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Abstract—Detecting malware targeting IoT devices has became
an important challenge with the recent emergence of IoT botnets.
Gateways at the edge between the Internet and IoT devices
deployed in the field are particularly well-positioned for the
task of malware detection, as malware typically spreads over
the Internet and resource-constrained field devices may not have
the means to protect themselves. Hence, we believe that, among
other things, edge intelligence should also include effective and
efficient IoT malware detection. A recently proposed similarity-
based IoT malware detection method, called SIMBIoTA, would
be suitable in this context, but its robustness against adversarial
malware samples has been shown to be rather weak. In this
paper, we propose PATRIoTA, a similarity-based IoT malware
detection method inspired by SIMBIoTA, but being significantly
more robust than SIMBIoTA is. We describe the operation of
PATRIoTA, and compare its malware detection performance and
robustness against adversarial samples to that of SIMBIoTA. We
show that PATRIoTA outperforms SIMBIoTA with respect to
both measures.

Index Terms—Internet-of-Things; malware detection; binary
similarity; locality-sensitive hashing; robustness against adver-
sarial samples.

I. INTRODUCTION

The expansion of the Internet-of-Things (IoT) is unwaver-
ing: the number of installed IoT devices exceeds 15 billion and
it is constantly growing1. At the same time, the security of IoT
devices is notoriously weak [1], [2]. This poses a threat from
two aspects: on the one hand, compromised IoT devices can
potentially be used to build huge attacking infrastructures (e.g.,
botnets), with which Internet-based services can be effectively
attacked (see e.g. the Mirai botnet and the DDoS attacks
launched from it in 2016 [3]); on the other hand, in cyber-
physical applications (e.g., industrial IoT systems, self-driving
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1https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/ (accessed on April 25, 2023)

cars), the compromise of IoT devices can lead to physical
damage of expensive equipment or even fatal accidents (see
e.g. the proof-of-concept attack on a Jeep Cherokee carried
out in 2015 [4] and its potential consequences). The problem
is so significant that regulatory processes aiming at increasing
the security of IoT systems have been initiated in both the
US2 and Europe3.

An increasingly widespread method for compromising IoT
devices at large scale is infecting them with malware (i.e.,
malicious programs). This is made possible by the fact that
IoT devices are essentially embedded computers and malware
can be installed on them just like in the case of traditional
computers. As a result, several malware families targeting
IoT devices have appeared in the past few years (e.g., Mirai,
Gafgyt, Tsunami, Hajime). At the same time, traditional anti-
virus solutions require too many resources (e.g., storage ca-
pacity and CPU cycles), and therefore, they cannot be applied
directly on the typically resource-constrained IoT devices.
Hence, there is a great demand for efficient and effective IoT
malware detection methods.

Gateways placed at the edge between the Internet and
the IoT devices deployed in the field are particularly well-
positioned for protecting IoT devices against malware [5].
The main reasons are that malware typically spread over the
Internet and that resource-constrained IoT devices may not
have the means to protect themselves. Edge gateways, on the
other hand, have more resources to support malware detection
and, thanks to their placement, they can block malware to
reach IoT devices. At the same time, malware detection on
gateways must be extremely fast for not imposing delays
in communications. This essentially excludes the outsourcing
of the malware detecion task to some cloud-based backend,
and requires performing all operations locally on the edge
gateways themselves. This means that, among other things,

2https://www.security.org/blog/california-passes-first-cybersecurity-law-iot/
(accessed on April 25, 2023)
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(accessed on April 25, 2023)



edge intelligence should also include effective and efficient
IoT malware detection.

A recently proposed similarity-based IoT malware detection
method, called SIMBIoTA [6], fits this context perfectly:
SIMBIoTA is lightweight and fast, it performs IoT malware
detection entirely locally, yet it has a remarkable malware de-
tection capability. However, its robustness against adversarial
malware samples has been shown to be rather weak [7]. In the
context of malware detection, adversarial samples are meant to
be malware samples crafted specifically to evade detection by
a given malware detection method. In the case of SIMBIoTA,
such adversarial samples can be created easily by appending
some extra bytes at the end of existing malware binaries, as
shown in [7].

