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Most governments employ a set of quasi-standard mea-
sures to fight COVID-19 including social distancing,
wearing masks, and vaccination. However, combin-
ing these measures into an efficient holistic pandemic
response instrument is even more involved than antic-
ipated. We argue that some non-trivial factors behind
the varying effectiveness of these measures are selfish
decision-making and the differing national implemen-
tations of the response mechanism. In this chapter,
through simple models, we show the effect of individ-
ual incentives on the decisions made with respect to
social distancing, mask wearing, and vaccination. We
shed light how these may result in sub-optimal out-
comes and demonstrate the responsibility of national
authorities in designing these games properly regard-
ing data transparency, the chosen policies and their
influence on the preferred outcome. We promote a
mechanism design approach: it is in the best interest
of every government to carefully balance social good
and response costs when implementing their respec-
tive pandemic response mechanism; moreover, there
is no one-size-fits-all blueprint when designing an ef-
fective solution.
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9.1 Introduction

The current coronavirus pandemic is pushing individuals, businesses and gov-
ernments to the limit. Even with the recently emerged hope of rapidly developed
vaccines, people still suffer owing to reduced mobility, social life and income;
complete business sectors face an almost 100 per cent drop in revenue; and
governments are scrambling to find out when and how to impose and remove
restrictions. In fact, COVID-19 has turned the whole planet into a ‘living lab’
for human and social behavior where feedback on response measures deployed is
only delayed by around two weeks (the incubation period). From the 24/7 me-
dia coverage, all of us have been introduced to a set of quasi-standard measures
applied by national and local authorities, including social distancing, wearing
masks, vaccination, virus testing, contact tracing, and so on. It is also clear that
different countries have had different levels of success employing these measures
as evidenced by the varying normalized death tolls and confirmed cases.1

We believe that apart from the intuitive (e.g., genetic differences, medical
infrastructure availability, hesitancy, etc.), there are two significant factors that
have not received enough attention. First, the individual incentives of citizens,
e.g., ‘is it worth more for me to stay home than to meet my friend?’, have a
significant say in every decision situation. While some of those incentives can
be inherent to personality type, clearly, there is a non-negligible rational as-
pect to it, where individuals are looking to maximize their own utility. Second,
countries have differed in their specific implementation of response measures,
e.g., providing extra unemployment benefits (affecting the likelihood of proper
self-imposed social distancing), whether they have been distributing free masks
(affecting the efficacy of mask wearing in case of equipment shortage), or reg-
ulating the amount of accepted vaccines (affecting the speed of reaching herd-
immunity). Framing pandemic response as a mechanism design problem, i.e.,
architecting a complex response mechanism with a preferred outcome in mind,
can shed light on these factors. What’s more, it has the potential to help au-
thorities (mechanism designers) fight the pandemic efficiently. The objective of
this chapter is to show that both individual incentives and the actual design
and implementation of the holistic pandemic response mechanism can have a
major effect on how (ongoing and future) pandemics are going to play out.

Contribution. In this chapter we model decision situations during a pan-
demic using game theory where participants are rational, and the proper design
of the games could be the difference between life and death. This chapter is a
focused version of [1], which is an extension of [2]. Our main contribution is two-
fold: we elaborate on several basic decision models of social distancing, mask
wearing, and vaccination, and present a pandemic mechanism design viewpoint,
in which all of these games are only sub-mechanisms of the bigger picture.

For social distancing, using current COVID-19 statistics we show that going
out is only rational when it corresponds to either a huge benefit or staying home
results in a significant loss, and we determine the optimal duration (or meeting
size) of such an out-of-home activity. We also present a game corresponding
to mask wearing and introduce several decision models concerning vaccination,
so we can detail pandemic response from a mechanism design perspective. We
show that different government policies influence the outcome of these games

1Johns Hopkins Coronavirus Resource Center. https://coronavirus.jhu.edu/map.html
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profoundly, and the standalone response measures of the sub-mechanisms are
interdependent.

Organization. The chapter is structured as follows. In the remaining of this
section we recap some concepts of game theory we use throughout this chapter.
In Section 9.2, we briefly describe related work. In Section 9.3, we develop and
analyse the Distancing Game which includes the effects of meeting duration (or
size). In Section 9.4, we sketch the two player Mask Game, while in Section 9.5
we introduce several decision models focusing on various aspects of vaccines.
In Section 9.6, we frame pandemic response as a mechanism design problem
using the introduced models. Finally, in Section 9.7, we outline future work and
conclude the chapter.

Preliminaries

Here we shortly elaborate on the main game theoretical notions used in this
paper, to facilitate the conceptual understanding of the implications of our
results.

Game Theory. Game theory [3] is ‘the study of mathematical models of
conflict between intelligent, rational decision-makers’. Almost any multi-party
interaction can be modeled as a game. In relation to COVID-19, decision-makers
could be individuals (e.g., whether to wear a mask), municipalities (e.g., whether
to enforce wide-range testing within the city), governments (e.g., whether to
apply contact tracing within the country), or companies (e.g., whether to apply
social distancing within the workplace). Potential decisions are referred to as
strategies; decision-makers (players) choose their strategies rationally so as to
maximize their own utility.

Rationality. Note that rational (in a game-theoretical context) does not nec-
essarily mean fully and objectively informed, i.e., individuals will make their
decisions based on the perceived utility of their actions. Such a decision can
even go against scientifically proven best practices, resulting in refusing vac-
cination or partying carelessly. Naturally, more realistic behavioral modelling
(e.g., bounded rationality, unpredictability and a large number of proven behav-
ioral biases [4]) delves deeper into the human decision-making process. However,
the simple decision models in this paper serve more of a demonstrative purpose,
illustrating i) how (selfish) individual decisions perturb society-level behavior,
and ii) how central mechanism design decisions influence the outcome of such
models.

