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Quality Inference in Federated Learning with

Secure Aggregation

Balázs Pejó and Gergely Biczók

Abstract—Federated learning algorithms are developed both for efficiency reasons and to ensure the privacy and confidentiality of

personal and business data, respectively. Despite no data being shared explicitly, recent studies showed that the mechanism could still

leak sensitive information. Hence, secure aggregation is utilized in many real-world scenarios to prevent attribution to specific

participants. In this paper, we focus on the quality (i.e., the ratio of correct labels) of individual training datasets and show that such

quality information could be inferred and attributed to specific participants even when secure aggregation is applied. Specifically,

through a series of image recognition experiments, we infer the relative quality ordering of participants. Moreover, we apply the inferred

quality information to stabilize training performance, measure the individual contribution of participants, and detect misbehavior.

Index Terms—Quality Inference, Federated Learning, Secure Aggregation, Misbehavior Detection, Contribution Score
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1 INTRODUCTION
For machine learning (ML) tasks, it is widely accepted

that more training data leads to a more accurate model.
Unfortunately, in reality, the data is scattered among mul-
tiple different entities. Thus, data holders could potentially
increase the accuracy of their local model accuracy by
training a joint model together with others [1]. Several
collaborative learning approaches were proposed in the lit-
erature, amongst which the least privacy-friendly method is
centralized learning, where a server pools the data from all
participants together and trains the desired model. On the
other end of the privacy spectrum, there are cryptographic
techniques such as multi-party computation [2] and homo-
morphic encryption [3], guaranteeing that only the final
model is revealed to legitimate collaborators and nothing
more. Neither of these extremes admits most real-world
use cases: while the first requires participants to share their
datasets directly, the latter requires too much computational
resource to be a practical solution for big data scenarios.

Somewhere between these (in terms of privacy protec-
tion) stands federated learning (FL), which mitigates the com-
munication bottleneck and provides flexible participation by
selecting a random subset of participants per round, who
compute and send their model updates to the aggregator
server [4]. FL provides some privacy protection by design as
the actual data never leaves the hardware located within the
participants’ premises. Yet, there is already rich and growing
related literature revealing that from these updates (i.e.,
gradients) a handful of characteristics can be inferred about
the underlying training dataset. Potential attacks include
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model inversion [5], membership inference [6], reconstruc-
tion attack [7], (hyper)parameter inference [8], and property
inference [9].

Parallel to these, several techniques have been developed
to conceal the participants’ updates from the aggregator
server, such as differential privacy (DP) [10] and secure ag-
gregation (SA) [11]. Although DP comes with a mathematical
privacy guarantee, it also results in heavy utility loss, which
limits its applicability in many real-world scenarios. On the
other hand, SA does not affect the aggregated final model,
which makes it a suitable candidate for many applications.
Essentially, SA hides the individual model updates without
changing the aggregated model by adding pairwise masks
to the participants’ gradients in a clever way so that they
cancel out during aggregation.

Consequently, SA only protects the participants’ individ-
ual updates and leaves the aggregated model unprotected.
Hence, SA provides a “hiding in the crowd” type of pro-
tection [12], thus, without specific background knowledge,
it is unlikely that a privacy attacker could link the leaked
information to a specific participant. The lack of attribution
severely affects the security of FL as well; we are not aware
of any attack detection scheme applicable with SA enabled.

In this paper, we study the possibility of inferring the qual-
ity of the individual datasets when SA is in place. This could be
utilized for for attack detection as well. Note, however, that
it is different from mere poisoning and backdoor detection
[13], as that line of research is only interested in classifying
participants as malicious or benign, while our goal is to
enable the fine-grained differentiation of FL participants
with respect to their data quality. This is fundamentally
similar to contribution score computation, which is also an
unsolved problem in the SA setting.

We are aware that data quality is a complex concept
with multiple dimensions [14], and in general it is relative
from two aspects: it can only be considered in terms of the
proposed use and in relation to other data samples. For
this reason (similarly to [15]) we focus on image recognition
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tasks with noisy labels, as in this scenario data quality has a
straightforward interpretation.
Contributions

We propose a method called Quality Inference (QI) which
(by utilizing the improvement of the aggregated updates)
recovers the relative label quality of the contributing par-
ticipants’ datasets. To obtain this quality information, our
method takes advantage of the improvements of the ag-
gregated models across multiple rounds, as well as the
known per-round selected subset of participants. QI works
by evaluating the aggregated updates in each round and
assigning scores to the selected participants based on three
simple but novel rules called The Good, The Bad, and The Ugly
(as in the movie [16]). As a result, we are able to recover the
relative quality ordering (i.e., by label correctness rate) of
the participants.

