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Abstract. Almost 50 years after the invention of SQL, injection attacks are still
top-tier vulnerabilities of today’s ICT systems. Consequently, SQLi detection is still
an active area of research, where the most recent works incorporate machine learning
techniques into the proposed solutions. In this work, we highlight the shortcomings
of the previous ML-based results focusing on four aspects: the evaluation methods,
the optimization of the model parameters, the distribution of utilized datasets, and the
feature selection. Since no single work explored all of these aspects satisfactorily, we
fill this gap and provide an in-depth and comprehensive empirical analysis. Moreover,
we cross-validate the trained models by using data from other distributions. This aspect
of ML models (trained for SQLi detection) was never studied. Yet, the sensitivity of
the model’s performance to this is crucial for any real-life deployment. Finally, we
validate our findings on a real-world industrial SQLi dataset.

1 Introduction
One of the biggest security concerns today is Structured Query Language Injection
(SQLi), which is also reflected in the OWASP Top 10 List: in 2021, injection attack
was the third most common security flaw/vulnerability developers need to protect their
applications from (OWA). Furthermore, not only the occurrence but the complexity and
the severity are increasing of the SQLi cases1, so faster and easier methods are needed
to tackle this problem. Yet, due to the manifold nature of this issue, it is not easy to
develop a comprehensive solution. Following the recent success of Machine Learning
(ML) in other complex fields such as computer vision (CV) and natural language pro-
cessing (NLP), traditional SQLi detection techniques are also being challenged by ML
techniques (JCHM20).

In ML, the main idea is to let the algorithm detect patterns in the data to make de-
cisions, i.e., the decisions are based on the data and not explicitly programmed into the
algorithm. In general, the larger the dataset used for training, the better the model’s pre-

1https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks
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diction. Yet, as we will show later, most existing works only consider small datasets or
use a single source. This is a severe overlook in the era of federated learning (LSTS20),
where multiple entities train a single model in a semi-privacy-preserving manner.

To prevent overfitting on a specific distribution, it is essential to use multiple sources
for training. Furthermore, to provide a comprehensive view of the trained model’s per-
formance (i.e., to indicate the model’s real-world applicability), it is also vital to use
multiple sources for testing. An example is provided in Figure 1: Model #3 is less ac-
curate than Model #4 on distributions similar to the training distribution (at the middle
of x axis), while it does perform better on more distinct distributions (toward the edge
of x axis). Although crucial, we are unaware of any works verifying the trained models
on datasets from other distributions in the SQLi context.

Another aspect where most previous works fall short is the model evaluation: using
one metric (e.g., accuracy) to measure the model’s performance is insufficient, as it
does not consider Type I and II errors separately. A false negative error could have
a more significant impact than a false positive error in the security domain, such as
SQLi detection. Although these are encapsulated in the recall and the precision, the
whole picture is only captured via the Receiver Operating Characteristic (ROC) curve.
It aids in optimizing the trade-off between these errors to reduce the false-negative rates
(FNR) sufficiently while keeping the number of false positives rates (FPR) manageable.
Such information is imperative for Security Operation Center (SOC) operators working
with Security Information and Event Management (SIEM) systems.
Contribution. In this work, we highlight the shortcomings of the previous ML-based
results focusing on 1) the evaluation methods, 2) the optimization of the model param-
eters, 3) the distribution of utilized datasets, and 4) the feature selection. Since none of
the previous works explored these aspects in depth, we fill this gap, i.e., we compare
different types of ML algorithms (e.g., Logistic Regression, Support Vector Machine,
Random Forest, Gradient Boosting, and Neural Network) with various pre-processing
methods (e.g., TF-IDF Vectorizer, Keyword weights, and Skip-gram model), and train
several instances of them using hyper-parameter optimization. Additionally, we cross-
verified the models on datasets corresponding to different distributions than the train-
ing samples. We also validate our findings on a private SQLi dataset originating from
a major player in the security industry in Europe.

Our findings revealed that the model with the highest accuracy is not necessarily
the best choice 1) when a specific (e.g., low) false positive rate is desired and 2) when
the model is used on data from other distributions. Our goal is to raise awareness of
the issues using pre-trained off-the-shelf ML models and to ease the choice of security
engineers in selecting the proper setup for specific use cases.
Organization. In Section 2, we give a high-level introduction to both ML and SQLi.