In this paper, we propose PATRIoTA (PArticle TRained IoT
Antivirus), a similarity-based IoT malware detection method
inspired by SIMBIoTA, but being significantly more robust
than SIMBIoTA is. The main idea of PATRIoTA is to split
malware samples known to the antivirus provider into multiple
fixed-size parts, referred to as particles, and to perform the
same operations on those particles as the operations performed
by SIMBIoTA on entire samples. This means that the antivirus
provider builds a similarity graph of known particles, computes
its dominating set, and distributes similarity preserving hash
values (in our case, TLSH [8] values) corresponding to the
particles in the dominating set to the clients, which are the
edge gateways in this work. The clients also split any file
to be scanned (e.g., a binary extracted from network traffic)
into particles, compute the similarity preserving hash values
of them, and if a threshold number of those computed hashes
are similar to the hashes in the dominating set, then the file is
detected as malware.

PATRIoTA is robust against adversarial sample creating
strategies that add extra bytes to an existing malware binary,
because the sample created in this way will always contain
in it the original binary, and, hence, all of its particles,
which can be recognized by PATRIoTA despite the presence
of the added extra bytes. In addition, PATRIoTA may be
robust against even more sophisticated adversarial strategies
that keep sizable chunks of the original malware binary intact
within the created adversarial sample, as those chunks may
result in particles that are similar to the particles of the
original sample. Moreover, our measurement results indicate
that, besides increased robustness, PATRIoTA also has better
malware detection capabilities than SIMBIoTA has.

The structure of this paper is the following: In Section II,
we present the operation of SIMBIoTA and introduce two
simple adversarial sample creation strategies that mislead
it. In Section III, we introduce PATRIoTA and present its
design considerations in details. In Section IV, we compare
PATRIoTA to SIMBIoTA in terms of malware detection capa-
bility and robustness against the adversarial sample creation
strategies introduced in Section II. We discuss the robustness
of PATRIoTA against another adversarial sample creation strat-
egy, as well as some alternative ways of increasing robustness
against adversarial samples in Section V. Finally, we present

some related work in Section VI and conclude the paper in
Section VII.

II. BACKGROUND

Let us start with a more detailed introduction of SIMBIoTA
and the lack of its robustness against some simple adversarial
sample creation strategies.

A. SIMBIoTA

SIMBIoTA [6] (SIMilarity-based IoT Antivirus) is a
lightweight malware detection method tailored to resource
constrained IoT devices. It detects malware by checking the
similarity of scanned files to known malware samples, but
it does this efficiently. In particular, SIMBIoTA exploits the
fact that malware samples that belong to the same malware
family are typically similar to each other, while samples from
different families, as well as benign programs are dissimilar.
This means that the similarity graph of the malware samples
known to the antivirus provider is clustered and it is discon-
nected from the similarity graph of benign programs. This
phenomenon is illustrated in Figure 1. Here, the similarity
graph of a set of binary files is defined as a graph whose
vertices represent the binaries and two vertices are connected
with an edge if the corresponding files are similar according
to some similarity measure. Typically, each cluster in the
similarity graph can be represented by a few representative
samples such that all members of the cluster are similar to
at least one of the representative samples. It is then sufficient
for malware detection to know only about the representative
samples of the clusters: any scanned file that is similar to any
of these representative samples are likely to be malware, while
files that are not similar to any of the representative samples
are likely to be benign.

More specifically, SIMBIoTA assumes that the antivirus
provider continuously collects malware samples from its
malware intelligence network (e.g., honeypots and various
malware feeds), stores them in a database, and also creates
their similarity graph. The (dis)similarity measure applied by
SIMBIoTA is called TLSH difference [8] and two vertices
of the similarity graph are connected if the TLSH difference
between the corresponding malware samples is below the
threshold 40. The selection of this particular threshold value
is explained in [9]. The antivirus company then calculates a
dominating set of the current similarity graph. A dominating
set is a subset of the graph’s vertices such that each vertex
of the graph is either included in the dominating set or it is
adjacent to a dominating vertex. The vertices in the dominating
set are the representatives of all malware in the database of
the antivirus provider. Finally, the antivirus provider delivers
the TLSH hash values of the samples belonging to the current
dominating set to all clients.