We simulated datasets with different qualities by uti-
lizing unique label-flipping rates for each participant, and
conduct experiments on two neural network architectures
(MLP and CNN) and two datasets (MNIST and CIFAR10).
We consider three FL settings, where 2 out of 5, 5 out of 25,
and 10 out of 100 participants are selected in each round to
update the model, respectively.

Our experiments show that the three proposed heuristic
scoring rules significantly outperform the baseline in deter-
mining the participants’ data qualities relative to each other
(i.e., correct label rates). We find that the accuracy of QI
depends on both the complexity of the task and the trained
model architecture. We also conduct an ablation study on
the hyperparameters of the proposed rules.

Finally, we investigate three potential applications of QI:
on-the-fly performance boosting, contribution score com-
putation, and misbehavior detection (by considering free-
riding and poisoning). We find that i) carefully weighting
the participants based on the inferred scores smooths the
learning curve, ii) the scores could be used as a measure of
participant contribution, and iii) the scores are able to reveal
misbehaving participants. This latter implies that besides
the label correctness rate, QI is also capable of inferring
other, more general quality aspects of the data. We are
not aware of any work tackling any of the aforementioned
issues when SA is enabled.

2 THE THEORETICAL MODEL
In this section we introduce the theoretical model of

quality inference and highlight its complexity. We note with
n a participant in FL, while N denotes the number of all
participants. Similarly, i denotes a round in FL, while I
denotes the number of all rounds. The set Si contains the
randomly selected participants for round i, and b = |Si|
captures the number of selected participants. Dn is par-
ticipant n’s dataset consisting of (x, y) 2 Dn data-label
pairs. We assume Dn is associated with a single scalar un,
which measures its quality. We use ✓n and vi to capture
the quality of the nth participant’s gradient and the quality
of the aggregated gradient in the ith round, respectively. A
summary of the variables are listed in the Appendix (Table
3).
2.1 Deterministic Case

In this simplified scenario we assume the gradient qual-
ity is equal to the dataset quality, i.e., ✓n = un. Con-

sequently, the aggregated gradients represent the average
quality of the participants’ datasets. As a result, the round-
wise quality values of aggregated gradients form a lin-
ear equation system Au = v, where u = [u1, . . . , uN ]T ,
v = [v1, . . . , vI ]T , and ai,n 2 AI⇥N indicates whether par-
ticipant n is selected for round i. Depending on the dimen-
sions of A, the system can be under- or over-determined. In
case of I < N (i.e., no exact solution exists) and if I > N
(i.e., many exact solutions exist), the problem itself and the
approximate solution are shown in Eq. 1 and 2, respectively.

min
u

||v �Au||22 ) u = (ATA)�1AT v (1)

min
u

||u||22 s.t. Au = v ) u = AT (AAT )�1v (2)

2.2 Stochastic Case
The above equations do not take into account any ran-

domness. Given that the training is stochastic, we can treat
the quality of participant n’s gradient as a random variable
✓n sampled from a distribution with parameter un. More-
over, we can represent ✓n = un + en where en corresponds
to a random variable sampled from a distribution with zero
mean. We can further assume that en and en0 are i.i.d.
for n 6= n0. As a result, we can express the aggregated
gradient vi =

P
n ai,nun + E where E is sampled from

the convolution of the probability density function of e’s.
In this case, due to the Gauss–Markov theorem [17], the

solution in Eq. 1 is the best linear unbiased estimator, with
error ||v � Au||22 = vT (I � A(ATA)�1AT )v (where I is the
identity matrix) with an expected value of b(I � N). Note,
that with more iterations more information is leaking, which
should decrease the error. Yet, this is not captured by the
theorem as it considers every round as a new constraint.

