Identity-based password Registration for Distributed Systems

Andrea Huszti, Norbert Oláh

University of Debrecen
Faculty of Informatics
Department of Computer Science

Budapest
2019.11.08.
Motivation

Protocol

Andrea Huszti, Norbert Oláh
Identity-based password Registration for Distributed Systems
Motivation

Definition

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.
OpenStack Identity service (for clouds):
- user name and password (OneLogin)
- Kerberos (Golden Ticket Attack (2015))
Scientific literature

Two-factor-based, centralized:

Concept of multiple-server model:

- 2016 A. Huszti, N. Olah: A simple authentication scheme for clouds
Our goal

- Distributed system (multi-server authentication)
 1. Robustness
 2. Greater availability
- Mutual key authentication as well as mutual key confirmation (AKC)
- Efficiency
 1. MAC, xor operations and symmetric encryption
 2. ECDH key exchange
Identity-based protocol
no PKI
Identity-based key pair on both sides, and a key pair for PKG.
Motivation

- bilinear map based (necessary for verifying securely stored passwords)
- instead of TLS like connection (with key exchange and encryption, or signature and encryption), special, optimized messages
- augmented PAKE: server securely stores password, not only a hash, but salted bilinear map of the password - slowing down the dictionary attack
- Enable authentication of user and server for multiple servers, with x different keys
- good for automatic long-lived key update (password won’t change, just the key)
- security proof in BPR model
Proposed protocol I

User (U) $P, \gamma P, xP$

$Q_U = H_1(ID_U), \gamma Q_U$

$t, r \in \mathbb{Z}_q^*$ random, $z = H(t)$

$psw \mapsto (s_1, \ldots, s_n)$ password

$M_i = \hat{e}(Q_{S_i}, zx_iP + \gamma Q_U) \hat{e}(zP, s_iP)$

$K_i = \hat{e}(zP, s_iP)$

\[\xrightarrow{Q_U, zP, M_i, Enc_{K_i}(r)} \]

Server (S_i)

$Q_{S_i} = H_1(ID_{S_i}, x_iP, \gamma Q_{S_i}, x_i)$

\[\xrightarrow{M_i} \hat{e}(\gamma Q_{S_i}, Q_U) \hat{e}(Q_{S_i}, x_i zP) = \hat{e}(zP, s_iP) (K'_i) \]

$Dec_{K'_i}(Enc_{K_i}(r))$

$Mac_{K'_i}(r)$

\[\xleftarrow{Q_{S_i}, Mac_{K'_i}(r)} \]

$Mac_{K_i}(r) \overset{?}{=} Mac_{K'_i}(r)$

Store: $Q_U, \hat{e}(zP, s_iP), zP$
This research was supported by the SETIT Project (no. 2018-1.2.1-NKP-2018-00004), which has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2018-1.2.1-NKP funding scheme.
Thank you for your attention!