Nash Equilibrium. The Nash Equilibrium (NE)—arguably the most famous
solution concept—is a set of strategies where each player’s strategy is a best
response strategy. This means every player makes the best/optimal decision
for itself as long as the others’ choices remain unchanged. NE provides a way
of predicting what will happen if several entities are making decisions at the
same time where the outcome also depends on the decisions of the others. The
existence of a NE means that no player will gain more by unilaterally changing
its strategy at this unique state.

Social Optimum. Another game-theoretic concept is the Social Optimum
(SO), which is a set of strategies that maximizes social welfare. Note, that
despite the fact that no one can do better by changing strategy, NEs are not
necessarily Social Optima (we refer the reader to the famous example of the
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Prisoner’s Dilemma [3]). In fact, it is well-studied in game theory how much
a distributed outcome (e.g., a NE) is worse than a centrally-planned optimum
(e.g., SO); this ratio is captured by the Price of Anarchy [5] and by the Price of
Stability [6].

Mechanism Design. If one knows the NE they prefer as the outcome of a
game, e.g., everybody following social distancing guidlines, and they have the
power to instantiate the game accordingly, i.e., fixing the structure, game flow
and any free parameters, then we talk about mechanism design [7]. In a way,
mechanism design is the inverse of game theory; although a significant share
of efforts within this field deals with auctions, mechanism design is a much
broader term applicable to any multi-stakeholder mechanism, (e.g., optimal or-
gan matching for transplantation, school-student allocation or, in fact, pandemic
response), aimed at achieving a preferred steady state result.

9.2 Related Work

In this section we review some well-known and/or recent epidemic response
mechanisms and game-theoretic works in relation to social distancing, masks,
vaccination, and pandemics in general. A comprehensive systematic literature
review on COVID-19 can be found in [8, 9].

Concerning social distancing, [10, 11] aim to provide a comprehensive survey
on how emerging technologies, e.g., wireless and networking, artificial intelli-
gence (AI) can enable, encourage, and enforce social distancing practice.

Game-Theoretic Models. In the intersection of epidemics and game theory
a comprehensive survey were carried out in [12, 13]. Behavioral changes of peo-
ple caused by a pandemic and, specifically, COVID-19 were studied in [14, 15],
respectively. Others focused on the mobility habits of people travelling between
areas affected unevenly by the disease [16]. The authors of [17] took a closer
look through the lens of game theory on the effect of self-quarantine on virus
spreading. In [18] an optimization problem was formalized by accommodating
both isolation and social distancing. Concerning the latter, the authors of [19]
considered an approach to schedule the visitors of a facility based on their impor-
tance. The impact of social distancing was also studied in [20] in combination
with vaccines.

Several other studies also focused on how the availability of vaccines affects
human behaviour. For instance in [21] the authors studied personal vaccina-
tion preferences and concluded that vaccine delayers relied on herd immunity
and vaccine safety information generated by early vaccinators. Another study
concerning this vaccination dilemma proposed a model with incentives for indi-
viduals to choose the prevention strategy according to risks and expenses in the
epidemic campaign [22]. Similarly, researchers in [23] showed the optimal use of
anti-viral treatment by individuals when they took into account the direct and
indirect costs of treatment.

The Centers for Disease Control and Prevention (CDC) created a policy
review of social distancing measures for pandemic influenza in non-healthcare
settings [24]. They identified measures to reduce community influenza transmis-
sion such as isolating the sick, tracing contacts, quarantining exposed people,
closing down schools, changing workplace habits, avoiding crowds, and restrict-
ing movement. The impact of several of these (and wearing masks) was studied
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in [25], where authors used agent-based modelling for the pandemic, simulating
actions of people, businesses and the government. Other researchers demon-
strated that early school and workplace closures and the restriction of inter-
national travel are independently associated with reduced national COVID-19
mortality [26]. On the other hand, lock-down procedures could have a devas-
tating impact on the economy. This was studied in [27] with a modified SIR
model and time-dependent infection rate. The authors found that, surprisingly,
in spite of the economic cost of the loss of workforce and incurred medical ex-
penses, the optimum point for the entire course of the pandemic is to keep the
strict lock-down as long as possible. Finally, the authors in [28] designed and
analysed a multi-level game-theoretic model of hierarchical policy making, in-
spired by policy responses to the COVID-19 pandemic. Taking the step towards
making such policies explicit, the same authors have developed a novel class of
games and their respective analytic solution framework in [29].

As detailed above, related work has mostly studied narrowly focused specifics
of epidemic modelling such as the intricate behaviour of individuals in relation
with vaccines, or the preferred actions of mechanism designers such as health-
care system operators. In contrast, our work takes a step back, and focuses
on the big picture: we model decision situations during a pandemic as games
with rational participants, and promote the proper design of these games. We
highlight the responsibility of mechanism designers such as national authorities
in constructing these games properly with adequately chosen policies, taking
into account their interdependent nature.

9.3 The Distancing Game

One of the most important concepts which got widespread due to the ongo-
ing COVID-19 pandemic is social distancing. By definition it is a set of non-
pharmaceutical interventions or measures intended to prevent the spread of a
contagious disease, hence it is the first line of defence against SARS-CoV-2. Such
measures influence the self-determination of individuals, restricting the freedom
of mobility, minimizing social interactions outside ones’ household, and poten-
tially, threatening the livelihood of (dominantly) low-income families. Therefore,
it is imperative to understand why people do or do not comply with social dis-
tancing measures, especially when strict enforcement is a (prohibitively) costly
option. We study the incentives underlying the (non-)compliance of individ-
uals via game-theoretical models. To improve readability, we summarize all
corresponding parameters and variables in Table 9.1.

