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Abstract

Pandemic response is a complex affair. Most gov-
ernments employ a set of quasi-standard measures
to fight COVID-19 including wearing masks, social
distancing, virus testing and contact tracing. We ar-
gue that some non-trivial factors behind the varying
effectiveness of these measures are selfish decision-
making and the differing national implementations
of the response mechanism.
In this paper, through simple games, we show the
effect of individual incentives on the decisions made
with respect to wearing masks and social distanc-
ing, and how these may result in a sub-optimal out-
come. We also demonstrate the responsibility of na-
tional authorities in designing these games properly
regarding the chosen policies and their influence on
the preferred outcome. We promote a mechanism
design approach: it is in the best interest of ev-
ery government to carefully balance social good and
response costs when implementing their respective
pandemic response mechanism.

1 Introduction

The current coronavirus pandemic is pushing indi-
viduals, businesses and governments to the limit.
People suffer owing to restricted mobility, social life
and income, complete business sectors face an al-
most 100% drop in revenue, and governments are
scrambling to find out when and how to impose
and remove restrictions. In fact, COVID-19 has
turned the whole planet into a “living lab” for hu-
man and social behavior where feedback on response
measures employed is only delayed by around two
weeks (the incubation period). From the 24/7 me-
dia coverage, all of us have been introduced to a set
of quasi-standard measures introduced by national
and local authorities, including wearing masks, so-
cial distancing, virus testing, contact tracing and so
on. It is also clear that different countries have had

different levels of success employing these measures
as evidenced by the varying normalized death tolls
and confirmed cases1.

We believe that apart from the intuitive (e.g.,
genetic differences, medical infrastructure availabil-
ity, hesitancy, etc.), there are two significant factors
that have not received enough attention. First, the
individual incentives of citizens, e.g., “is it worth
more for me to stay home than to meet my friend?”,
have a significant say in every decision situation.
While some of those incentives can be inherent to
personality type, clearly, there is a non-negligible ra-
tional aspect to it, where individuals are looking to
maximize their own utility. Second, countries have
differed in their specific implementation of response
measures, e.g., whether they have been distribut-
ing free masks (affecting the efficacy of mask wear-
ing in case of equipment shortage) or providing ex-
tra unemployment benefits (affecting the likelihood
of proper self-imposed social distancing). Framing
pandemic response as a mechanism design prob-
lem, i.e., architecting a complex response mecha-
nism with a preferred outcome in mind, can shed
light on these factors; what’s more, it has the poten-
tial to help authorities (mechanism designers) fight
the pandemic efficiently. The objective of this pa-
per is to show that both individual incentives and
the actual design and implementation of the holis-
tic pandemic response mechanism can have a major
effect on how this pandemic plays out.

Contribution.

In this paper we model decision situations during a
pandemic with game theory where participants are
rational, and the proper design of the games could
be the difference between life and death. Our main
contribution is two-fold. First, regarding decisions
on wearing a mask, we show that i) the equilibrium

1Johns Hopkins Coronavirus Resource Center. https://

coronavirus.jhu.edu/map.html
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outcome is not socially optimal under full informa-
tion, ii) when the status of the players are unknown
the equilibrium is not to wear a mask for a wide
range of parameters, and iii) when facing an infec-
tious player it is almost always optimal to wear a
mask even with low protection efficiency. Further-
more, for social distancing, using current COVID-19
statistics we showed that i) going out is only ratio-
nal when it corresponds to either a huge benefit or
staying home results in a significant loss, and ii) we
determined the optimal duration and meeting size
of such an out-of-home activity. Second, we take a
look at pandemic response from a mechanism de-
sign perspective, and demonstrate that i) different
government policies influence the outcome of these
games profoundly, and ii) individual response mea-
sures (sub-mechanisms) are interdependent. Specif-
ically, we discuss how contact tracing enables tar-
geted testing which in turn reduces the uncertainty
in individual decision making regarding both social
distancing and wearing masks. We recommend gov-
ernments treat pandemic response as a mechanism
design problem when weighing response costs vs.
the social good.

Organization.

The remaining of the paper is structured as follows.
Section 2 briefly describes related work while Sec-
tion 3 recaps some basics of game theory. Section 4
develops and analyzes the Mask Game adding un-
certainty, mask efficiency and multiple players to
the basic model. Section 5 develops and analyzes
the Distancing Game including the effects of meet-
ing duration and size. Section 6 frames pandemic
response as a mechanism design problem using the
design of the two games previously introduced as
examples. Finally, Section 7 outlines future work
and concludes the paper.

2 Related Work

In this section we review some well-known epidemic
spreading models and game-theoretic works in rela-
tion to pandemics.