Figure 1: Illustrating the relationship between model accuracy and dataset distributions: the best model
trained on a specific distribution could be outperformed on other distributions.
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In Section 3, we provide a short taxonomy of the research efforts with an explicit
focus on the issues such as evaluation methods, optimization of the model parameters,
distribution of utilized datasets, and feature selection. In Section 4, besides discussing
our experimental settings, i.e., the utilized datasets and explored hyper-parameters, we
also detail the results of the three experiments we studied. Finally, we conclude our
work in Section 5.

2 Prelimilaries
In this section, we introduce SQLi and detail how ML is related to the issue of SQLi
detection.

2.1 SQL Injection
SQL is a query language for relational databases to help modify, retrieve, and store data.
There are many dialects, such as MySQL, PostgreSQL, and SQLite. SQL Injection is a
server-side attack where a web security vulnerability allows attackers to alter the SQL
queries made to the central database; therefore, they can retrieve information from or
about the database, which often comes with the leakage of sensitive data. There are
several types of it, as we detail below.
In-band SQLi. When the attacker could use the same channel for attacking and re-
ceiving results, an SQLi could happen by appending the results to the original query.
The attack could be Error-based and Union-based, where the former tries to retrieve in-
formation about the database structure from the error messages, and the latter combines
the results of two separate SELECT queries with a UNION operator.
Out-of-band SQLi. When the response does not return the SQL query result on the
same channel, it is still possible to retrieve information if certain features are enabled
on the site, like HTTP, DNS, or FTP (which is the case with all popular SQL servers).
In this case, the attack commands the application to send data to a remote endpoint
they control.
Blind SQLi. When the response does not return the SQL query result, the attacker
could still probe the server and observe how it behaves. The attack could be Content-
based and Time-based, where the former sends conditional statements and analyzes the
response, and the latter tries to make the database wait based on a condition that could
be detected.

2.2 ML techniques
A key technique to tackle SQLi is to reduce the attack surface by avoiding dynamic
SQL statements, where the attacker cannot execute arbitrary SQL commands. Unfor-
tunately, this is not feasible in many scenarios, so the user input must be sanitized
and validated (if possible). Traditional techniques use rules such as filters and regular
expressions, which are not scalable and might not be able to capture more complex at-
tack vectors. On the other hand, ML-based techniques learn directly from the data and
have the potential to detect hidden patterns which would slip through traditional ap-
proaches. Indeed, several previous works reported high (99-100%) detection rates, so
ML-based methods are possible candidates for real-life deployment as they can aid se-
curity analysts with a measure of the maliciousness of an SQL payload. Below we give
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a high-level introduction to the data parsing techniques and ML architectures utilized
in this work.
Pre-Processing. The raw benign and malicious SQL payloads cannot be fed directly
into ML models. First, they must be pre-processed. We surveyed the relevant literature
and identified three parsing techniques that are the most widely utilized: TF-IDF-based,
Keyword based, and Skip-gram based.

• TF-IDF vectorizer is based on the Bag of Words model that counts how much
occurs from a word in a document. It consists of the Term Frequency (TF) and
the Inverse Document Frequency (IDF) parts. TF measures the frequency of a
word in a specific document, while IDF measures the importance of the words
across the entire dataset. By combining these, those words will be more critical
than rare words in the corpus or frequent ones in a specific document.

• Keyword weights are based on the fact that SQL queries contain specific key-
words that define how likely they are SQLi. We can assign weights to these
keywords based on their maliciousness and extract features from the original
text by using these weights.

• Skip-gram model (opposite the previous two) considers semantics. It is a type of
word embedding that means that every word is mapped into a continuous vector
space, making it easier to check which ones are similar. A common way to create
such word embeddings is to use the Word2Vec technique.

Models. There are many model architectures choices to feed the processed data into.
We surveyed the relevant literature and identified five ML architectures that are the
most widely utilized: Linear Regression, Support Vector Machine, Random Forrest,
Gradient Boosting, and Neural Networks.

• Logistic Regression (LR) is a simple linear model that learns to classify the data
by minimizing the number of falsely categorized samples.

• Support Vector Machine (SVM) learns to classify the data by maximizing the
distance between the classes.

• Random Forest (RF) consists of several Decision Trees that operate as an ensem-
ble: the decision is based on the majority vote of the trees.

• Gradient Boosting (GB) is also an ensemble method; it is learning by minimiz-
ing the loss function, which is achieved by adding more weak learners, mainly
concentrating on the areas where the already existing learners perform poorly.

