
(

4
1−σ

)
(1− σ)−2.

As the complexity of M is O(`|D|), we obtain that the
complexity of A(r) is O

(
rm2|D||I|(1− σ)−2 ln

(
1

1−σ

))
.



C. Comparison to the deterministic Apriori-based
anonymization

In [24], the authors proposed a deterministic anonymiza-
tion technique to achieve traditional km-anonymity (i.e,
σ = 1) based on the apriori-principle. However, the running
time of their apriori-based anonymization (AA) remains
exponential in m in the worst case. In particular, AA first
generalizes all 1-itemsets in D and obtains a new generalized
dataset D1. Then all 2-itemsets of D1 are generalized in
order to get D2, and so on until Dm is obtained and released.
At step ` (` ≤ m), AA requires to enumerate and store
all `-itemsets of each record in D`, which has a cost of
O
(
|D| ·

(
t`
`

))
, where t` is the size of the longest record in

D`. Although t1 ≥ t2 ≥ . . . ≥ tm, there is no guarantee
that

(
tm
m

)
is sufficiently small in practice (which is the case

for our dataset in Section VI) as its magnitude depends on
the applied generalization hierarchy and dataset D.

VI. EVALUATION

A. Dataset characteristics

We use a CDR (Call Data Record) dataset provided by a
cell phone operator in Europe, where I represents the set of
cell towers of the operator in a large European city. A cell
tower T ∈ I is visited by an individual, if the operator has
a recorded event at tower T related to the individual over
the observed period (01/09/2007 - 17/10/2007). An event
can be an incoming/outgoing call or message to/from the
individual. The dataset contains the events of 4, 427, 486
users at |I| = 1303 towers within the administrative region of
the city, where the GPS coordinates of all the towers are also
available. In our dataset D, a record contains only the set of
towers that are visited by a user over six weeks, i.e., it does
not contain the time of visits. Indeed, including time of visits
would enable the adversary to easily compute the frequency
of each tower per user which allows to deduce the top
locations (e.g., home and working place) of each individual
in D. Top locations of individuals are highly unique [28]
even in large populations, which makes the anonymization
of time-stamped location data very challenging.5

The average number of individuals per tower over this
period was 38817 with a standard deviation of 50911. The
total area of the city which is covered by cell towers is 128.1
km2. The main characteristics of our dataset are summarized
in Table II. The towers are shown in Figure 2.

B. Uniqueness

In what follows, we illustrate the potential privacy risks
of releasing our dataset without any anonymization. The
uniqueness of a set of items (i.e., towers) of different sizes is
shown in Figure 2. Recall that the uniqueness is defined as

5Notice that, in our simplified dataset, even if the adversary knows the top
locations of a single user, there can be multiple other users who visited each
of these locations at least once. Without time information, the adversary
does not know whether these are also top locations of other users or not.
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Figure 2: Voronoi-tessellation of cell towers (left). Red lines
denote the boundaries of districts. Uniqueness depending on
m (right)

Dataset size |D| 4, 427, 486
# of all towers |I| 1303
Maximum record size maxu |Du| 422
Minimum record size minu |Du| 1
Average record size 11.42
Std.dev of record size 17.23

Total area of all cells 128.1 km2

Table II: Characteristics of our dataset D

the relative frequency of m-itemsets with respect to a single
occurrence in D, i.e., |{x:x∈Im∧supp(x,D)=1}|

|{x:x∈Im∧supp(x,D)≥1}| . As the denom-
inator is infeasible to compute in our case, we use sampling
to approximate the uniqueness. In particular, according to the
Chernoff-Hoeffding bound, we pick 2 ln(2/δ)/ε2 subsets of
towers with the given size uniformly at random using M,
which is described in Section IV-B, and approximate the
real uniqueness with the uniqueness of the sample set. We
note that, unlike in [7], this technique provides an unbiased
estimation of the real unicity. In particular, in [7], the authors
used a biased sampling technique to estimate unicity; they
first selected a record uniformly at random, and then a subset
of towers with the given size also uniformly at random.
However, their approach is more likely to select subsets
which occur in multiple records, and hence underestimates
the real unicity in the dataset.