Variable Meaning

C Cost of staying home
B Benefit of going out
m Mortality rate
L Value of Life
ρ Probability of infection
t Time duration

Table 9.1: Parameters of the Distancing Games
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9.3.1 Basic Distancing Game

We represent the cost of going out with ρ ·m ·L, i.e., the probability of getting
infected (i.e., the infection rate) multiplied with the mortality rate of the disease
and with the player’s evaluation about her own life.2 Besides the risk of getting
infected, going out and attending a meeting could benefit the player, denoted as
B. In parallel to the benefit of a meeting, there is also a cost for staying home
or missing a meeting, denoted as C. Of course, there are other alternative ways
to capture the benefits and the cost of social distancing [30], but this simple
utility function suffices for demonstration purposes.

Definition 9.1. The Distancing Game is a tuple 〈N ,Σ,U〉, where the set of
players is N = {1, 2}, and their actions are Σ = {go, stay}. The utility func-
tions U = {u1, u2} are presented as a payoff matrix in Table 9.2.

go stay
go [B − ρ ·m · L,B − ρ ·m · L] [−ρ ·m · L− C,−C]

stay [−C,−ρ ·m · L− C] [−C,−C]

Table 9.2: Payoff matrix of the Distancing Game

Theorem 9.1. A trivial Nash Equilibrium of the Distancing Game is (stay,
stay), On the other hand (go, go) is also a NE if ρ ·m · L < B + C. If this
condition holds than (go, go) is also the Social Optimum, otherwise it is (stay,
stay).

Proof. The strategy vector (stay, stay) is clearly a NE since no player have
incentive to deviate from it (because −C > −ρ ·m ·L−C). (stay, stay) could
be a NE as well if the same is true, however, the corresponding condition does
not hold trivially except when −C < B − ρ · m · L which is equivalent with
ρ ·m · L < B + C. This inequality (if true) also implies that the total payoff is
greatest at (go, go), but if it is false than (stay, stay) is the SO.

Above we focused on analysing the pure-strategy Nash Equilibrium (e.g.,
either use or no), however, it is possible that the game also has mixed-strategy
Nash Equilibria (i.e., go with probability ϕ and stay with probability (1−ϕ)),
which may lead to a utility increase [31]. These randomized strategies could also
be easily calculated; we leave these calculations to the interested readers. We
also defined this game as symmetric, however, one can easily adapt the analysis
to an asymmetric payoff structure (i.e., B1, B2, C1 and C2, instead of B and
C).

Example 9.1. For instance, should a rational American citizen (e.g., Alice)
meet Bob based on how much they value their lives? We estimate3 m = 0.0225,

because 0.021 ≈ #{deceased}
#{all cases} < m < #{deceased}

#{closed cases} ≈ 0.024 and ρ = 0.0025 as

ρ ≈ #{active cases}
#{population} ≈ 0.0025.

2This is an optimistic approximation, as besides dying, the infection could impose other
tolls on a player.

3Data from https://www.worldometers.info/coronavirus/ (accessed 30th April, 2021)
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Using these values, Alice should go out only if she values her life less than
17777(= 1

0.0225·0.0025 ) times the sum of the benefit of the meeting and the loss of
missing out. According to [32], the value of a statistical life in the US was 9.2
million USD in 2013, which is equivalent to 11.7 million USD in 2021 (adjusted
for inflation with a 0.3% rate). This means that Alice should only meet someone
if the benefit of the meeting plus the cost of missing it would amount to more
than 658 USD (= 11.7M

17777 ).

9.3.2 Extended Distancing Game

One way to improve the above model is by introducing meeting duration.4 Leav-
ing our disinfected home during a pandemic is risky, and this risk grows with
the time spent in a crowd. In the original model, we captured the infection
probability with ρ = 1− (1− ρ). This ratio increases to 1− (1− ρ)t for time t.
We leave the interpretation of unit time to the reader. Moreover, the benefit of
attending a meeting should depend on this new parameter, as well as the cost
of isolation. For instance, staying home for a longer period might cause anxiety,
which could get worse over time (i.e., increasing the cost) [33]; on the other
hand, spending longer quality time with someone could significantly boost the
experience (i.e., increase the benefit).

Definition 9.2. The Extended Distancing Game is a tuple 〈N ,Σ,U〉, where the
set of players is N = {1, 2} and their actions are Σ = {go, stay}. The utility
functions U = {u1, u2} are presented in Equation (9.1).

u(stay) =− C(t)

u(go) =

{
B(t)− (1− (1− ρ)t) ·m · L if other plays go
−(1− (1− ρ)t) ·m · L− C(t) if other plays stay

(9.1)

A direct consequence of this extension is that the structure of the Distancing
Game remained unchanged, hence, the two games share the same NEs.

Corollary 9.1. Similarly to the basic Distancing Game, the Extended Distanc-
ing Game have the same trivial NEs (stay, stay) and (go, go) if (1− (1−ρ)t) ·
m · L < B(t) + C(t). If this condition holds than (go, go) is also the Social
Optimum, otherwise it is (stay, stay).

Example 9.2. In Figure 9.1, we illustrate the payoffs for several polynomial
benefit functions (e.g., B(t) = {t2, t3, t4}) and a cost function C(t) = t2. The
rest of the parameters are defined as before, i.e., ρ = 0.0025, m = 0.0225, and
L = 11, 700, 000. It is visible that the change of the cost is insignificant compared
to the benefit, consequently the illustration and the reasoning would be similar if
C would be linear or constant. It is visible that for small t (stay, stay) is the
SO as the utility is higher. On the other hand, as t grows (go, go) becomes the
SO. Another clearly visible take-away message is that the threshold of t where
the SO changes is lower as the benefit is higher.