• Neural Network (NN) is a process that mimics how the human brain operates,
i.e., it contains layers of neurons consisting of logistic units with an activation
function. A wide multi-layer NN can capture more complex tasks than previ-
ously described models.

3 Related Works
This section summarizes the previous research efforts in connection with SQLi de-
tection using ML. Tackling this problem without ML is reviewed in (KP11), while
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R (JG14) (HBT19) (Moo10) (CG+18) (GPS+21) (PS20) (Mis19) (KSSS21) (IYS17) (JPB+21) (She15) (LHF19) (YLP19) (ATA+21)
D · · · · · · · · ◦ ◦ ◦ ◦ ◦ ◦
F · · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • • •
M · ◦ · · ◦ ◦ • • · · · · · ◦
E ◦ • · • ◦ ◦ · ◦ ◦ ◦ ◦ ◦ ◦ ·

R (CYWZ21) (Ros18) (UBF17b) (LLWC19) (TGH20) (TQH+20) (HHAK21) (LLC20) (Far21) (XRF+19) (BMP18) (LWWL19) (UBF17a) (GAD21)
D ◦ ◦ ◦ • • • • • • • • • • •
F • • • · · · ◦ ◦ ◦ • • • • •
M ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ · ◦ ◦ ◦ •
E ◦ ◦ • ◦ • ◦ · · • • ◦ ◦ ◦ ◦

(a) The symbol ·, ◦, and • means insufficient/medium/sufficient, as described in Table 1b. R,
D, F, M, and E means References, Dataset Size, Number of Features, Model Optimization, and
Evaluation Metrics respectively.

Data Feature Model Evaluaton
· < 10k < 12 1 w/o Tuning acc.
◦ > 10k, 1 source [12,999] 1 w/ Tuning or > 1 w/o Tuning acc. & conf. mx
• > 10k, > 1 source > 1000 > 1 w/ Tuning acc. & conf. mx & ROC

(b) Notation used in Table 1a. Acc. and conf. mx are the abbreviations for accuracy and confu-
sion matrix.

Table 1: Comparision of varions SQLi detection works using ML.

(PPP+19) and (HZC20) are surveyed the ML solutions. We inspected the ML-based
SQLi literature2 while focusing on four aspects: the dataset, the features, the models,
and the evaluation. Our findings are summarized in Table 1.
Dataset. The datasets’ size and diversity (i.e., distribution) are imperative concerning
ML. Yet, more than a quarter (29%) of works experiments with small (i.e., below 10k)
datasets. Although the rest utilize a sufficient amount of data for training, for many of
them (32%), the data comes from a single source (aka distribution). Besides, when the
authors consider multiple sources (39%), they merge them to form an extensive central
database split into training and testing. On the other hand, we train our models on
many separate datasets from different sources and evaluate them in a cross-verification
manner.
Features. Few works (18%) only utilize less than a dozen features, which is in-
sufficient to capture the underlying language’s richness. Although other works (43%)
exploit more features, only some of them (39%) apply over a thousand features (i.e.,
by using OneHot-Encoding, Word2Vec, String2Vec, or TF-IDF with large datasets),
which is the best practice in NLP and needed to capture the abundance of the payloads
appropriately.
Models. Almost a third of the works (32%) mentioned in Table 1 consider only a
single ML model without any hyper-parameter tuning. This cherry-picking strategy is
superficial and, without proper comparison, could be easily misinterpreted. Although
other works (57%) consider comparing more off-the-shelf models or fine-tuning a sin-
gle one, this still not paints a complete picture of the relationship between these models.
Finally, similarly to our work, only a handful of papers (18%) evaluate multiple models
and utilize parameter optimization.
Evaluation. Few works (18%) present the accuracy metric only, which is inappro-
priate in the SQLi use-case: the difference between type I and type II errors is crucial.
The majority of the works (61%) indeed consider false positives and false negatives
and present them either via the confusion matrix or via the precision, recall, and F1

2We considered 28 papers, which we obtained by forward and backward snowballing from the surveys
and by using targeted queries (e.g., ”SQL Injection” + ”Machine Learning”, etc.) in Google Scholar.
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Figure 2: The Process Diagram for our experiments. Various pre-processing (1) and
model architectural (2) choices are available, the training set (3) and the testing set
(5) could also be varied, moreover, for each scenario an appropriate hyper-parameter
tuning (4) is included.

values. However, this still might be insufficient from the usability point of view: any
practitioner of an SQLi detection system would require the possibility to set the trade-
off between these values, depending on the underlying scenario’s sensitivity. Hence,
the ROC curve is of the utmost importance. Besides this work, it is measured only half
a dozen times (21%).