For the sampling algorithm M, we emphasize that the
bound in Theorem 3 is a worst-case bound, and the real
convergence time can be much smaller depending on the
dataset D as well as the starting state of the chain. In
order to speed up computations even more, we detected the
convergence of M using the Geweke diagnostic [10] in the
rest of the simulations (see the appendix).

For our measurements, we used ε = 0.01 and σ = 0.99
which requires at least 26492 samples from D (with re-
placement). This guarantees that the sample uniqueness is
within ±1% error of the real uniqueness with probability at
least 0.99. As Figure 2 shows, the uniqueness of 5 towers
already reaches 0.2 and it increases to 0.78 when the number
of towers is 11. These large values of uniqueness even for
small number of towers indicates the serious privacy threats
of releasing CDR data even if time information is withheld.



C. Anonymization of CDR data

We use A in Algorithm 2 to anonymize our CDR dataset
D with the following constraint. A partition of cell towers,
which is always represented by a contiguous region of the
city, can only be merged with a neighboring partition in
the generalization process. In other words, C contains all
possible partitionings of the towers such that the voronoi
polygons of all towers within a partition must constitute
a single contiguous polygon. Notice that this requirement
cannot be specified in the form of a single generalization
hierarchy of cell towers and hence would not be achievable
with most previous anonymization techniques.

Initially, R is the identity mapping, i.e., every partition is
a singleton containing a cell tower from D. Then, at each
iteration, when a partition needs to be further generalized
(Line 13-14 of Algorithm 2), it is merged with a neigh-
boring partition6 such that the following error function is
minimized.

Let D′ denote the anonymized dataset 〈R, D〉. The error
function is defined as the average geographical approxima-
tion error due to generalization in the anonymized dataset
D′. That is,

err(D,D′) =

∑
u∈Du

∑
i∈D′

u
dist(i,R(i))∑

u∈Du
|Du|

where dist denotes the geographical distance between a
tower and the center of its partition R(i) in D′7. In other
words, the average error is the weighted average of the
approximation error of all towers, where the weight of a
tower i is the number of occurrences of i in D.

As in Algorithm 2, the anonymization stops when there
is a single all-inclusive partition, or all `-itemsets sampled
from D satisfy k-anonymity in 〈R, D〉 for 1 ≤ ` ≤ m.
In order to amplify utility, we execute the above algorithm
10 times independently, i.e., r = 10, and select the output
which has the least error.

D. Privacy guarantee

We anonymized our dataset with the following privacy
guarantees. For 1 ≤ ` ≤ 4, we guaranteed km-anonymity
with probability 1, i.e., we used a deterministic apriori-based
anonymization (see Section V-C). That is, we replaced the
random sampling step of Algorithm 2 with the deterministic
enumeration of all `-itemsets. However, for ` ≥ 5, this tech-
nique turns out to be very expensive, and we rather employed
our probabilistic solution described in Section VI-C. Indeed,
the size of the longest record after generalizing all 4-itemsets
is till more than 300.

6Two polygons are immediate neighbors if their boundaries have at least
one common point.

7The center of a partition is the centroid of the polygon which is obtained
by merging all the voronoi polygons of the cell towers belonging to the
partition.

In fact, the above approach provides reasonable
anonymity guarantee in practice; the adversary is more likely
to collect a few, but usually no more than 5 locations of
multiple individuals. For example, the adversary can crawl
an online social network (OSN) where many individuals
publish a few of their visited locations (such as home or
working place), and try to re-identify the OSN users in our
dataset. However, if m ≥ 5, the adversary is less likely to
collect at least 5 locations of 100 (or say 1000 if σ = 0.999)
OSN users, and hence a probabilistic guarantee can make
more sense in practice. That is, as our dataset covers a large
proportion of all the citizens, a probabilistic guarantee with
σ = 0.99 results in the privacy breach of 1 out of 100 users
on average (assuming that all of them publish at least five of
their locations in OSN and are also present in our dataset).

E. Results

As the average record size is 11, we anonymized itemsets
up to size 11. In particular, we considered two different
values of k; k = 10 and k = 20, and two different values
of σ; 0.99 and 0.999. These probabilistic guarantees require
45, 845 and 5, 866, 617 samples of `-itemsets, respectively
(see Condition 3 of Theorem 1). For a particular value of
m, we used the same value of σ if 5 ≤ ` ≤ m, and σ = 1
if 1 ≤ ` ≤ 4. In addition, we used the same value of k for
all 1 ≤ ` ≤ m.