When scanning any file, the client examines how close the
TLSH hash value of the scanned file is to the TLSH hash
values of the samples belonging to the dominating set. It
detects the scanned file as malware if it is similar to any of
the samples in the dominating set, and as benign otherwise.



Fig. 1. Illustration of a similarity graph of a set of binaries. Vertices represent the binaries and two vertices are connected with an edge if the corresponding
files are similar according to some similarity measure. In this figure, two files are considered to be similar, if their TLSH difference score is below the
threshold 40, where TLSH is a locality sensitive hash function and TLSH difference is a TLSH-based dissimilarity metric. Malware binaries are represented
by red nodes and benign binaries are represented by green nodes. As it can be seen, there is no similarity between malware and benign files and the malware
similarity graph is strongly clustered.

This procedure guarantees that the client detects all malware
samples seen by the antivirus company (and included in the
similarity graph), and can also detect previously unseen mal-
ware that is similar to the samples belonging to the dominating
set. In addition, efficiency stems from the facts that the size
of the dominating set is just a small fraction of the size of the
entire similarity graph, thanks to the high clusteredness of the
latter, and the TLSH value and TLSH difference calculations
are very fast. Indeed, according to the evaluation in [6],
SIMBIoTA required only 6-8 KB of storage capacity and it
could decide about any file if it was malicious or benign in
0.12-0.14 ms. In addition, its malware detection capability
proved to be surprisingly accurate: it achieved approximately
95% true positive detection rate even on previously unseen
malware samples, while its false positive rate remained at 0%
throughout the experiments.

B. Adversarial strategies

The malware detection operation in SIMBIoTA is simple,
hence, it may be easy to mislead. In order to achieve that, one
has to manipulate the TLSH hash value of a malware sample
by modifying the sample without harming its malicious func-
tionality. As SIMBIoTA uses the TLSH difference 40 as the
similarity threshold, the intuition is that if the TLSH difference
between the original sample and the modified sample becomes
larger than 40, then SIMBIoTA will likely misclassify it. A
modified malware sample with the same functionality as the
original one is called an adversarial sample if it is likely to be
misclassified as benign by the malware detection mechanism.

One approach for creating adversarial samples is to append
extra bytes at the end of a malware binary such that those bytes

are never executed, but they affect the calculation of the TLSH
hash value. Two specific adversarial sample creating strategies,
following this approach, have been proposed in [7]. They are
called Chunker and Disguiser. Chunker appends a carefully
chosen chunk of the original sample to itself with the goal
of increasing the TLSH difference between the modified and
the original samples above 40 (or beyond). Disguiser appends
an appropriately chosen benign file to the malware binary
and its goal is to decrease the TLSH difference between the
modified malware and the benign file below 40 (i.e., to make
the modified malware similar to the added benign file). These
strategies are simple enough to be easily implemented by a
real-world attacker. In addition, as shown in [7] (and later
replicated in Section IV of this paper), SIMBIoTA can be
completely misled by these simple adversarial sample creating
strategies such that its detection rate on the adversarial samples
created by them is close to 0%.

III. PATRIOTA

In Section II, we mentioned that SIMBIoTA is not robust
against the adversarial samples created with the Chunker and
Disguiser strategies. Both attack strategies append some bytes
at the end of an existing malware binary in such a way that
those bytes are never executed, while the TLSH value of the
modified sample becomes dissimilar to that of the original
malware, and therefore, SIMBIoTA has a good chance of mis-
classifying it. In the case of these, and similar, append attacks,
the original malware binary can be found in the adversarial
sample. Hence, in order to detect such an adversarial sample
as malware, we need a method that identifies the original
malware inside the adversarial sample. PATRIoTA, the method



Fig. 2. High-level overview of PATRIoTA.

we propose and describe in this section, will do exactly this:
it identifies parts of known malware samples inside any file
being checked with it. PATRIoTA can be viewed as a general
method of defense against adversarial samples created with
append attack strategies.