This problem lies within estimation theory [18], from
which we already know that estimating a single random
variable with added noise is already hard; moreso, factoring
in that in our setting, we have multiple variables forming
an equation system. Moreover, these random variables are
different per round; a detail we have omitted thus far. Nev-
ertheless, each iteration corresponds to a different expected
accuracy improvement level, as with time the iterations
improve less-and-less. Consequently, to estimate individual
dataset quality we have to know the baseline expected
learning curve; in turn, the learning curve depends exactly
on those quality values. Being a chicken-egg problem, we
focus on empirical observations to break this vicious cycle.

3 QUALITY SCORING

In this section we devise the three intuitive scoring rules
which are the core of QI: they either reward or punish
the participants in the FL rounds. The notations used in
this section are summarized in the Appendix (Table 4). We
define !i as the aggregated model’s improvement in the ith
round and 'i,n as the quality score of participant n after
round i. Note that in the rest of the paper we slightly abuse
the notation by removing index i where it is not relevant.
3.1 Assumptions

We assume a honest-but-curious setting; the aggregator
server (and the participants) cannot deviate from the FL
protocol. Further restrictions on the attacker include lim-
ited computational power and no background knowledge
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besides access to an evaluation oracle. For this reason,
we neither utilize any contribution score based techniques
nor existing inference attacks, as these require either sig-
nificant computational resources or user-specific relevant
background information.
3.2 Scoring Rules

Based on the round-wise improvements !i, we created
three simple rules to reward or punish the participants. We
named them The Good, The Bad, and The Ugly (as in the
spaghetti western movie [16]); the first one (G) rewards the
participants in the more useful aggregates, the second one
(B) punishes in the less useful ones, while the last one (U)
punishes when the aggregate does not improve the model
at all. Formally, each participant n0 contributing in round i
that . . .

G . . . improves the model more than the previous
round (i.e., !i > !i�1) receives +1, i.e., 'i,n0  
'i�1,n0 + 1.

B . . . improves the model less than the following
round (i.e., !i < !i+1) receives �1, i.e., 'i+1,n0  
'i,n0 � 1.

U . . . does not improve the model at all (i.e., !i < 0)
receives �1, i.e., 'i,n0  'i�1,n0 � 1.

Note, that the quality score in round i is not updated
for participant n̂ who has not contributed in that round, i.e.,
'i,n̂  'i�1,n̂.

It is reasonable to expect that the improvements in
consecutive rounds are decreasing (i.e., !i < !i�1): first the
model improves rapidly, while improvement slows down
considerably in later rounds. The first two scoring rules (The
Good and The Bad) capture the deviation from this pattern:
we can postulate that i) high dataset quality increases the
improvement more than in the previous round, and ii) low
dataset quality decreases the improvement, which would
be compensated in the following round. These phenomena
were also shown in [19]. While these rules are relative, the
last one (The Ugly) is absolute: it builds on the premise that
if a particular round does not improve the model, there is a
higher chance that some of the corresponding participants
have supplied low quality data.

Independently of the participants’ dataset qualities,
round-wise improvements could deviate from this pattern
owing to the stochastic nature of learning. We postulate that
this affects all participants evenly, independently of their
dataset quality; thus, the relation/ordering among the indi-
vidual scores are not significantly affected by this “noise”.
Participant selection also introduces a similar effect; how-
ever, we assume that participants are selected uniformly,
hence, its effect should also be similar across participants.
3.3 Quantifying QI

The quality scores of the participants are unlikely to
converge; hence, we focus on their relation. We denote
with qi,n the inferred quality-wise rank of participant n
after round i, and we measure the accuracy of the in-
ferred qualities by comparing qi,n for each participant to
the baseline quality-wise ordering. For this purpose, we
use the Spearman correlation coefficient rs [20], which is
based on the Spearman distance ds [21] (as seen in Eq.
3). Spearman distance measures the absolute difference of

this inferred and the actual position, while the Spearman
correlation coefficient assesses monotonic relationships on
the scale [�1, 1]; 1 corresponds to perfect correlation, while
any positive value signals positive correlation between the
actual and the inferred quality ordering. E.g., if the inferred
quality order (via the three rules) expressed with participant
IDs is 5-3-2-4-1, while the actual quality order is 5-4-3-2-1,
then the Spearman distances are 0-2-1-1-0, and the Spear-
man correlation is 0.7, suggesting that the inferred quality
order is very close to the original one. Note, that the Spear-
man distance (and consequently the coefficient) handles any
misalignment equally, irrespective of the position.

ds(i, n) = |n� qi,n| rs(i) = 1� 6 ·
PN

n=1 ds(i, n)
2

N · (N2 � 1)
(3)

4 EXPERIMENTS FOR QI
In this section, we describe our experiments, including

quality simulation and the utilized datasets and model
architectures, and present the corresponding results.