The average number of released partitions is depicted in
Figure 4. Recall that the maximum number of partitions is
the original number of towers which is 1303. The number
of partitions decreases from 350 (m = 5) to 150 (m = 11)
for σ = 0.99, and from 260 (m = 5) to 120 (m = 11) for
σ = 0.999. Interestingly, increasing k from 10 to 20 does
not significantly change the results. Although the number
of partitions seem to be too limited at first sight, Figure 3
illustrates that they still provide a meaningful partitioning of
the city. Indeed, as Figure 5 also shows, the average error
ranges from 110 to 350 meters. Specifically, for σ = 0.99,
the error changes from 120 meters (m = 5) to 280 meters
(m = 11), and, for σ = 0.999, from 160 meters (m = 5) to
350 meters (m = 11).
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Figure 4: Number of partitions (more are better) (r = 10).
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(h) m = 11, σ = 0.999
Avg. err: 331 meters, Partitions: 118

Figure 3: Partitions of cell towers depending on m and σ. k = 20 and r = 10 in all settings.

4 5 6 7 8 9 10 11
m

0

50

100

150

200

250

300

350

A
v
e
ra

g
e
e
rr
o
r

k = 10

k = 20

(a) σ = 0.99

4 5 6 7 8 9 10 11
m

0

50

100

150

200

250

300

350

A
v
e
ra

g
e
e
rr
o
r

k = 10

k = 20

(b) σ = 0.999

Figure 5: Average error (smaller is better) (r = 10).

We also computed the average partition size, where the
size of each partition is weighted with the number of
individuals within the partition. The results are shown in
Figure 6. The average partition size in the original dataset
is 0.1 km2, which increases to 1 km2 when σ = 0.99, and
to 1.3 km2 when σ = 0.999. Again, the results are only
slightly influenced by the value of k.

VII. CONCLUSION

We proposed a probabilistic relaxation of km-anonymity
for the purpose of anonymizing large set-valued datasets.
This relaxation is important to achieve scalability and to
improve the utility of the anonymized data. We believe that
our privacy guarantees are sufficient for most real-world ad-
versaries and also to get rid of personal data regulations if a
dataset needs to be shared. We also presented an anonymiza-
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Figure 6: Average partition size (smaller is better) (r = 10).

tion technique to achieve this relaxation. Our technique does
not rely on a pre-defined generalization hierarchy of the set
of items but rather on more general constraints describing
the desired output. Moreover, it can optimize the utility
of the anonymized dataset against privacy constraints with
respect to any error function providing wide applicability
to our solution. We evaluated our technique on a real-
world large dataset and found that the anonymized dataset
is still reasonably accurate. We also studied the effect of the
privacy parameters m, σ and k on the utility. According to
our measurements, the adversarial background knowledge,
which is measured by m, has the largest impact on the
utility in general followed by the confidence σ of the privacy
guarantee.



ACKNOWLEDGEMENTS

This work was funded by the PIA (projet investissements
d’avenir) XData Project (http://xdata.fr).

REFERENCES

[1] EU Directive 95/46/EC - The Data Protection
Directive , 1995. https://www.dataprotection.ie/docs/
EU-Directive-95-46-EC-Chapter-1/92.htm.

[2] J. P. Achara, G. Acs, and C. Castelluccia. On the unicity of
smartphone applications. In ACM Workshop on Privacy in
the Electronic Society (WPES), 2015.

[3] C. C. Aggarwal. On k-anonymity and the curse of dimen-
sionality. In VLDB, pages 901–909, 2005.

[4] J. Cao, P. Karras, C. Raı̈ssi, and K.-L. Tan. ρ-uncertainty:
Inference-Proof Transaction Anonymization. VLDB Endow.,
3(1), September 2010.

[5] R. Chen, B. C. Desai, N. Mohammed, L. Xiong, and B. C. M.
Fung. Publishing set-valued data via differential privacy. In
VLDB, 2011.

[6] S. Chib and E. Greenberg. Understanding the metropolis-
hastings algorithm, 1995.