A. Overview

The design of PATRIoTA was inspired by SIMBIoTA (and
their similarity is also reflected in their names). Basically,
PATRIoTA is a modified version of SIMBIoTA where the
difference is that PATRIoTA works with fixed size parts
of malware samples instead of entire malware binaries. Not
surprisingly, the architecture of PATRIoTA is also almost the
same as that of SIMBIoTA, as it is illustrated in Figure 2. Mal-
ware samples are continuously collected from the intelligence
network of the antivirus provider, and the PATRIoTA backend
splits them into fixed-size parts, which we call particles in the
sequel. Similar to SIMBIoTA, a similarity graph is built by the
backend, but in this case, this graph is built from the malware
particles. In addition, PATRIoTA uses a different similarity
threshold to build the similarity graph. In Subsection III-D, we
explain how to determine the optimal values for the particle
size and the similarity threshold used by PATRIoTA. Again
similarly to SIMBIoTA, the backend computes a dominating
set of the current similarity graph and makes the list of TLSH
hash values of the dominating vertices available to clients.

The detection method on the client side is somewhat dif-
ferent in the case of PATRIoTA: the client splits the file to be
checked into particles (of the same size used by the backend);
calculates the TLSH hashes of the particles; and compares
these TLSH hashes with those of the current dominating set.
A file is considered malicious if it contains a threshold number
of particles that are similar to known malicious particles. The
selection of this threshold is discussed in Subsection III-C.

B. Particle size and similarity threshold

PATRIoTA uses some special parameters, which we have
already mentioned in the previous subsection, including the
size of the particles and the similarity threshold used during
the graph construction from the TLSH hashes. Finding the
optimal configuration of these parameters is not a trivial task.
We can state that the optimal configuration (if it exists at all)

is highly context dependent; for example, we can imagine a
situation where the low latency of the detection process is
more critical than its memory usage.

Despite all this, we developed an iterative methodology
to determine a recommended parameter configuration. We
performed measurements to determine the optimal parameters
on a smaller data set, not the one presented in Subsection IV-A.
This data set consisted of 2000 malware and 2000 benign
samples for both the ARM and the MIPS architectures.

When we were designing PATRIoTA, the first question was
the size of the particles. We first considered the values of
1 kB, 2 kB, 4 kB, 8 kB, 12 kB and 16 kB, but later excluded
1 kB and 2 kB, because the number of graph nodes built from
particles of those sizes grew unmanageably large.

PATRIoTA builds a graph from the TLSH values of malware
particles, where the TLSH hash values are the nodes and there
is an edge between two nodes if the TLSH difference of the
two hash belonging to the nodes is below a certain similar-
ity threshold value. SIMBIoTA uses 40 as TLSH similarity
threshold, because the average clustering coefficient of the
built graph is the highest in that case [9]. The same value
cannot be used for PATRIoTA, because it does not build the
graph from the TLSH hashes of entire malware samples, but
from its particles. To determine the optimal value of the TLSH
similarity threshold for different particle sizes, we used the
same technique as for SIMBIoTA. In Figure 3, we measure
the average clustering coefficient of the graph built from the
particles of the 2000 malware samples using different TLSH
similarity thresholds. We select the TLSH similarity threshold
that gives the highest average clustering coefficient for each
particle sizes (e.g., for particles of size 4 kB, the selected
TLSH similarity threshold is 65 in the case of ARM samples).

C. Detection threshold

A suspicious sample is considered malicious if it contains
at least a threshold number of particles that are similar to
known malware particles. If this threshold is set to 1, the true
positive detection rate (TPR) of malware will be as high as
possible, but the unwanted effect may occur that even benign
files are considered malicious (e.g. a benign and a malicious
program use the same statically compiled library, therefore,
both contain the same sequence of bytes). The consequence is
that the larger the detection threshold is, the lower the false
positive rate (FPR) and, unfortunately, the lower the TPR will
be. So, we choose the smallest possible value where the FPR
is still below 1%, which is 2 in the case of ARM samples and
4 in the case of MIPS samples (see Section IV).

D. Optimal configurations

At this point we have 4 possible particle size and TLSH
similarity threshold configurations, but which of them is the
best?

