Formal Language
Identity-based Cryptography

Ádám Vécsi
Attila Pethő

CECC 2020, Zagreb
June 24-26, 2020.
Identity-based Encryption

- An important branch of the public key cryptography.
 - The idea was given by Shamir in 1984.
 - The first, well working scheme was created by Boneh and Franklin (2001).

- The public keys are clear identifiers of individuals.
 - Local or global domain.
 - E-mail, phone number, etc.

- The encryptor key and the public key of the decryptor have to be identical. Both of them are handled as bitstrings.
Fuzzy Identity-based Encryption

- The core idea is to handle the public keys as sets of attributes.

- A certain amount of overlap required between the encryptor key and the public key of the decryptor.

- It is faster to encrypt to a group of people this way than encrypting to everyone individually.

- Slower setup, extract and decrypt algorithms.
Identity-based Encryption with wildcards

- The encryptor key is a pattern.
 - *@cs.*.edu

- In the system it is treated as a vector.
 - \(P = (P_1, \ldots, P_l) \in (\{0, 1\}^* \cup \{\ast\})^l \)

- The runtime of the algorithms are depending on the size of the vector.
Expands the idea of the Fuzzy IBE, that the public keys are sets of attributes.

The novelty in these schemes is building an access-tree to the keys.
 - It allows using AND and OR gates.

KP-ABE
- Ciphertexts are associated with sets of descriptive attributes.
- User keys are associated with policies.

CP-ABE
- Ciphertexts are associated with policies.
- User keys are associated with sets of descriptive attributes.
ABE with more flexible encryption key

- There are ABE schemes with more feature:
 - access structures including negation
 - NOT Year:1991-2000
 - Year:NOT 1991-2000
 - multi-use of attributes
 - ((Year:1991-2000 AND Category:jazz)
 OR
 (Year:2001-2010 AND Category:jazz)
 OR
 (Year:2001-2010 AND Artist:The Beatles))
The disadvantage of the ABE schemes

Figure 9: Benchmarks for KP-ABE on the personal computer.

Figure 10: Benchmarks for CP-ABE on the personal computer.

An attribute α is a pair (N_α, L_α), where N_α is the name of the attribute and L_α is the formal language including all possible values of the attribute.

A property $p = (N_p, V_p)$ defines the actual values of an entity regarding to the attribute α, if $N_p = N_\alpha$ and $V_p \subseteq L_\alpha$.

Let Ω be the set of entities and P the set of properties in a given domain. In our protocol PK_α is the public key of an $\alpha \in \Omega$ entity, if $PK_\alpha \subseteq P$ and $\exists \text{ID}_\alpha \subseteq PK_\alpha$, where for all $\beta \in \Omega$, $\text{ID}_\alpha \setminus \text{ID}_\beta \neq \emptyset$. ID_α is the identity of α.
Formal Language
Identity-based Encryption
An **authorization formula** Σ is a logic formula that contains boolean operators and attribute constraints.

Let $a = (N_a, L_a)$ be an attribute. $\gamma = (N_\gamma, L_\gamma)$ is an **attribute constraint** for a, if $N_\gamma = N_a$ and $L_\gamma \subseteq L_a$, where L_a is the language, which contains the accepted property values.

Example:

\[
("e-mail", \text{.*@company\.com}) \quad \text{AND} \\
("job", \{\text{Lead developer, Chief Technology Officer}\})
\]
The purpose of the digital signature is to prevent the creation of fake authentication formula.
A new encryption key should be generated for every authentication formula. The key can be used multiple times with the same formula.
Formal Language
Identity-based Encryption
Formal Language
Identity-based Encryption

The *Extract* algorithm includes the signature verification and the evaluation process of the authentication formula.
Formal Language
Identity-based Encryption
FLIBE usage example
FLIBE advantages

- Flexible target definition.
- Option to support future entities (currently not existing or not fitting).
- Constant client-side runtime.
- The protocol can be used for digital signatures with minor changes.
FLIBE disadvantages

- The authentication formula is attached to the ciphertext, which means increased cipher size.

- The runtime of the extract method depends on the complexity of the authentication formula.
This work is supported partially by the construction EFOP-3.6.3-VEKOP-16-2017-00002. The project is supported by the European Union, co-financed by the European Social Fund.

This work is supported partially by the SETIT (2018-1.2.1-NKP-2018-00004) project.
Thank you for your attention!