4We capture the duration of the meeting equivalently to how meeting size can be modelled,
hence all our arguments about meeting duration could easily be adapted to optimal meeting
size.
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Figure 9.1: Illustrating the payoffs of the NEs (stay, stay) and (go, go) for
the Extended Distancing Game with parameters B = {t2, t3, t4}, C(t) = t2,
m = 0.0225, ρ = 0.0025, and L = 11, 700, 000

9.4 The Mask Game
Another visible effect most people has experienced during the current COVID-
19 pandemic is masks: before, their usage was mostly limited to some Asian
countries, hospitals, constructions, and banks (in case of a robbery). Nowadays
an unprecedented spreading of mask-wearing can be seen around the globe.
Policies have been implemented to enforce their usage in some places, but in
general, it has been up to the individuals to decide whether to wear a mask or
not, based on their own risk assessment. In this section, we model this decision
situation via game theory: we introduce a simple5 Mask Game to be played
in sequence with the previously introduced Distancing Game: once a player
decided to meet up with friends she can decide whether to wear a mask for the
meeting by playing the Mask Game. We assume that there are several types of
masks, providing different levels of protection.

• No corresponds to the behavior of using no masks during the COVID-19
(or any) pandemic. Its cost is consequently zero; however, it does not offer
any protection against the virus.

• Out is the most widely used mask (e.g., cloth mask or surgical mask).
They are meant to protect the environment of the individual using it.
They work by filtering out droplets when coughing, sneezing or simply
talking, therefore they limit the spreading of the virus. They do not
protect the wearer itself against an airborne virus. The cost of deciding
for this protection type is noted as Cout > 0.

• In is the most protective prevention gear designed for medical professionals
(e.g., FFP2 or FFP3 mask with valves). Valves make it easier to wear the
mask for a sustained period of time, and prevent condensation inside the
mask. They filter out airborne viruses while breathing in; however, the
valved design means they do not filter the while air breathing out. The
cost of this protection type is Cin > Cout.

Besides which mask they use (i.e., the available strategies), the players are
either susceptible or infected, i.e., we are using a basic SI model. Being infected
has some undesired effects; hence, we model it by adding a cost Ci to these

5The interested reader can follow up on the various extensions of this basic game in [1].
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Variable Meaning

Cout Cost of playing out
Cin Cost of playing in
Ci Cost of being infected
Cuse Cost of playing use

Table 9.3: Parameters of the various Mask Games

players’ utility (which is magnitudes higher than cost of wearing any mask, i.e.,
Ci � Cin > Cout). Consequently, in the Mask Game we minimized the costs
instead of maximize the payoff as with the Distancing Game. We summarize all
the parameters and variables used for the Mask Game in Table 9.3. Using these
states and masks, we can present the basic game’s payoffs where two players
with known health status meet, and decide which mask to use.

Definition 9.3. The basic Mask Game is a tuple 〈N ,Σ,U〉, where the set of
players is N = {1, 2} and their actions are Σ = {no, in,out}. The utility func-
tions U = {u1, u2} are presented as a cost matrix in Table 9.4. In details, Table
9.4a corresponds to the case when both players are susceptible, while Table 9.4b
corresponds to the case when one player is infected while the other is susceptible.
Note that when both players are infected, the payoff matrix would be as when
both are susceptible, with an additive constant cost Ci.

no out in
no [0, 0] [0, Cout] [0, Cin]
out [Cout, 0] [Cout, Cout] [Cout, Cin]
in [Cin, 0] [Cin, Cout] [Cin, Cin]

(a) Payoff matrix when both players are susceptible

no out in
no [Ci, Ci] [0, Cout + Ci] [Ci, Cin + Ci]
out [Cout + Ci, Ci] [Cout, Cout + Ci] [Cout + Ci, Cin + Ci]
in [Cin, Ci] [Cin, Cout + Ci] [Cin, Cin + Ci]

(b) Payoff matrix when exactly one player is susceptible

Table 9.4: Payoff matrices of the Mask Game

Theorem 9.2. When perfect knowledge is available about the states of the play-
ers, then if both players are of the same type, both the pure strategy Nash Equi-
librium and the Social Optimum of the Mask Game are (no, no); while if exactly
one is susceptible (e.g., player 1) then the NE is (in, no) and the SO is (no,
out).

Proof. From Table 9.4a it is trivial that both players’ cost is minimal when they
do not use any masks, i.e., the Nash Equilibrium of the game when both players
are susceptible is (no, no). This is also the social optimum, meaning that the
players’ aggregated cost is minimal. The same holds in case both players are
infected, as this only adds a constant Ci to the payoff matrix.
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When only one of the players is susceptible as represented in Table 9.4b,
using no mask is a dominant strategy for the infected player6, since it is a best
response, independently of the susceptible player’s action. Consequently, the
best option for the susceptible player is in, i.e., the NE is (in, no). On the
other hand, the social optimum is different: (no, out) would incur the least
burden on the society since Cout << Cin.

In social optimum, susceptible players would benefit, through a positive ex-
ternality, from an action that would impose a cost on infected players; therefore
it is not a likely outcome. In fact, such a setting is common in man-made
distributed systems, especially in the context of cybersecurity. A well-fitting
parallel is defence against Distributed Denial of Service Attacks (DDoS) at-
tacks [34]: although it would be much more efficient to filter malicious traffic at
the source (i.e., out), Internet Service Providers rather filter at the target (i.e.,
in) owing to a rational fear of free-riding by others.