Before answering this question let’s take a look at Figure
4, where we examine the number of similar particles between
malware samples with the configuration of 4k particle size
and 65 similarity threshold for ARM samples. For that, we



Fig. 3. Average clustering coefficient as a function of the TLSH similarity threshold in the case of ARM (left) and MIPS (right) architectures. Different
curves belong to different particle sizes, including the case where the particle size and the file size are equal (full).

divide the 2000 malware samples to 10% train and 90% test
set, we split to particles the items in the train set and we
build the graph from their TLSH hashes. Finally, we iterate
over the elements of the test set, split each file, and count how
many similar particles there are between them and the particles
in the graph. In other words, we simulate the operation of
PATRIoTA on a small data set and repeat this simulation ten
times (just like in Section IV, in the case of the large data
set). There are ca. 40 samples in Figure 4 that do not contain
any similar malware particles to the particles in the train set,
therefore, we cannot detect these. Furthermore, in Figure 4
we see how many malware samples would not be detected
depending on the selected detection threshold. For instance,
if we required that at least 3 particles of the file should be
similar to some known malware particle to detect the file as
malicious (i.e., detection threshold 3), then ca. 40+50+30=120
malware samples would not be detected.

To select the best particle size and TLSH similarity thresh-
old configuration, we examine how it changes the TPR and
FPR values depending on the detection threshold. Figure 5
shows the ROC (Receiver Operating Characteristic) curves
of the different configurations, where each jump in the step
function corresponds to a certain detection threshold value
between 1 and 10. According to our expectations, as the
detection threshold increases, the FPR decreases, but so does
the TPR. We choose the configuration with the highest AUC
(Area Under the ROC Curve) value. This is 4k particle size
and 65 TLSH similarity threshold for ARM samples and
8k particle size and 60 TLSH similarity threshold for MIPS
samples.

IV. EVALUATION

In Section III, we presented PATRIoTA, including its archi-
tecture and operating principles, as well as the selection of its

parameters (particle size, similarity threshold, and detection
threshold), as the main contributions of this paper. It is time
to evaluate PATRIoTA’s performance, especially its ability to
detect adversarial samples. However, before doing that, we
present the data set and methodology used for the performance
measurements.

A. Experiment design

In this work, we perform all experiments using the same
dataset as used for the evaluation of SIMBIoTA [6]. This
dataset is called CrySyS-Ukatemi benchmark dataset of IoT
malware 2021 (or CUBE-MALIoT-2021 for short). The dataset
consists of 29,209 malicious ARM samples and 18,715 mali-
cious MIPS samples, extended with 4,727 benign ARM sam-
ples and 9,392 benign MIPS samples. For malicious samples,
metadata is also available, which details, among others, the
date the sample was first seen in the wild (i.e., submitted to
VirusTotal). CUBE-MALIoT-2021 is publicly available4 for
use by the IoT malware research community.

As a first step for testing PATRIoTA, we split the malware
samples into a 10% train set and a 90% test set. To do this,
we use K-folds cross-validation [10], which is a reliable and
frequently used model checking technique. We use K-folds
with 10 folds and repeat each measurement 10 times, where
the samples of each fold belong to the train set once, and
the test set consists of the samples of the other 9 folds. This
ensures that each malware appears exactly once in the train
set and 9 times in the test set.

PATRIoTA does not need benign samples for training, so
we add benign samples only to the test set. Moreover, we
extend the test set with adversarial samples for measuring

4https://github.com/CrySyS/cube-maliot-2021 (accessed: September 5,
2023)



Fig. 4. The x axis shows the number of particles in a sample from the test set that are similar to items in the train set (from 0 to 50), while the y axis shows
the number of these samples in the case of 4k particle size and 65 TLSH similarity threshold configuration for ARM samples.

Fig. 5. ROC curves of different configurations, where each jump in the step function corresponds to a certain detection threshold value between 1 and 10 in
the ARM and MIPS cases.

the robustness of the system. These adversarial samples are
created using the two strategies mentioned in Subsection II-B:
Chunker and Disguiser. We create these adversarial samples
from the malware binaries in the test set, simulating that
an attacker has malware samples unknown to the antivirus
company and can create adversarial samples from them. Table
I shows the exact number of samples in the train and test set.

With the presented construction, we simulate the operation
of PATRIoTA: we build the model properly from the train
samples, and then give samples from the test set to the model
for detection (see Section III). Furthermore, since PATRIoTA
was inspired by SIMBIoTA, we compare their performances
in all aspects. Indeed, we train and test the two systems on the
same samples and measure the same performance metrics. In
the next 3 subsections, we present the results of the performed

TABLE I
NUMBER OF SAMPLES IN THE TRAIN AND TEST SET, IN THE ARM AND

MIPS CASES.