Discussion
Consequently, in Table 1a, we can see that no work in the existing literature thoroughly
tackles all four aspects we considered. Indeed, only eight works (29%) consider all
four aspects to some extent (i.e., no · sign in a column), and only three (11%) consider
three aspects sufficiently (i.e., three • sign in a column).

Moreover, none of these publications are from highly regarded security venues. In
fact, most (86%) were published at places not dealing directly with security, and some
(39%) even appeared outside the computer science domain. Hence, research focusing
on SQLi detection using ML could be more satisfactory, and many existing works
should be taken with a grain of salt.

4 Experiments
In this section, we present our experimental setups and the corresponding results. To
honor blind submission, we share our implementation only after acceptance. Figure 2
presents a summarizing process diagram.
Datasets. Besides providing a comprehensive analysis, our main aim is to com-
pare models on different datasets with various sizes coming from distinct distribu-
tions. Thus, obtaining appropriate datasets is crucial. For our experiments, we utilized
three public datasets with different sizes (small, medium, large) from two sources. We
merged three small datasets (OWASP, BurpSuite, and FuzzDB) from GitHub3 into one
we called United. We also used two datasets from Kaggle4, namely SQLi1 and SQLi2.

3https://www.github.com/ChrisAHolland/ML-SQL-Injection-Detector/tree/master/data
4https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset
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Finally, we employed a private dataset only for testing (referred to as Company from
a SIEM of an international SOC operating company with clients all over Europe. Op-
posed to the first three datasets, the last one is not public. The data belongs to a single
client, and it was acquired in-between 2019/08 and 2021/05. The utilized datasets are
summarized in Table 2.
Hyper-Parameter Tuning. For each model type, we fine-tuned several hyper-parameters
to obtain the best results. Note that our goal is not to produce state-of-the-art perform-
ing models but to show that optimizing various models for one distribution affects these
models differently when tested on other distributions. We used sklearn5 for our imple-
mentation. We performed a grid search on the following parameters while the rest we
set to be the default.

• Logistic Regression: the two parameters we fine-tune are 1) the type of the Solver
(newton−cg,lbfgs) and 2) the Weight of regularization (10−1,100,101).

• Support Vector Machine: the two parameters we fine-tune are 1) the Kernel type
(Linear,Polynomial,Rbf) and 2) the Weight of regularization (10−1,100,101).

• Random Forest: the two parameters we fine-tuned are 1) the max number of
Features (20,21, . . . ,25) and 2) the number of Estimators (101,102,103).

• Gradient Boosting: the three parameters we fine-tuned are 1) the Learning Rate
(10−3,10−2,10−1), 2) the number of Estimators (101,102,103), and 3) the max-
imum Depth (2,4,8).

• Neural Network: the three parameters we fin-tuned are 1) the Learning Rate
(10−3,10−2,10−1), 2) the size of the Hidden Layer (64,128), and 3) the Activation
Function (ReLU,Sigmoid).

4.1 Results
We considered three scenarios to evaluate. Firstly, to give a comprehensive analysis,
we review the well-studies IID case (i.e., when the test and train datasets are from the
same distribution). Secondly, to measure the robustness of the models against data
distribution change, we provide experiments concerning the non-IID case (which was
not studied before), namely when the training and the testing data come from a different
distribution. Thirdly, to inspect the applicability of the lab-tested models in the real
world, we evaluate the trained models on confidential data of an international SOC
operator within Europe. When applicable, we randomly split the datasets into training,
validation, and testing using 70-10-20 percentages. All our experiments are performed
two-fold to mitigate the randomness of the training process.

Name Size Benign Malicious
United 1140 1133 7
SQLi1 3950 950 3000
SQLi2 33725 11424 22301

Company 2594 2337 257

Table 2: The properties of the considered datasets.