4.1 Simulating Data Quality

Data quality can only be considered in terms of the
proposed use and in relation to other data samples, i.e.,
participants with different data distributions could have
different views of the same dataset. To tackle this issue,
we consider only the IID case in our experiments. Besides,
data quality entails multiple aspects such as accuracy, com-
pleteness, redundancy, readability, accessibility, consistency,
usefulness, and trust, with several having their own subcat-
egories [14]. In this paper, we focus on image recognition
tasks as it is a key ML task with standard datasets available.
Still, we have to consider several of these aspects in relation
to image data.

Unfortunately, we are not aware of any public datasets
encompassing data from several well-categorized quality
classes. Since visual perception is a complex process, to
avoid serious pitfalls, we do not manipulate the images
themselves, but simulate different qualities similarly to [15]:
we modify the label y corresponding to a specific image x.
To have a clear quality-wise ordering between the datasets
(i.e., the ground truth), we perturbed the labels of the par-
ticipants according to Eq. 4, where  k is drawn uniformly
at random over all available labels. Putting it differently, the
labels of the participants’ datasets are randomized before
training with a linearly decreasing probability, e.g., in case
of five participants with IDs [1,2,3,4,5], the ratio of assigned
random labels are 100%, 75%, 50%, 25%, and 0%, respec-
tively.

Pr(yk =  k|(xk, yk) 2 Dn) =
N � n

N � 1
(4)

4.2 Datasets, ML Models and Experiment Setup

For our experiments, we used the MNIST [22] and the
CIFAR10 [23] datasets. MNIST corresponds to the simple
task of digit recognition. It contains 70, 000 hand-written
digits in the form of 28 ⇥ 28 gray-scale images. CIFAR10
is more involved, as it consists of 60, 000 32 ⇥ 32 color
images of various objects. For MLP, we used a three-layered
structure with hidden layer size 64, while for CNN, we
used two convolutional layers with 10 and 20 kernels of
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size 5⇥5, followed by two fully-connected hidden layers
of sizes 120 and 84. For the optimizer, we used SGD with
learning rate 0.01 and dropout rate 0.5. The combination
of the two datasets and the two neural network models
yield four use-cases. In the rest of the paper, we will refer to
these as MM for MLP-MNIST, MC for MLP-CIFAR10, CM
for CNN-MNIST, and CC for CNN-CIFAR10.

We ran all the experiments for 100 rounds and with
three different FL settings, corresponding to 5, 25, and 100
participants where 2, 5, and 10 of them are selected in each
round, respectively. The three FL settings combined with
the four use-cases result in twelve evaluation scenarios.
We ran every experiment 10-fold, with randomly selected
participants.

4.3 Empirical Quality Scores

We present the pseudo-code of the whole process in
Algorithm 1. We split the dataset randomly into N +1 parts
(line 1), representing the N datasets of the participants and
the test set DN+1, to determine the quality of the aggregated
updates. As highlighted earlier, the splitting is done in
a way that the resulting sub-datasets are IID; otherwise,
the splitting itself would introduce some quality difference
between the participants.

Concerning DN+1, having access to a dataset is standard
practice both in the field of privacy attacks and contribution
score computation, and our work is in the intersection of
these. Shadow datasets is a widespread technique to mimic
the training dataset, and having access to an evaluation
oracle (via an IID test set) is a fundamental assumption
for contribution score computation methods. Although we
foresee multiple options how DN+1 could be obtained, this
is orthogonal to our main contribution; we leave it as a
future work.

Next, we artificially create the baseline dataset qualities
using Eq. 4 (line 3): each participant’s labels are randomized
with a different ratio. This is followed by FL (line 5-9).
Round-wise improvements are captured by ! (declared in
line 11 using the accuracy difference of the current and
previous models). Quality scores ('1, . . . ,'N ) are updated
in the ith round with ±1 each time one of the three scoring
rules is invoked (line 12, 13, and 15 for The Good, The Bad,
and The Ugly, respectively).