ARM
Malware Benign Chunker Disguiser

Train 2,921 – – –
Test 26,288 4,727 24,285 26,288

MIPS
Malware Benign Chunker Disguiser

Train 1,872 – – –
Test 16,843 9,392 13,862 - 13,916 16,813 - 16,819

simulation.

B. Detection capability

Using the experimental setup presented in the previous
subsection, we measure the detection accuracy of SIMBIoTA



TABLE II
STORAGE REQUIREMENT OF SIMBIOTA AND PATRIOTA ON THE CLIENT

SIDE IN THE ARM AND MIPS CASES.

SIMBIoTA PATRIoTA
ARM 8,365 - 9,030 B 333,585 - 371,805 B
MIPS 5,775 - 6,440 B 111,965 - 139,370 B

and PATRIoTA in 3 different cases: on unmodified malware
and benign files, on adversarial samples of the Chunker
strategy, and on adversarial samples of the Disguiser strategy.
Our goal is to achieve the highest possible accuracy in all 3
cases, while keeping the FPR of benign files below 1%. To
do this, we try PATRIoTA with different detection thresholds
(i.e., minimum number of particles of a file that need to be
similar to known malware particles in order for the file to be
classified as malware). The smaller the detection threshold is,
the higher the TPR will be, but the FPR will increase too.
According to our measurements, the optimal value for the
detection threshold is 2 for ARM samples and 4 for MIPS
samples, as for smaller values, the FPR exceeds 1%.

In Figure 6, we compare the detection accuracy of the
two system. PATRIoTA drastically outperforms SIMBIoTA
in terms of accuracy in all test cases! On the sample set
of unmodified benign and malicious programs, PATRIoTA
has an impressive 98.5% accuracy in the case of ARM
samples and 98.2% in the case of MIPS samples. Moreover, it
performs extremely well even on adversarial samples of both
the Chunker and Disguiser strategies, with 98% accuracy on
ARM samples and 95% on MIPS samples.

C. Storage requirement

IoT devices are usually limited by resources, including
available memory and storage capacity. Therefore, we measure
the storage space requirement of PATRIoTA on the client side
(i.e., on the IoT device), which in our case is the size of
the dominating set multiplied by the size of the TLSH hash.
Compared to SIMBIoTA, unfortunately, the higher accuracy
and robustness of PATRIoTA comes with a higher storage
requirement, due to the increased number of nodes in the
dominating set. In Table II, we present the required memory
sizes of the two system.

D. Run time performance

Another price we have to pay for the increased detection
accuracy and robustness of PATRIoTA is the increased pro-
cessing time compared to SIMBIoTA. By detection time, we
mean the time that elapses from the beginning of the binary
scan of any file to the decision whether it is malicious or not.
In the case of SIMBIoTA, this time consists of the TLSH hash
computation time of the binary and the decision time of the
model. For PATRIoTA, the detection time consists of the sum
of 3 components: the time required to split the binary into
fixed-size particles, the sum of TLSH hash computation time
of the particles, and the sum of decision times required for par-
ticles. Basically, PATRIoTA performs SIMBIoTA’s detection
method multiple times, more precisely for each particle, until

the number of particles considered malicious reaches the value
of the detection threshold parameter. Therefore, PATRIoTA
requires more time for detection than SIMBIoTA, as shown in
Figure 7.

V. DISCUSSION

In this work, we were concerned with increasing the ro-
bustness of binary similarity-based malware detection methods
against adversarial samples that are crafted specifically to mis-
lead a given malware detector. More specifically, we proposed
PATRIoTA, a robust, similarity-based antivirus solution, which
was inspired by SIMBIoTA [6]. It turns out that SIMBIoTA
has a machine-learning based variant, called SIMBIoTA-ML,
proposed in [11], and the robustness of SIMBIoTA-ML has
already been studied in [12], where an adversarial training
approach was proposed as a solution. So a natural question, at
this point, is whether an adversarial training approach could
have increased the robustness of SIMBIoTA as well. If so,
then the need for a new approach, i.e., our PATRIoTA, would
be much weaker.