5https://www.scikit-learn.org/stable
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DataSet Pre-Proc. Model Parameters Train Val. Test

United

Skip-gram LR S:newton,W:0.1 99.69% 99.56% 99.78%
Skip-gram SVM K:linear,W:10 99.94% 100% 100%
Skip-gram RF F:32,E:10 100% 100% 99.89%
Skip-gram GB L:0.01,E:1000,D:2 100% 100% 99.78%
Skip-gram NN L:0.001,H:64.A:sigmoid 99.69% 99.56% 99.78%

SQLi1

TF-IDF LR S:newton,W:10 98.73% 96.77% 98.43%
TF-IDF SVM K:linear,W:1 98.20% 96.34% 97.86%
TF-IDF RF F:16,E:100 100% 97.16% 97.79%
TF-IDF GB L:0.1,E:1000,D:4 100% 98.70% 98.68%
TF-IDF NN L:0.001,H:64,A:sigmoid 93.88% 90.77% 92.78%

SQLi2

TF-IDF LR S:newton,W:10 99.54% 99.25% 99.36%
Skip-gram SVM K:poly, W:10 99.32% 99.47% 99.41%
Skip-gram RF F:1,E:100 99.99% 99.61% 99.57%
Skip-gram GB L:0.1,E:1000,D:8 100% 99.34% 99.30%

TF-IDF NN L:0.1,H:64,A:sigmoid 99.56% 99.45% 99.34%

Table 3: For all considered public datasets and models, we present the F1-scores of
the best-performing models with the corresponding pre-processing methods for the
training set, the validation set, and the test set. The utilized hyper-parameters are also
displayed where S, W, K, F, E, L, D, H, and A are Solver, Weight, Kernel, Feature
num., Estimator num., Learning rate, Depth, Hidden layer size, and Activation func-
tion, respectively.

Figure 3: The best performing setting’s ROC curves with the AUC values for all
datasets.

Using the same distribution for Training/Testing. Due to the lack of space, we
neither show the accuracy nor the confusion matrices but instead present the more
informative F1-scores and the ROC curves. The former is visible in Table 3, while
the latter is visualized in Figure 3 for the considered three datasets (United, SQLi1,
SQLi2). In Table 3, we also present the best-performing model types (LR, SVM, RF,
GB, NN) with the corresponding optimal pre-processing method (TF-IDF, Keyword,
Skip-gram) and hyper-parameters. The models trained on United (with Skip-gram)
have 125 features, the models trained on SQLi1 (with TF-IDF) have 9683, and the
models trained on SQLi2 have 1455 and 28679 when pre-processed with Skip-gram
and TF-IDF respectively.

In Table 3, one can see that the best-performing setups (pre-processing, model type,
hyper-parameters) across different datasets vary greatly. For instance, Skip-gram pre-
processing method outperforms TF-IDF on the United dataset, while the opposite trend
corresponds to SQLi1, and neither dominates the other on SQLi2. The optimal learning
rate for GB and NN and the optimal weight for LR and SVM depend on the underlying
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Dataset Mod. & PreP. Learn. Time Mod. Size Pred. Speed

United

LR (S) 0.0258 s 0.002 Mb 0.002 ms
SVM (S) 0.0204 s 0.023 Mb 0.002 ms
RF (S) 0.018 s 0.012 Mb 0.001 ms
GB (S) 1.4178 s 0.646 Mb 0.005 ms
NN (S) 0.283 s 0.118 Mb 0.054 ms

SQLi1

LR (T) 1.9164 s 0.219 Mb 0.123 ms
SVM (T) 44.1636 s 72 Mb 3.077 ms
RF (T) 2.3232 s 7.1 Mb 0.174 ms
GB (T) 589.8 s 1.5 Mb 0.150 ms
NN (T) 1.5184 s 7.2 Mb 0.112 ms

SQLi2

LR (T) 57.7254 s 0.631 Mb 0.320 ms
SVM (S) 35.2536 s 3.4 Mb 0.089 ms
RF (S) 3.5634 s 4.2 Mb 0.043 ms
GB (S) 572.54 s 6.8 Mb 0.035 ms
NN (T) 21.4831 s 21 Mb 0.165 ms

Table 4: The pre-processing and training time, the model size, and the prediction speed
of the best performing models with Skip-gram or with TF-IDF.

dataset. No one model type dominates, i.e., the model obtaining the highest F1-score
is different for all three datasets. Hence, it is uttermost important to see how models
optimized for one dataset perform on other datasets with different distributions.

In Figure 3 from the ROC curves, it is visible that independently of the optimal
setup (i.e., model type, pre-processing method, hyper-parameters), RF slightly outper-
forms the other models in the low false positive rate region as it obtains the highest true
positive rate. Conversely, when a high false positive rate is tolerated, the models have
only negligible differences. Note that the AUC values are all above 0.99 except for the
United dataset due to its small size: there is only a single negative sample in its test set.