Algorithm 1 QI in FL with SA
Input: data D; participants N ; rounds I

1: Split(D,N)! {D1, . . . , DN , DN+1}
2: for n 2 [1, . . . , N ] do
3: 8 (xk, yk) 2 Dn : yk ⇠ Eq. 4
4: ' = [0, . . . , 0]; M0  Rand()
5: for i 2 [1, . . . , I] do
6: RandSelect([1, . . . , N ], b)! Si

7: for n 2 Si do
8: Train(Mi�1, Dn) = M (n)

i

9: Mi = 1
b

P
n2Si

M (n)
i

10: !i = Acc(Mi, DN+1)�Acc(Mi�1, DN+1)
11: if i > 1 and !i > !i�1 then
12: for n 2 Si do 'n  'n + 1
13: for n 2 Si�1 do 'n  'n � 1
14: if !i < 0 then
15: for n 2 Si do 'n  'n � 1

QI Results

The quality scores based on the three scoring rules for a
handful of selected scenarios are presented in Fig. 1; the rest
of the studied cases are shown in the Appendix (Fig. 6 and
Fig. 7). In Fig. 1a we visualize the round-wise evolution of
scores for each participant where the corresponding gray-
ness level depends on the participant ID. More precisely,
the lighter shades correspond to participants with higher
IDs (i.e., less noisy labels according to Eq. 4), while the
darker shades mark low ID participants (i.e., higher ratio
of random labels). It is visible that the more rounds have
passed, the better our scoring rules correctly differentiate
the participants.

In Fig. 1b we show the mean (dot), the variance (black
line), the minimum, and maximum values (gray line) of
the inferred quality scores for each participant. One can
see an increasing trend of the quality scores following the
participant IDs. This is in line with the ground truth based

(a) The average round-wise change of the participants’ scores.
The lighter the better (the darker the worse) corresponding
dataset quality.

(b) Score of the participants after 100 training rounds. IDs shown
on x axis where lower number correspond to lower dataset
quality.

Fig. 1: Quality scores of the participants. Left - MLP, right
- CNN, top - MNIST with 5 and 100 participants, bottom -
CIFAR with 25 participants.
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Fig. 2: Spearman coefficient for the 12 scenarios.

on Eq. 4. Note, that even for the participant with the perfect
label quality (i.e., the highest ID or the lightest curve),
the quality score is rather negative, and keeps decreasing
with more rounds. This is an expected characteristic of the
scoring rules: there is only one rule increasing the score
(The Good), while two decreasing it (The Bad and The Ugly).
Applied jointly, these three heuristic scoring rules approx-
imate the ground truth label quality ordering remarkably
well exclusively from the aggregates.

Finally, we utilize the Spearman coefficient rs introduced
in Eq. 3 to measure the accuracy of the inferred qualities; the
12 studied scenarios are presented in Fig. 2. Note, that rs 2
[�1, 1], and any positive value indicates correlation. Thus,
the value of the baseline (i.e., randomly guessed ordering)
is zero. Consequently, the three simple rules significantly
improve on the baseline, as the coefficients for all scenarios
are positive. Moreover, as suggested by 1a, this value keep
increasing with more rounds, as shown in the Appendix
(Fig. 8).

Fine-tuning

We consider four ways of improving the accuracy of QI.

• Rule combination: we apply all possible combinations
of scoring rules in order to remove redundancies and
to find which setup obtains the highest accuracy.

• Thresholding: we consider using a threshold for the
scoring rules, i.e., The Ugly only applies when the
improvement is below some value, while The Good/
The Bad applies if the improvement difference is
above/below such a threshold, respectively.

• Actual values: we consider using improvement differ-
ences instead of ±1 to account for a more precise
differentiation.

• Round skipping: In the early rounds the model does
improve almost independently of the dataset quali-
ties, therefore, we consider discarding the informa-
tion from the first few rounds to decrease noise.