9.5 Vaccination Models
The most recent virus spreading prevention mechanism against the COVID-19
is vaccination. Since researching and developing a vaccine takes time, it could
not be utilized as rapidly as the rest of the techniques detailed in this work (e.g.,
social distancing and masks). On the other hand, this protection mechanism
is considered to be the most efficient and has proven its strength several times
in the past [35]. Concerning the rapidly developed COVID-19 vaccines, most
governments and international organizations agree that all vaccines are safe to
use and protect (to an extent) against COVID-19 for the general population.
Yet, there are various aspects in which these vaccines differ, so individuals could
have preferences.

Here, we introduce several optimization models, where—in contrast to mul-
tiplayer games—the utility of an individual does not depend on other players’
actions.7 The decision we model originates from the choice among multiple
specific vaccines. Instead of focusing on whether to be vaccinated or not, as
several previous works [21, 22, 23] did, we compare two hypothetical vaccines,
differing along 6 different dimensions as summarized in Table 9.5. Technology
refers to the working mechanism of the vaccine (e.g., using dead/weakened virus,
mRNS, etc) [36]. Availability means the point in time when the vaccines are
at the actual disposal of individual decision-makers. It is reasonably expected
that vaccines based on traditional technologies could be mass manufactured

6Note that the payoffs does not take into account the legal consequences
of a deliberate infection such as in https://www.theverge.com/2020/4/7/21211992/

coughing-coronavirus-arrest-hiv-public-health-safety-crime-spread.
7The interested reader can see a game-theoretic extension of these basic decision models

in [1].

Tech Availability Side-Effect Efficiency Duration Usability
α old now no low long limited
β new soon maybe high short wide

Table 9.5: The two vaccines and their properties: Technology, Availability, Side-
Effect, Efficiency, Duration, and Usability
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and transported with ease, while vaccines based on new technologies could be
delayed for many reasons [37]. A similar difference corresponds to the poten-
tial side-effect : vaccines based on older technologies were utilized in the past
around the globe, hence the rare side-effects are either known or non-existing.
On the other hand, side-effects concerning modern vaccines are only based on
tests with a limited number of participants [38]. The efficiency and duration
of the vaccines (e.g., the probability of mitigating the severe consequences of
an infection and the length of the response of the body triggered by the vac-
cine, respectively) also differ, favouring the newer technology [39]. Finally, the
usability of a vaccine refers to the portion of individuals who could/should get
it, e.g., there are vaccines which were associated with severe side effects which
effects various demographic groups differently [40]. These differences between
the two vaccines considered by the individuals are formalized in Table 9.6 with
the corresponding cost and benefit variables.

In the following optimization models we select 2-3 of the dimensions above,
and present the utility/objective function for which the individuals optimize by
selecting the vaccine with the higher payoff. We do not provide formal theorems
and proofs as the results are trivial corollaries of the exact definitions.

Duration-Efficiency Decision. As defined in Table 9.6a we assume vaccine
α provides protection for duration dα with protection level eα. On the other
hand, we assume that Vaccine β protects for a shorter duration dβ but with a
stronger protection level eβ . This is also illustrated in Figure 9.2a.

Definition 9.4. The Duration-Efficiency decision problem is a tuple 〈Σ,U〉,
where the actions are Σ = {α, β} and the corresponding utility functions U =
{U(α), U(β)} are presented in Equation (9.2):

U(α) =

∫ dα

0

eα dt = eα · dα U(β) =

∫ dβ

0

eβ dt = eβ · dβ (9.2)

It is clear that the optimal decision depends on the exact values of eα, eβ ,
dα, and dβ : if eα ·dα > eβ ·dβ then Vaccine α is the optimal choice, otherwise it
is Vaccine β. For instance if we set eα = 0.76, eβ = 0.95, dα = 49 and dβ = 35
then U(α) ≈ 37 > 33 ≈ U(β).8

8The values used through all our examples within this section are serving only illustrative
purposes and do not correspond to any existing vaccines.

Vaccine α β

Protection Efficiency eα eβ
Effect Duration (time) dα dβ
Availability (from time) 0 t0
Side-effect Probability 0 ε
Benefit of being vaccinated Bα Bβ

(a) Vaccine specific variables

Variable Meaning

Ci Cost of being infected
Cs Cost of the side-effect
p Vaccine preference

(b) Costs & Benefits of the Vaccination
Models

Table 9.6: The parameters concerning the Vaccines and the Vaccination Models
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(a) Duration and effi-
ciency of the vaccines

(b) Availability and effi-
ciency of the vaccines

(c) Availability, duration,
and efficiency of the vac-
cines

Figure 9.2: Illustration of vaccine properties

Availability-Efficiency Decision. Following Table 9.6a we assume Vaccine
α is available now (i.e., at t = 0), but it only provides protection level eα. On
the other hand, Vaccine β will only become available at t0, but with a stronger
protection level eβ . This is also illustrated in Figure 9.2b. Even without taking
the duration into account, we have to introduce time-based discounting for the
utility via the factor δ, as generally treated in the economics literature [41].

Definition 9.5. The Availability-Efficiency decision problem is a tuple 〈Σ,U〉,
where the actions are Σ = {α, β}, and the corresponding utility functions U =
{U(α), U(β)} are presented in Equation (9.3):

U(α) =

∫ ∞
0

eα · δt dt =
−eα
log δ

U(β) =

∫ ∞
t0

eβ · δt dt =
−eβ
log δ

δt0 (9.3)

Again, the optimal decision trivially depends on the exact values of eα, eβ ,
t0, and δ: if eα < eβ · δt0 then Vaccine α is the optimal choice, otherwise it is
Vaccine β. For instance, with eα = 0.76, eβ = 0.95, t0 = 28, and δ = 0.999, the
utilities are U(α) ≈ 1749 and U(β) ≈ 2126, respectively.