COVID-19 have been modelled using
different models: for instance using SIR
[Carletti et al., 2020], SEIQR [Zhang et al., 2020],
and SIDARTHE [Giordano et al., 2020]. Which
model suits the ongoing epidemic best is still
undetermined. Besides the model, the input
data instantiating the model may be imperfect as
well, thus some efforts are also made to account
for potential inaccuracies in the reported data
[Hong and Li, 2020]. An orthogonal extension of

these models is proposed in [Santosh, 2020], which
discusses how factors such as hospital capacity,
test capacity, demographics, population density,
vulnerable people and income could be integrated
into these models. In contrast with the previous
models, the one in [Lagos et al., 2020] takes into
consideration the networked structure of human
interconnections and the locality of interactions,
without attempting a mean-field approach. In the
following we briefly review some related research
efforts in the intersection of epidemics and game
theory. For a comprehensive survey we refer the
reader to [Chang et al., 2019].

Some researchers modeled the behavioral changes
of people to a pandemic: for instance in
[Poletti et al., 2012] authors used evolutionary
game theory, and showed that slightly reducing the
number of people an individual was in contact with
could make a difference regarding the spread of dis-
ease. Another group showed that there was a criti-
cal level of concern, i.e., empathy, by the infected
individuals above which the disease is eradicated
rapidly [Eksin et al., 2017]. Others focused on the
mobility habits of people traveling between areas
affected unevenly by the disease, and found conflict
between the Nash Equilibrium (individually optimal
strategy) and the Social Optimum (optimal group
strategy) only under specific changes in economic
and epidemiological conditions [Zhao et al., 2018].
In [Bairagi et al., 2020] an optimization problem
was formalized by accommodating both isolation
(modeled by how far individuals are from home)
and social distancing (how far individuals are from
each other). Authors also provided incentives for
maintaining social distancing to prevent the spread
of COVID-19 (i.e., making “staying home” the Nash
Equilibrium). Moreover, social distancing was also
shown to be able to delay the epidemic until a vac-
cine becomes widely available [Reluga, 2010].

Several studies focused on how the availability
of vaccines affects human behaviour. A model
was introduced in [Bhattacharyya and Bauch, 2011]
where vaccine delayers relied on herd immunity and
vaccine safety information generated by early vacci-
nators. Consequently, the Nash Equilibrium was
“wait and see”. Another study concerning this
vaccination dilemma proposed a model with incen-
tives for individuals to choose the prevention strat-
egy according to risks and expenses in the epi-
demic campaign [Bauch and Earn, 2004]. Similarly,
researchers in [van Boven et al., 2008] showed the
optimal use of anti-viral treatment by individuals
when they took into account the direct and indi-
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rect costs of treatment. The game-theoretic model
in [Sun et al., 2009] focused on the various level of
drug stockpiles in different countries, and found con-
troversial results: sometimes there was an optimal
solution with a central planner (such as the WHO),
which improved on the decentralized equilibrium,
but other times the central planner’s solution (min-
imizing the number of infected persons globally) re-
quired some countries to sacrifice part of their pop-
ulation.

The exact dynamics of demand and supply for
medical resources at different phases of a pandemic
was also studied [Chen et al., 2020]. Predicting
such dynamics would provide a quantitative basis
for mechanism designers (e.g., decision makers of
healthcare systems) to understand the potential im-
balance of supply and demand. The authors ex-
tended the concepts of reserving and capital man-
agement in the classical insurance literature and
aimed to provide a quantitative framework for quan-
tifying and assessing pandemic risk, and developed
optimal strategies for stockpiling spatio-temporal
resources.

The Centers for Disease Control and Prevention
created a policy review of social distancing mea-
sures for pandemic influenza in non-healthcare set-
tings [Fong et al., 2020]. They identified measures
to reduce community influenza transmission such
as isolating the sick, tracing contacts, quarantin-
ing exposed people, closing down school, changing
workplace habits, avoiding crowds, and restricting
movement. The impact of several of these (and
wearing masks) was studied in [Silva et al., 2020]
in which the authors model the pandemic by em-
ulating people, business and government. Other re-
searchers demonstrated that early school and work-
place closure, and restriction of international travel
are independently associated with reduced national
COVID-19 mortality [Papadopoulos et al., 2020].
On the other hand, lock-down procedures could
have devastating impact on the economy. This was
studied in [Chao, 2020] with a modified SIR model
and time-dependent infection rate. The authors
found that, surprisingly, in spite of the economic
cost of the loss of workforce and incurred medical
expenses, the optimum point for the entire course
of the pandemic is to keep the strict lock-down as
long as possible.

As detailed above, related work has mostly stud-
ied narrowly focused specifics of epidemic modelling
such as the intricate behaviour of individuals in rela-
tion with vaccines or the preferred actions of mech-
anism designers such as healthcare system opera-

tors. In contrast, our work takes a step back, and
focuses on the big picture: we model decision sit-
uations during a pandemic as games with rational
participants, and promote the proper design of these
games. We highlight the responsibility of mecha-
nism designers such as national authorities in con-
structing these games properly with adequately cho-
sen policies, taking into account their interdepen-
dent nature.

3 Preliminaries
In this section we shortly elaborate on the main
game theoretical notions used in this paper, to en-
able the conceptual understanding of the implica-
tions of our results.