Although we performed an exhaustive grid search (e.g.,
{0, 20, . . . , 28}/100 for thresholding and [0, 1, . . . , 10] for
round skipping), the overall improvements obtained were
minor. The corresponding results are presented in the Ap-
pendix (Fig. 4). This implies that the original rules are quite
efficient, and the heuristic thumbs-up/thumbs-down rules
(e.g., using ±1 to update the scores) could be interpreted as
a normalizer across the different improvement levels of the
rounds. Therefore, in the following applications, we use the
original rules without any fine-tuning.

4.4 Mitigation
Note that the demonstrated quality information leakage

is not by design; this is a bug, rather than a feature in
FL. The simplest and most straightforward way to mit-
igate this vulnerability is to use a protocol where every
participant contributes in each round (incurring a sizable
communication overhead). Another approach is to hide the
participants’ IDs (e.g., via mixnets [24]), so no-one knows
which participant contributed in which round except for
the participants themselves. Finally, the aggregation itself
could be done in a differentially private manner as well,
where a carefully calculated noise is added to the updates
in each round. Client-level DP [25] would by default hide
the dataset quality of the participants, although at the price
of requiring large volumes of noise, and therefore, having
low utility.

5 APPLICATION OF QI
Even though QI is not a mechanism purposefully engi-

neered into FL (with SA), it does enable beneficial appli-
cations such as training accuracy stabilization, contribution
score computation, and misbehaviour detection. Our results
are shown in Fig. 3. Note that while there are a handful
of existing mechanisms for these tasks within FL, they do
not work under SA; hence, we do not compare our results
quantitatively to the SotA methods.
5.1 Enhancing the Training

It is expected that both training speed and obtained
accuracy could be improved by weighting the participants
according to their data qualities. Hence, a potential use case
for QI is to adopt the inferred scores as weights during
training. For weighting we used the multiplicative weight
update approach [26], which multiplies the weights with
a fixed rate , i.e., each time during training one of the
three scoring rules is invoked in Algorithm 1, the weights
(initialized as [1, . . . , 1]) are updated in the ith round with
⇥(1± ) for the appropriate participants.

Note that without access to individual gradients (owing
to SA), only the aggregates can be scaled by the server. Con-
sequently, in each round only the aggregate is scaled with
the arithmetic mean of the selected participants’ weights.
For our experiments, we set  = {0.00, 0.05, 0.10, 0.20},
where the first value corresponds to the baseline without
participant weighting. We highlight some of our results in
Fig. 3a; the rest can be found in the Appendix (Fig. 9). It
is conclusive that using weights based on our scoring rules
enhances the training as the training curves are smoother
and the final accuracies are higher.
5.2 Contribution Score Computation

The second use case we envisioned for QI is contribution
score computation. The holy grail of this sub-discipline
is the Shapley value [27], which is exponentially hard to
compute, as besides the individual information, it requires
information about all potential coalitions of participants.
Thus, many approximation methods exist (e.g., [28], [15].
Yet, all methods assume explicit access to the individual
datasets or the corresponding gradients, which is not pos-
sible with SA. Consequently, there exists no contribution
scoring mechanism which could be considered as a relevant
baseline for QI.
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(a) The round-wise accuracy of the trained models with various
weights. Left - CNN, right - MLP, top - MNIST with 5 and 25
participants, bottom - CIFAR with 100 participants.

(b) Spearman coefficient of QI and the leave-one-out method for
the 12 scenarios.

Fig. 3: QI application scenarios.

According to [29], payment distribution based on the
Shapley value is optimal for our IID setting. Moreover, the
federated leave-one-out method (LO) method approximates
the Federated Shapley value well in this case [15]. Although
LO does need individual information (hence, not applicable
with SA), we compare our method to it, as it only utilizes
each individual gradient once (to obtain the grand coalition
minus that participant).

The Spearman coefficients of the ordering based on QI
and LO are presented in Figure 3b. As expected, LO is su-
perior to QI, as it operates on individual information, which
is by-design avoided by QI. What is somewhat surprising is
that LO (benefiting from individual gradients) also struggles
with reconstructing the quality-wise ordering perfectly. This
suggest that separating participants with different label
qualities is indeed a challenging task; given the restricted
information setting, QI performs reasonably well.

5.3 Misbehaviour Detection
Another potential application of QI is misbehavior de-

tection. It is a notoriously hard task even without SA [30].
At the time of writing we are not aware of any work tackling
this problem in the SA setting.