Duration-Efficiency-Availability Decision. It is possible to combine the
previous two decision models as illustrated in Figure 9.2c.

Definition 9.6. The Duration-Efficiency-Availability decision problem is a tu-
ple 〈Σ,U〉, where the actions are Σ = {α, β}, and the corresponding utility
functions U = {U(α), U(β)} are presented in Equation (9.4):

U(α) =

∫ dα

0

eα · δt dt = (δdα − 1) · eα
log(δ)

U(β) =

∫ t0+dβ

t0

eβ · δt dt = (δdβ − 1) · δt0 · eβ
log(δ)

(9.4)

The optimal decision depends on the exact values of eα, eβ , dα, dβ , t0, and δ:

if eα
eβ
· δt0 > δdα−1

δdβ−1
then Vaccine α is the optimal choice, otherwise it is Vaccine

β. For instance, with eα = 0.76, eβ = 0.95, dα = 49, dβ = 35, t0 = 28, and
δ = 0.999, the utilities are U(α) ≈ 84 and U(β) ≈ 73, respectively.
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Side-Effect Decision. Suppose Vaccine α is based on a traditional vaccina-
tion technology, hence, it provides protection level eα with a negligible risk of
any undesired side-effect. On the other hand, Vaccine β is a product of the most
advanced technological improvements, consequently, it offers a stronger protec-
tion level eβ but with a small likelihood ε of serious undesired consequences.
In the following, instead of defining the utility purely based on the vaccine pa-
rameters as previously, we utilize explicit costs and benefits variables. Bα and
Bβ are the benefits of the corresponding vaccines. These might differ due to
regional diversity of acceptance: one could be accepted worldwide, while the
other may be accepted by only specific national authorities. Concerning the
costs we capture the cost of infection with Ci while Cs corresponds to the cost
of the side-effect wich occures with probability ε. We assume the individual is
exposed to the virus, hence non-efficient protection correspond to infection.

Definition 9.7. The Side-Effect decision problem is a tuple 〈Σ,U〉, where the
actions are Σ = {α, β}, and the corresponding utility functions U = {U(α), U(β)}
are presented in Equation (9.5):

U(α) = Bα − (1− eα) · Ci U(β) = Bβ − (1− eβ) · Ci − ε · Cs (9.5)

The optimal decision depends on the exact values of eα, eβ , Bα, Bβ , Ci,
and Cs: if Bβ − Bα > ε · Cs − (eβ − eα) · Ci then Vaccine α is the optimal
choice, otherwise it is Vaccine β. For instance, with eα = 0.76, eβ = 0.95,
bα = bβ = 100, Ci = Cs = 1000, and ε = 0.001, the utilities are U(α) ≈ −140
and U(β) ≈ 49, respectively.

9.6 Pandemic Mechanism Design

The three counter-COVID mechanisms (social distancing, mask wearing, vac-
cination)modeled above are only parts of the bigger picture. Here we analyse
the impact of specific policies on data transparency, social distancing, mask
wearing, testing and contact tracing, and vaccination.

9.6.1 The Government as Mechanism Designer

We refer to the collection (and interplay) of measures implemented by a spe-
cific government fighting the epidemic in their respective country as mechanism.
Consequently, decisions made with regard to this mechanism constitutes mech-
anism design [7]. In its broader interpretation, mechanism design theory seeks
to study mechanisms achieving a particular preferred outcome. Desirable out-
comes are usually optimal either from a social aspect or maximising a different
objective function of the designer.

In the context of the coronavirus pandemic, the immediate response mecha-
nism is composed of, e.g., social distancing, wearing a mask, testing and contact
tracing, among others, followed by vaccination. Note that this is not an exhaus-
tive list: financial aid, creating extra jobs to accommodate people who have just
lost their jobs, declaring a national emergency and many other conceptual ves-
sels can be utilized as sub-mechanisms by the mechanism designer, i.e., usually,
the government; we do not discuss all of these in detail. Instead, we shed light
on how government policy can affect the sub-mechanisms, how sub-mechanisms
can affect each other and, finally, the outcome of the mechanism itself. We
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illustrate the importance of mechanism design applying different policies to our
three games, and adding testing and contact tracing to the mix.

9.6.2 Data Quality and Transparency

It is well-known that inaccurate reporting of epidemic data can potentially de-
crease the efficacy of forecasting, and thus, response measures [42]. A less un-
derstood aspect of the data quality problem is the deliberate distortion of such
reports. While not specific to handling the COVID-19 situation, a government’s
decision to be fully transparent or to partially conceal information from its cit-
izens could have a profound impact on the success of pandemic response. It is
fairly straightforward to see that if people make their individual decisions based
on deliberately manipulated, coarse-grained or gappy data, the results will be
sub-optimal and, potentially even more detrimental, unpredictable. If there is
no unanimously trusted source of information available, people’s beliefs will be
heterogeneous, as if they were playing different games altogether. As a simple
example, take the Distancing game in Section 9.3: individuals will make their
assessments whether to meet based on ρ, the probability of getting infected. If
media reports on this parameter are altered or varying across different channels,
people may a) meet up when it is not in their best interest, or b) stick to stay-
ing home even if it is no longer sensible. While the detrimental effect of data
concealment seems rather indirect and hard to piece together, there exist quan-
titative reports aiming to shed light on such issues, e.g., on data concealment
and COVID-19 mortality [43].