It is clear what adversarial training means in case of a
machine learning-based method: the training set is expanded
with adversarial samples created by various known adversarial
strategies. But SIMBIoTA is not a machine learning-based
method. Nevertheless, we can define adversarial training quite
intuitively for SIMBIoTA too: the antivirus provider extends
the similarity graph of known malware samples with adversar-
ial samples and computes the dominating set of this extended
graph. One can then check the detection performance of this
modified SIMBIoTA on adversarial samples to determine how
robust this approach is.

We performed adversarial training of SIMBIoTA by ex-
tending the similarity graph of known malware samples with
adversarial samples created from those known malware by
the Chunker and Disguiser strategies introduced in [12], and
computed the dominating set of the extended graph. We then
measured the detection performance on adversarial samples
created from malware unknown to the antivirus provider by
the same Chunker and Disguiser strategies. The results we got
were not so promising: adversarial ARM and MIPS samples
created by the Chunker strategy were detected with 92%
and 90% accuracy, respectively, while adversarial ARM and
MIPS samples created by the Disguiser strategy were detected
only with 86% and 67% accuracy, respectively. These results
confirm the raison d’être of PATRIoTA.

In addition, while PATRIoTA was designed to be robust
against adversarial samples that were created from existing
malware samples by appending extra bytes to them, we have
the intuition that it is also robust against other strategies that
create adversarial samples that contain chunks of the original
sample, as those chunks may result in particles that are similar
to the particles of the original sample. In order to test this
intuition, we measured the robustness of PATRIoTA against
such a strategy. In particular, a very clever adversarial sample
creation strategy against similarity-based malware detection
was proposed in [13] that consists in modifying a few unused



Fig. 6. Comparison of the detection accuracy of SIMBIoTA and PATRIoTA on unmodified malicious and benign samples (Original), adversarial samples
created with the Chunker strategy, and adversarial samples created with the Disguiser strategy, in the ARM and MIPS cases.

portions of a malware binary (e.g., the section header tables
were modified in [13]) such that the TLSH difference between
the modified and the original files is maximized, while the
functionality of the original binary is fully preserved, the size
of the modified file remains the same as that of the original
one, and even the binary content is only slightly changed.
As reported in [13], it is rather easy to create adversarial
samples in this way that are misclassified by SIMBIoTA:
out of 2000 randomly chosen ARM malware samples, 1779
samples were suitable for such kind of modification, and 1465
samples could be created with a TLSH difference of at least 40
(the threshold used by SIMBIoTA) between the modified and
original files. We tested both SIMBIoTA and PATRIoTA with
those samples, and SIMBIoTA recognized only 17% of them
as malware, while PATRIoTA detected a remarkable 98% of
them as malware!

One may wonder whether statically linked libraries decrease
the detection accuracy of PATRIoTA. Such libraries may be
included in both malware and benign binaries, so actually,
some portions of statically linked malware and benign samples
that include the same libraries can be identical. This may lead
to multiple similar particles in them, potentially above the
threshold number used by PATRIoTA. In other words, benign
files may contain particles resulting from linked libraries that
are similar to particles seen in malware binaries using the
same libraries. Such benign files may be classified as malware
by PATRIoTA, which leads to an increased false positive
rate. Indeed, we tested PATRIoTA on 118 statically linked
ARM and 64 statically linked MIPS benign binaries and it
misclassified 15% and 6% of them, respectively, as malware.
This misclassification rate is not really acceptable, therefore,
further research is needed to reduce it. We note that SIMBIoTA

had a false positive detection rate of 0% throughout our
experiments.

VI. RELATED WORK

Although SIMBIoTA, and thus PATRIoTA as well does not
belong to ML-based malware detectors, adversarial examples
and adversarial robustness, the main focus of this work are
closely tied to machine learning, therefore we include an
outlook on ML-based malware detection in this section.

ML-based malware detection solutions, unlike their tra-
ditional counterparts, are highly automated [14], thus they
can keep pace with the increasing amount of malware. They
use static, dynamic or hybrid program analysis techniques to
extract information from samples which they use to construct
feature vectors [15].

Statically obtained features could include opcode-based
solutions, where the samples’ instructions [16] are used to
construct such a vector, gray scale images created from bina-
ries [17] or solutions built to perform detection based on the
control-flow graph of samples [18]. Dynamic analysis-based
solutions can rely on API or system call traces [19] or network
traffic, observed during the execution of the sample [20].