Here we consider both malicious attackers and free-
riders. Their goal is either to decrease the accuracy of the

Setup Attacker MM MC CM CC
5/2/1 p-value 2.0e-20 3.5e-37 8.3e-58 5.4e-84
T-Test Stat 16.4 17.7 21.9 27.0

25/5/2 p-value 6.8e-06 1.9e-10 1.1e-14 6.0e-27
�2-Test Stat 38.3 62.0 83.3 146.0

100/10/5 p-value 8.6e-03 1.2e-03 1.7e-07 1.1e-08
KS-Test Stat 0.25 0.17 0.19 0.18
Setup Free-Rider MM MC CM CC
5/2/1 p-value 3.7e-21 1.6e-42 4.3e-69 5.1e-98
T-Test Stat 12.3 18.1 24.0 29.5

25/5/2 p-value 7.7e-03 7.5e-12 7.0e-17 6.1e-39
�2-Test Stat 20.8 69.1 96.8 203.5

100/10/5 p-value 9.0e-02 2.0e-05 3.6e-07 4.8e-14
KS-Test Stat 0.13 0.18 0.17 0.21

TABLE 1: Statistics and p-values of the selected scenarios:
X/Y/Z mean number of participants, number of round-wise
selected participants, and number of cheaters, respectively.
It is clear, that the hypothesis “the scores of honest and
cheating participants are similar” (e.g., having the same
mean for the Student T-Test, having the same frequencies for
the �2-Test, and coming from the same distribution for the
Kolmogorov-Smirnov Test) is rejected with high confidence.

aggregated model, or to benefit from the aggregated model
without contributing, respectively. We do not scramble the
labels of honest participants, and simulate attackers by
computing the additive inverse of the correct gradients,
while we use zero as the gradient for free-riders. These are
naive but stealthy strategies owing to SA. With this use case,
our goal is not to propose a defense against SotA attackers,
but rather to demonstrate the usability of QI besides label
quality inference. Note that QI also shows promise for being
applicable to determine other quality disparities among
participants.

We studied the score of the honest and malicious par-
ticipants; the average values for the selected scenarios are
presented in Table 1; the rest can be found in the Appendix
(Table 2). We also run various statistical tests to determine
whether there is any difference between the honest and
malicious participant’s scores. Table 1 contains highlighted
results, while the rest is presented in the Appendix (Table
5, 6, 7, 8, and 9). The tests concluded unanimously that the
two score distributions are different, thus, QI is capable of
correctly flagging dishonest participants. Besides the score
differences we also studied the inferred position of a single
cheater, which is always in the bottom half (see Fig. 5 in the
Appendix).

6 RELATED WORK

In this section, we briefly present related research efforts,
including but not limited to data quality scoring mech-
anisms and well-known privacy attacks against machine
learning. The theoretical analysis of QI does relate to [31] as
attempting to reconstruct the dataset quality order is similar
to reconstructing the entire dataset based on query outputs.

6.1 Participant Scoring

Simple but effective scoring rules are prevalent in com-
plex ICT-based systems, especially characterizing quality.
For instance, binary or counting signals can be utilized to
i) steer peer-to-peer systems measuring the trustworthiness
of peers [32], ii) assess and promote content in social media
[33], iii) ensure the proper natural selection of products in
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online marketplaces [34], and iv) select trustworthy clients
via simple credit scoring mechanisms [35].

There exist free-rider detection mechanisms for collabo-
rative learning [36], [37]. In contrast, [38] proposes an online
evaluation method that defines each participant’s impact
based on the current and the previous rounds. Although
their goal is similar to ours, we consider SA being utilized,
while neither of the above mechanisms is applicable in such
a case. A disaggregation technique is presented in [39],
which reconstructs the participation matrix by simulating
the same round several times with different participants.
Instead, we assume such participation information to be
available, and emulate the training rounds by properly
updating the model.

Accuracy boosting by participant weighting is consid-
ered in [40] where the weights are determined by the un-
derlying data quality calculated via the cross-entropy of the
local model predictions. These experiments consider only
five participants and two quality classes (fully correct or
incorrect); we study fine-grained quality levels with larger
sets of participants. A similar method was utilized in an SA
setting in [41] using homomorphic encryption. In contrast,
our method does not require any cryptographic primitive
and can be utilized on top of any federated learning proto-
col.