9.6.3 Social Distancing

Within the Extended Distancing Game in Section 9.3.2, the time parameter t
captures the duration of a meeting. This could have another interpretation as
well, as meeting size could be captured the same way as time. Consequently,
if the government imposes an upper limit T for the size of congregations, this
will put a strict upper bound on the ‘optimal meeting size’ t∗, and the resulting
group size will be min(T, t∗), instantiating a decreased benefit, and, therefore,
promoting staying at home.

Social distancing can be a strong measure in good hands. However, the need
for individual (dis)incentives for adhering to distancing policy is clear; especially,
after the novelty of the pandemic has worn out. Governments and municipalities
could encourage home office, compensate workers whose jobs would demand
physical presence, promote open-air cultural activities, and educate citizens on
the benefits of social distancing. Schools and universities could enforce a hybrid
system, where only half of the students are present physically at the same time,
with weekly (or daily) shifts. Furthermore, indoor venues, such as restaurants,
movie theaters, museums, etc., could restrict their capacity to, e.g., 50% to
enable proper distancing. Each of these policies, when enforced, has an effect
on the outcome of distancing games presented in Section 9.3.

On the other hand, if the chosen restrictive measure is a total lock-down,
both the Distancing Game and the Mask Game are rendered moot, as people
are not allowed to leave their households.

9.6.4 Mask Wearing

If the government declares that wearing a simple mask is mandatory in public
spaces (such as shops, mass transit, etc.), it can enforce an outcome (out, out)
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that is indeed socially better than the NE. The resulting strategy profile is still
not SO, but it i) allocates costs equally among citizens; ii) works well under the
uncertainty of one’s health status; and iii) may decrease the first-order need for
large-scale testing, which in turn reduces the response cost of the government.
By distributing free masks, the government can reduce the effect of selfishness
and, potentially, help citizens who cannot buy or afford masks owing to supply
shortage or unemployment.

9.6.5 Vaccination

By far, vaccination policy is the most complicated and scrutinized among all
sub-mechanisms, owing to its direct relation to control over one’s own body, a
pillar of human rights.

The availability of multiple, high efficacy vaccines enables governments to
contain and suppress the pandemic. It is clear that, even if herd immunity
is never reached, the more people are vaccinated, the less problem COVID-19
will cause in the near future. As mandatory vaccination is not feasible even
in semi-democracies, the design of an efficient carrot-and-stick system is sensi-
ble. Therefore, countries have started to introduce vaccination passports [44],
which give to its holders benefits over their non-vaccinated countrymen, such
as attending indoor venues, mass events like concerts or football matches, and
traveling internationally without continuous testing. Sensibility notwithstand-
ing, even the vaccine passport concept is under heavy legal and ethical scrutiny.
Note, that some EU countries have used many types of vaccines, including ones
developed in China and/or Russia, currently not recognized by the European
Medicines Agency (EMA); citizens who had received such a vaccine are not
entitled to a vaccine passport9.

As vaccines have so far been a scarce resource, government decision on which
vaccines to purchase in what quantities can be crucial. Exacerbated by incom-
plete trial documentation, the lack of trust between countries, being in different
stages of the pandemic, and having greatly varying financial and healthcare
means available, national governments have followed different strategies. In a
country, where the pandemic is fairly well-contained with mild restrictive mea-
sures, playing it safe makes perfect sense.10 However, it is in the best interest of
a country with high mortality and collapsing healthcare to grab any available,
perhaps under-documented or lower efficacy vaccine in significant quantities. In
the latter scenario, there might be 5-6 different types of vaccines in a national
vaccination program.11

Adding to the set of available vaccines, the proposed order of vaccination is
another important control lever. Most implemented policies agree on prioritising
medical staff and emergency first responders, but can differ on prioritising the el-
derly (demographic segment with the highest risk of death/severe symptoms) or
the actively working people (segment with the highest risk of transmission) [45].
Combining this aspect with the individual preference for a certain type of vac-
cine, the part of the population that does not want to be vaccinated, and the
uncertainty of to which extent vaccines prevent transmission, realistically, the
mechanism designer can only aim for an approximately optimal policy design.

9https://www.schengenvisainfo.com/news/all-details-on-eu-covid-19-passport-revealed-
heres-what-you-need-to-know/

10https://www.fhi.no/en/id/vaccines/coronavirus-immunisation-programme/
11https://abouthungary.hu/news-in-brief/coronavirus-heres-the-latest
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Adding to this, the right policy for relaxing restrictive measures as the vaccina-
tion progresses constitutes an issue of its own [45], and has an effect on all the
sub-mechanisms and games mentioned above.

9.6.6 Testing and Contact Tracing

It is clear that the Distancing and the Mask Games are not played in isolation:
people deciding to meet up invoke the decision situation on mask wearing. On
the other hand, so far we have largely ignored two other widespread pandemic
response measures: testing and contact tracing.

With appropriately designed and administered coronavirus tests, medical
personnel can determine two distinct features of the tested individual: i) whether
she is actively infected spreading the virus and ii) whether she has already had
the virus, even if there were no or weak symptoms. (Note that detecting these
two features require different types of tests, able to show the presence of either
the virus RNA or specific antibodies, respectively.) In general, testing enables
both the tested person and the authorities to make more informed decisions.
Putting this into the context of our games, testing reduces the uncertainty,
enables the government to impose mandatory quarantine thereby removing in-
fected players, and identifies individuals who are temporarily immune, and thus,
can be vaccinated at a later stage without imposing greater risk on them.

Even more impactful, mandatory testing (as in Wuhan12) render the situa-
tion to a full information game: it serves as an exogenous ‘health oracle’ impos-
ing no monetary cost on the players. To sum it up, the testing sub-mechanism
outputs results that serve as inputs to the Distancing and Mask Games as well
as to the Vaccination Decision Models.