Solutions, where ML-based and cloud-based approaches are
combined, can be highly advantageous in the IoT domain,
since these solutions can relieve resource constrained devices
from performing computationally heavy tasks [21], thus more
complicated models can be used as well, like convolutional
neural networks [22] and recurrent neural networks, while they
can also boost the performance of more light-weight models,
like random forests [16] and fuzzy pattern trees [23].

Adversarial attacks against malware detectors can also use
multiple approaches [24]; here we highlight two of these,
called append and slack attacks [25]. Append, as the name



Fig. 7. Comparison of the required detection times (on logarithmic y-axis scale) of SIMBIoTA and PATRIoTA, separately for malware samples, benign
samples, adversarial samples of Chunker strategy, and adversarial samples of Disguiser strategy, in the ARM and MIPS cases.

suggests, works by adding extra bytes to the end of samples,
that will never be executed, thus they don’t have any affect
on the functionality of the modified sample. The strategies
Chunker and Disguiser implement this approach. Slack at-
tacks, on the other hand modify the content of so-called slack
spaces in binary files. These are regions that contain no useful
data, and usually exists because of alignment-related reasons:
for example, the size of a section cannot be divided by the
page size, but the next section’s beginning must be aligned to
another page, thus creating a slack space between the end of
the section and the beginning of the next one. A special case
of this approach is the strategy where the section header table
is overwritten; as it is not required for loading and executing
ELF files, it can be categorized as slack space. To use these
strategies to fool the ML model, solutions like a gradient-based
approach can be used [26], or the feature extraction process
can be attacked as well [27].

More advanced techniques, like program obfuscation can
be used as well, to change the binary file while preserving its
original functionality; to do so, one could use reinforcement
learning [28], like Recurrent Neural Networks (RNNs) or
Generative Adversarial Networks (GANs) [29].

Increasing the adversarial robustness of ML-based malware
detectors is a logical next step in the decades old arms
race between malware developers and antivirus vendors. One
such attempt was to improve SIMBIoTA-ML by applying
adversarial training [12], meaning that the training set was
extended with adversarial examples. Our solution aims to
achieve the same goal (i.e. increasing adversarial robustness),
but using another approach. This method works on SIMBIoTA
as well, which wasn’t suitable for adversarial training. We
also believe that this approach is superior, since it does not

require adversarial examples and only employs more general
assumptions regarding the strategy of the attacker.

VII. CONCLUSION

In this paper, we proposed PATRIoTA, a similarity-based
IoT malware detection method, and showed that it has out-
standing malware detection capabilities, while being robust
against various adversarial sample creation strategies too.
More specifically, we compared the performance and robust-
ness of PATRIoTA to those of SIMBIoTA, an IoT malware
detection method in a similar vein as PATRIoTA. PATRIoTA
has a higher true positive detection rate, but it also has a higher
false positive rate, it requires more storage capacity, and it has
longer detection time than SIMBIoTA has. Its true advantage
is its strong robustness against adversarial samples: indeed,
SIMBIoTA can be completely misled by adversarial samples
created from existing malware by appending extra bytes to
them, whereas PATRIoTA detects those samples with very
high accuracy. In addition, PATRIoTA proved to be robust
against another adversarial sample creation strategy too that
produces adversarial samples by modifying unused portions
of an existing malware binary such that the modified binary
becomes dissimilar to the original one, and hence, likely
misclassified by SIMBIoTA.

We argued that edge gateways are well-positioned for per-
forming malware detection and protecting resource constrained
IoT devices behind such gateways. They can identify the
transfer of executable files in the network traffic, check those
executables with a malware detection mechanism, and block
any traffic carrying malware. PATRIoTA can be used for such
malware detection on edge gateways. Although it has a larger
storage requirement than SIMBIoTA has, edge gateways also
offer more storage space than typical IoT field devices do.



PATRIoTA also has an increased running time, in particular
when checking benign files. We believe that this does not
hinder the use of PATRIoTA on edge gateways, but this
requires further study and more measurements.

In Section V, we discussed that PATRIoTA may make false
positive decisions on statically linked benign binaries if they
include libraries that have also been used in malware. This
issue also needs further study and it is on our future research
agenda.
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