In addition to these results, we found that the Keyword weights pre-processing
method is inferior to both TF-IDF and Skip-gram, as the corresponding results were
always about 10% less, even though besides the model parameters, we also tuned the
exact weights for this pre-processing method.
Timing Measurements. Besides its prediction power, another essential aspect is the
usability of the models, i.e., how much time it takes to train these models, what is their
sizes, and how fast they can predict. These details are presented in Table 4 for the
best-performing models. The training was done on Ubuntu 20.04.4 LTS Linux with 16
CPUs (3.10GHz) and 98 Gb RAM. One can see that while the models achieve com-
parable performances, both the time and the size values have a considerable variance.
Additionally to the model type and the employed hyper-parameters, these differences
are a combined result of the corresponding datasets and pre-processing methods. Yet,
two trends are visible: LR is always the smallest model, and GB is always the most
costly model to be trained. Along with the ROC curve, such information is essen-
tial for SOC operators to optimize the trade-off between the usability and prediction
performance of the SQLi-detecting ML model.
Using different distribution for Training/Testing. The previous experiments re-
vealed the sensitivity of the setup: similar high F1-scores could be reached with vastly
different settings. Opposed to the common IID practice that uses the same distribution
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Tested Trained on United
on LR (S) SVM (S) RF (S) GB (S) NN (S)

United 99.78% 100% 99.89% 99.78% 99.78%
SQLi1 38.8% 39.0% 38.8% 37.8% 38.8%
SQLi2 50.6% 49.6% 50.6% 50.5% 50.6%

Tested Trained on SQLi1
on LR (T) SVM (T) RF (T) GB (T) NN (T)

United 92.2% 92.4% 99.8% 76.1% 91.2%
SQLi1 98.43% 97.86% 97.79% 98.68% 92.78%
SQLi2 84.6% 79.7% 52.8% 82.2% 83.2%

Tested Trained on SQLi2
on LR (T) SVM (S) RF (S) GB (S) NN (T)

United 97.3% 41.8% 50.7% 66.5% 97.5%
SQLi1 95.3% 92.5% 97.8% 98.1% 96.5%
SQLi2 99.36% 99.41% 99.57% 99.30% 99.34%

Table 5: Dataset-wise the F1-scores with cross-verification of the best performing mod-
els with Skip-gram or with TF-IDF.

for testing and training (by splitting the same dataset), we are focusing on the non-IID
case, i.e., measuring the performance of the models on test sets from other distribu-
tions. This experiment measures the model’s robustness against data distribution. The
F1-scores are shown in Table 5, while the ROC curves for all pair-wise scenarios are
presented in Figure 4.

As expected, the F1-score of the best-performing models drops when tested on
other datasets from other distributions. For instance, training on a small dataset could
produce completely unreliable models: the result on the top of Table 5 suggests that
the models trained on United are essentially reduced to a random guess when tested
on SQLi1 and SQLi2. Similar results can be found on the left side of Figure 4: when
trained on the smallest United dataset, the best models’ AUC is 0.644 and 0.877 when
tested on SQLi1 and SQLi2, respectively.

Additionally, the pre-processing method seems crucial too: when trained on SQLi2
and tested on United, models using Skip-gram are idle. In contrast, the ones using TF-
IDF have a decent performance. Another interesting finding is that different models
could have opposing generalization properties against other distributions. For example,
in the middle of Table 5 RF performs exceptionally on United and terribly on SQLi2
when trained on SQLi1. At the same time, the exact opposite trend holds for GB.

Concerning the ROC curves in Figure 4, similarly to the IID case, for this non-
IID setup RF is also ideal for low false positive rate region but only when trained on
United (left). However, when the models are trained on the large SQLi2 dataset (right),
the highest AUC belongs to NN: 0.916 and 0.999 when tested on United and SQLi1,
respectively. NN is also a good choice when a low false positive rate is desired.

In addition, when the models are trained on SQLi1 and tested on United (i.e., mid-
dle top), SVM is the optimal model choice for sensitive domains where a low false
positive rate is required. Yet, when tested on SQLi2 (i.e., middle bottom), multiple
models achieve the best trade-off, depending on the desired false positive rate range.
What is clear is SVM has the highest AUC values (0.872 and 0.973).