We naively assume that data quality is directly related to
the noise present in the labels. Naturally, this is a simplifica-
tion: there is an entire computer science discipline devoted
to data quality [14].

Authors of [42] listed several incentive mechanisms for
contribution computation in FL (which can be interpreted as
data quality). A pertinent notion is the Shapley value [27],
which was designed to allocate goods to players proportion-
ally to their contributions. A high-level summary of the role
of the Shapley value within ML is presented in [43]. The
main drawback of the Shapley value is its exponential com-
putational requirement, which makes it unfeasible in most
scenarios. Several approximation methods were proposed
in the literature using sampling [44], gradients [28] and
influence functions [45]. Although some are promising (e.g.,
the conceptual idea in [46]), all previous methods assume
explicit access to either the datasets or the corresponding
gradients. Consequently, these methods are not applicable
when SA is enabled during FL. QI can be considered as the
first step towards a contribution score when no information
on individual datasets is available.

6.2 Privacy Attacks

There are several indirect threats against FL models.
These could be categorized into model inference [5], mem-
bership inference [6], parameter inference [8], and property
inference [9]. QI could be considered as an instance of the
last. Source inference [47] is also such an attack, which
could tie the extracted information to specific participants of
FL. However, it does not work with SA. Another property
inference attack is the quantity composition attack [48],
which aims at inferring the proportion of training labels
among the participants in FL. This attack is successful even
under SA protocols or DP. In contrast to our work, the paper
focuses on inferring the distributions of the non-IID datasets
while we aim to recover the relative quality information

on IID datasets. Finally, [49] also attempts to explore user-
level privacy leakage within FL. Similarly to our work,
the attack defines client-dependent properties, which then
can be used to distinguish the clients from one another.
The authors assume an active malicious server utilizing a
computationally heavy GAN for the attack, which is the
exact opposite of our honest-but-curious setup with limited
computational power.
6.3 Privacy Defenses

QI can be considered as a property inference attack;
hence, naturally, it can be “mitigated” via client-level DP
[25]. Moreover, as we simulate different dataset qualities
with the amount of added noise, we want to prevent the
leakage of the added noise volume. Consequently, this
problem relates to private privacy parameter selection, as
label perturbation [50] (which we use to mimic different
dataset quality levels) is one technique for achieving DP
[10]. Although some works set the privacy parameter using
economic incentives [1], we are not aware of any research
considering defining the privacy parameter itself also pri-
vately.

7 CONCLUSION

Federated learning is the most popular collaborative
learning framework, wherein each round only a subset of
participants updates a joint machine learning model. Forti-
fied with secure aggregation, only aggregated information
is learned both by the participants and the server. Yet,
in this paper, we devised a simple set of quality scoring
rules that successfully recover the relative ordering of the
participant’s dataset qualities (measured by perturbed label
ratio). Besides a small representative dataset to evaluate
the improvement of the model after each aggregation, our
method neither requires any computational power nor back-
ground information.

Through a series of image recognition experiments, we
showed that it is possible to restore the relative ordering
based on label quality with reasonably high accuracy. Our
experiments also revealed a connection between the accu-
racy of the quality inference and both the complexity of the
task and the used architecture. Moreover, we performed an
ablation study suggesting that the original rules are near op-
timal. Lastly, we demonstrated how quality inference could
i) boost training efficiency by weighting the participants,
ii) yield an operational contribution metric, and iii) detect
misbehaving participants based on their quality scores.
Limitations and Future Work

This paper has barely scratched the surface of quality
inference based only on aggregated updates. We foresee
multiple avenues towards improving and extending this
work, e.g., using machine learning techniques to replace our
naive rules by relaxing the attacker constraints concerning
computational power and background knowledge. In the
early rounds, selecting the participants in a non-random
manner similar to [51] could also be beneficial.

For clarity, we have restricted our experiments to visual
recognition tasks with noisy labels as the measure of data
quality. Although we expect our results to generalize well
to other domains, we leave further experiments as future
work. Finally, the personal data protection implications of
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the information leakage caused by quality inference is also
of interest: should such quality information be considered
private, and, consequently, should it fall under data protec-
tion regulations such as the GDPR? This issue has significant
practical relevance to federated learning platforms already
in operation.
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