[7] Y.-A. de Montjoye, C. A. Hidalgo, M. Verleysen, and V. D.
Blondel. Unique in the crowd: The privacy bounds of human
mobility. Scientific Reports, Nature, March 2013.

[8] Y.-A. de Montjoye, L. Radaelli, V. K. Singh, and A. Pentland.
Unique in the shopping mall: On the reidentifiability of credit
card metadata. Science, 347(6221), January 2015.

[9] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu. Privacy-
preserving data publishing: A survey of recent developments.
ACM Comput. Surv., 2010.

[10] J. Geweke. Evaluating the accuracy of sampling-based ap-
proaches to the calculation of posterior moments. In Bayesian
Statistics, pages 169–193. University Press, 1992.

[11] G. Ghinita, Y. Tao, and P. Kalnis. On the anonymization of
sparse high-dimensional data. In ICDE, 2008.

[12] G. Ghinita, Y. Tao, and P. Kalnis. Anonymous publication of
sensitive transactional data. IEEE TKDE, 23(2), Feb. 2011.

[13] Y. He and J. F. Naughton. Anonymization of set-valued data
via top-down, local generalization. VLDB Endow., 2(1), Aug.
2009.

[14] W. Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Asso-
ciation, 58(301):13–30, 1963.

[15] A. Korolova, K. Kenthapadi, N. Mishra, and A. Ntoulas.
Releasing search queries and clicks privately. In WWW, 2009.

[16] D. Lemire, L. Boytsov, and N. Kurz. SIMD compression
and the intersection of sorted integers. CoRR, abs/1401.6399,
2014.

[17] G. Loukides, A. Gkoulalas-Divanis, and B. Malin. Coat:
Constraint-based anonymization of transactions. Knowledge
and Information Systems, 28(2), 2011.

[18] G. Loukides, A. Gkoulalas-Divaniss, and J. Shao. Anonymiz-
ing transaction data to eliminate sensitive inferences. In
DEXA, 2010.

[19] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical Physics,
(6):1087–1092.

[20] A. Narayanan and V. Shmatikov. Robust de-anonymization
of large sparse datasets. In IEEE S&P, pages 111–125, 2008.

[21] G. Poulis, S. Skiadopoulos, G. Loukides, and A. Gkoulalas-
Divanis. Distance-based km-anonymization of trajectory data.
IEEE MDM, 2:57–62, 2013.

[22] P. Samarati. Protecting respondents’ identities in microdata
release. IEEE TKDE, 13(6), Nov. 2001.

[23] L. Sweeney. k-anonymity: A model for protecting pri-
vacy. International Journal on Uncertainty, Fuzziness and
Knowledge-based Systems, 10(5):557–570, 2002.

[24] M. Terrovitis, N. Mamoulis, and P. Kalnis. Privacy-preserving
anonymization of set-valued data. VLDB Endow., 1(1), 2008.

[25] M. Terrovitis, N. Mamoulis, and P. Kalnis. Local and global
recoding methods for anonymizing set-valued data. VLDB
Journal, 20(1), 2011.

[26] Y. Xu, B. C. M. Fung, K. Wang, and A. W. C. Fu. Publishing
sensitive transactions for itemset utility. In ICDM, 2008.

[27] Y. Xu, K. Wang, A. W.-C. Fu, and P. S. Yu. Anonymizing
transaction databases for publication. In ACM KDD, 2008.

[28] H. Zang and J. Bolot. Anonymization of location data does
not work: A large-scale measurement study. In MobiCom,
2011.

APPENDIX

Geweke convergence diagnostic: if Xt denotes a
random variable describing the number of records in
D containing the current state of M at time t, and
Xt = (X1, X2, . . . Xt), then we compute the z-score
z = E[Xa]−E[Xb]√

Var(Xa)+Var(Xb)
, where Xa is the prefix of Xt (first

10%), and Xb is the suffix of Xt (last 50%). We declare
convergence when the z-score falls within [−1, 1]. Indeed, if
Xa and Xb become identically distributed (i.e., Xa and Xb

appears to be uncorrelated), the z values become normally
distributed with mean 0 and variance 1 according to the law
of large numbers.
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