Based on these results, TF-IDF and SVM seem more robust against test data distri-
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Figure 4: The best performing setting’s ROC curves with the AUC values for all cross-
verification settings.

bution shifts than other methods and models. TF-IDF uses statistical features such as
frequencies, which change only slightly when there is a minor change in the underlying
distribution. On the other hand, Skip-gram is based on a Neural Network, which takes
a predefined input size and could easily overfit, making it rigid to use with different in-
put families. Considering models, SVM is robust, as it maximizes the smallest distance
between the benign and malicious samples. Thus it should be tolerant of minor changes
in the classes. GB also performed well in this experiment due to its assembly nature.
In contrast, NN, the most complex model, might overfit (when trained on United) and
lose its generalization capability to tackle samples from other distributions. However,
it could also outperform the rest of the models when trained on a large representative
dataset, e.g., SQLi2.
Validating the Findings on Private dataset. Finally, we perform a similar non-IID
experiment, but instead of utilizing public datasets for training and testing, we apply
the private Company dataset as a test set. The F1-scores of the best performing models
are shown in Table 6 while the ROC curves are presented in Figure 5.

The last column of Table 6 (using the large SQLi2 dataset) elaborates that Skip-
gram is indeed not appropriate for models indented to be used on other distributions
than the model was trained on. This is seemingly contradicted in the first column;
however, that corresponds to the smallest United dataset, which could also produce
highly unreliable models, as we showed in Table 5. We hypothesize this excellent
result is due to the closeness of United’s and Company’s distribution. Similarly to the
previous use cases, the highest F1-score (95.7%) is reached by NN when trained on the
biggest dataset using the robust TF-IDF.

Surprisingly, Figure 5 (right) shows the simple LR model trained on SQLi2 does
outperform NN based on the ROC with a minor AUC difference (0.99 vs. 0.98). Fur-
thermore, LR also performs exceptionally on Company when trained on SQLi1 (mid-
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Figure 5: The best performing setting’s ROC curves with the AUC values trained on the
entire public domain and tested on a private dataset.

dle), making it the best choice even for the low false positive rate domain. Finally,
contrary to what the F1-scores suggest when trained on United, the AUC values are not
exceptional.
Discussion. The ’one size fits all’ ideology needs to be revised in connection with ML
models trained for SQLi detection. Our experiments uncovered that none of the setups
is adequate for all environments with different constraints. Still, several rules of thumb
could be identified via the presented results. Below we summarize our suggestions for
several use cases.

• Limited resources & similar usage: The smallest and fastest model from the stud-
ied models is LR. Besides, its performance is also decent, making it an optimal
choice for IoT scenarios.

• Much resources & limited datapoints & different usage: Although SVM might
need more resources than other models (in terms of model size and prediction
speed), with TF-IDF it is the appropriate choice, as it is capable of separating
benign and malicious samples even from other distributions with high accuracy
when only a few samples are available for training.

• Limited resources & limited data points & different usage: Since GB consumes
too much resource, the fitting assembly model for this scenario is RF.

• Many resources & enough data points: As expected, without environmental con-
straints and enough data available, the most complex model (NN) with TF-IDF
does outperform the rest. If not overfitted, NN is also appropriate for other dis-
tributions.

Trained on United SQLi1 SQLi2
Model F1-score on Company

LR 94.79% (S) 79.08% (T) 92.35% (T)
SVM 90.97% (S) 77.88% (T) 29.98% (S)
RF 92.47% (S) 90.03% (T) 32.68% (S)
GB 91.69% (S) 76.41% (T) 78.47% (S)
NN 94.79% (S) 77.65% (T) 95.69% (T)

Table 6: F1-scores of the best performing models with Skip-gram or with TF-IDF when
tested on the private Company data.
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5 Conclusion
SQL Injections are top-tier vulnerabilities of today’s ICT systems. As with many other
problems, machine learning techniques have also been proven appropriate to tackle this
issue. In this work, we highlighted the shortcomings of the previous machine learning
solutions, which consider only a few aspects of the underlying problem. Thus, this
study is the first to provide a comprehensive (wide and in-depth) empirical analysis
of SQL injection detection via machine learning. Furthermore, we cross-validated the
trained models by using data from other distributions. This aspect is idle in the liter-
ature, even though the sensitivity of models to distribution change is crucial for any
real-life deployment. Our work could be beneficial for security engineers and practi-
tioners working with SQL.
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