Naturally, a ‘health oracle’ does not exist: someone has to bear the costs
of testing. From the government’s perspective, mandatory mass testing is ex-
tremely expensive.13 (Similarly, from the concerned individual’s perspective, a
single test might be unaffordable.) Contact tracing, whether traditional or mo-
bile app-based, serves as an important input sub-mechanism to testing [46]. It
identifies the individuals who are likely affected based on spatial proximity, and
inform both them and the authorities about this fact. In game-theoretic terms,
for such players, the benefit of testing outweigh the cost (per capita) with high
probability. From the mechanism designer’s point of view, contact tracing re-
duces the overall testing cost by enabling targeted testing, potentially by orders
of magnitude, without sacrificing proper control of the pandemic. Another po-
tential cost of contact tracing for individuals could be the loss of privacy. Note
that mobile OS manufacturers are working on integrating privacy-preserving
contact tracing into their platform to eliminate adoption costs for installing an
app.14

9.6.7 The Big Picture

As far as pandemic response goes, the mechanism designer has the power to
design and parametrize the games that citizens are playing, taking into account
that sub-mechanisms affect each other. It is vital to observe and profit from

12New York Times. https://www.nytimes.com/2020/05/26/world/asia/

coronavirus-wuhan-tests.html
13But not without precedence, e.g., in Slovakia (https://edition.cnn.com/world/

live-news/coronavirus-pandemic-10-18-20-intl/h_beb93495fe9b83701023eafd5f28e39d)
14Apple. https://covid19.apple.com/contacttracing
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Figure 9.3: Pandemic response mechanism as influenced by government policy
(dotted lines) and the interplay of sub-mechanisms (solid lines)

the interdependence of the sub-mechanisms; not even a strong weapon such as
social distancing can stand against the pandemic on its own. If done properly,
sub-mechanisms can strengthen each others’ effectiveness, e.g., selective testing
based on contract tracing can change the framing for social distancing. If done
poorly or without acknowledging the interdependence, the sub-mechanisms may
undermine each other, resulting in sub-optimal pandemic response with poten-
tially catastrophic consequences.

After i) games have been designed and parameterized, ii) games have been
played by selfish individuals, and iii) outcomes have been determined, iv) the
cost for the mechanism designer itself is realized (see Figure 9.3). The corre-
sponding cost function is very complex incorporating factors from ICU beds
through civil unrest and affected future election results to a drop in GDP over
multiple time scales [47]. Therefore, governments have to carefully balance
the—very directly interpreted—social optimum and their own costs; this indeed
requires a mechanism design mindset.

9.7 Conclusion
In this chapter we have made a case for treating pandemic response as a mech-
anism design problem. Through simple games and decision models modeling
interacting selfish individuals we have shown that it is necessary to take indi-
vidual incentives into account during a pandemic. First, we have shown how
individual decisions (and, therefore, social impact) concerning social distanc-
ing depend on the perceived benefits of meeting up and the cost of missing out.
Second, we have shown how individual incentives impact mask wearing and illus-
trated how individuals could optimize when selecting between two hypothetical
vaccines taking into account availability, efficacy and duration of immunity.

We have also demonstrated that specific government policies significantly
influence the outcome of these games, and how different response measures
(sub-mechanisms) are interdependent. As an example we have discussed how
contact tracing enables targeted testing which in turn reduces the uncertainty
from individual decision making regarding social distancing and wearing masks.
Furthermore, we have discussed the notoriously complex nature of the vaccina-
tion policy; designing such in an even approximately optimal way has to take
into account medical, behavioral, economic and legal factors. We have also
argued that sharing high quality and truthful pandemic data with the public
promotes better individual decision-making, and thus, more efficient handling
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of the pandemic. Governments have significantly more power than traditional
mechanism designers in distributed systems; therefore, it is even more crucial
for them to carefully study the trade-off between social good and the cost of the
designer when implementing their pandemic response mechanism.

Limitations. The work presented here has several limitations from a policy-
making standpoint. First, although the mechanism designer can directly influ-
ence the payoff functions and thus the outcome of the games presented (e.g., by
imposing fines on non-compliant citizens or giving benefits to the vaccinated),
and the factors currently used in the payoffs —without doubt—do play a part
in individual decisions making, the utility functions themselves are—of course—
simplified: behavioral decision-making aspects are out of scope for this paper.
Second, at this level of abstraction, the games and their respective designs
cannot form a practical guidebook for governments. In fact, complex simula-
tion studies and the analysis of already existing real historical data have to be
undertaken in order to make real-world decisions affecting human lives. The
objective of this study is to illustrate the impact of individual decision-making
on social distancing and other common pandemic measures, and advocate for a
mechanism design mindset for policy-makers.

Future Work. We have barely scratched the surface of pandemic mechanism
design. The models presented are simple and mostly used for demonstrative
purposes. In turn, this gives us plenty of opportunity for future work. A poten-
tial avenue is extending our models to capture the temporal aspect, combining
them with epidemic models as games played by many agents on social graphs,
and parameterizing them with real data from the ongoing pandemic (policy
changes, mobility data, price fluctuations, etc.). Relaxing the rational decision-
making aspect is another prominent direction: behavioral modeling with respect
to obedience, other-regarding preferences and risk-taking could be incorporated
into the games. Moreover, a formal treatment of the mechanism design problem
constitutes important future work, incorporating hierarchical designers (WHO,
EU, nations, municipality, household), an elaborate cost model, and analyzing
optimal policies for different time horizons. Finally, special attention should be
given to sustainable pandemic response measures, such as milder forms of social
distancing, which could be used for prolonged times as COVID-19 seems to be
staying with us for years to come. If done with care, these steps would help
create an extensible mechanism design framework that can aid decision makers
in pandemic response.
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