Game theory [Harsanyi et al., 1988] is “the study
of mathematical models of conflict between intel-
ligent, rational decision-makers”. Almost every
multi-party interaction can be modeled as a game.
In relation to COVID-19, decision makers could be
individuals (e.g., whether to wear a mask), cities
(e.g., whether to enforce wide-range testing within
the city), governments (e.g., whether to apply con-
tact tracking within the country), or companies
(e.g., whether to apply social distancing within the
workplace). Potential decisions are referred to as
strategies; decision makers (players) choose their
strategies rationally so as to maximize their own
utility.

The Nash Equilibrium (NE) — arguably the
most famous solution concept — is a set of strate-
gies where each player’s strategy is a best re-
sponse strategy. This means every player makes
the best/optimal decision for itself as long as the
others’ choices remain unchanged. NE provides a
way of predicting what will happen if several enti-
ties are making decisions at the same time where
the outcome also depends on the decisions of the
others. The existence of a NE means that no player
will gain more by unilaterally changing its strategy
at this unique state. Another game-theoretic con-
cept is the Social Optimum, which is a set of strate-
gies that maximizes social welfare. Note, that de-
spite the fact that no one can do better by changing
strategy, NEs are not necessarily Social Optima (we
refer the reader to the famous example of the Pris-
oner’s Dilemma [Harsanyi et al., 1988]). In fact, it
is a central problem in game theory how much a
distributed outcome (NE) is worse than a centrally
planed social optimum.

If one knows the NE they prefer as the outcome
of a game, e.g., everybody wearing a mask, and
they have the power to instantiate the game ac-
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cordingly, i.e., fixing the structure, game flow and
any free parameters, then we talk about mechanism
design [Mas-Colell et al., 1995]. In a way, mech-
anism design is the inverse of game theory; al-
though a significant share of efforts within this field
deals with auctions, mechanism design is a much
broader term widely applicable to any mechanism,
e.g., optimal organ matching for transplantation
or school-student allocation, aimed at achieving a
given steady state result.

4 The Mask Game
Probably the most visible consequence of COVID-
19 are masks: before their usage was mostly lim-
ited to some Asian countries, hospitals, construc-
tions and banks (in case of a robbery). Due to the
coronavirus pandemic, an unprecedented spreading
of mask-wearing can be seen around the globe. Poli-
cies have been implemented to enforce their usage
in some places, but in general, it has been up to the
individuals to decide whether to wear a mask or not
based on their own risk assessment. In this section,
we model this decision situation via game theory.
We assume that there are several types of masks,
providing different level of protection.

• No Mask corresponds to the behavior of using
no masks during the COVID-19 (or any) pan-
demic. Its cost is consequently 0; however, it
does not offer any protection against the virus.

• Out Mask is the most widely used mask (e.g.,
cloth mask or surgical mask). They are meant
to protect the environment of the individual us-
ing it. They work by filtering out droplets when
coughing, sneezing or simply talking, therefore
they limit the spreading of the virus. They do
not protect the wearer itself against an airborne
virus. The cost of deciding for this protection
type is noted as Cout > 0.

• In Mask is the most protective prevention gear
designed for medical professionals (e.g., FFP2
or FFP3 mask with valves). Valves make it
easier to wear the mask for a sustained period
of time, and prevent condensation inside the
mask. They filter out airborne viruses while
breathing in, however the valved design means
they do not filter the while air breathing out.
Note that CDC guidelines2 recommend using
a cloth/surgical mask for the general public,

2Centers for Disease Control and Preven-
tion. https://www.cdc.gov/coronavirus/2019-ncov/

prevent-getting-sick/prevention.html

while valved masks are only recommended for
medical personnel in direct contact with in-
fected individuals. The cost of this protection
type is Cin >> Cout.

Besides which mask they use (i.e., the available
strategies), the players are either susceptible or in-
fected3. The latter has some undesired consequence;
hence, we model it by adding a cost Ci to these play-
ers’ utility (which is magnitudes higher than even
Cin, i.e., Ci >> Cin >> Cout). We summarize
all the parameters and variables used for the Mask
game in Table 1.

Variable Meaning
Cout Cost of playing out
Cin Cost of playing in
Ci Cost of being infected
Cuse Cost of playing use
ρ Prob. of being infected
p Prob. of using a mask
a Protection Efficiency
b Spreading Efficiency

Table 1: Parameters of the Mask Games

Using these states and masks, we can present the
basic game’s payoffs where two players with known
health status meet and decide which mask to use.
The payoff matrix in Table 2 corresponds to the
case when both players are susceptible. Note, that
in case both players are infected, the payoff matrix
would be the same with an additional constant Ci.
Table 3 corresponds to the case when one player is
infected while the other is susceptible.

no out in
no (0, 0) (0, Cout) (0, Cin)
out (Cout, 0) (Cout, Cout) (Cout, Cin)
in (Cin, 0) (Cin, Cout) (Cin, Cin)

Table 2: Payoff matrices when both players are sus-
ceptible

In Table 2 it is visible that both players’ cost is
minimal when they do not use any masks, i.e., the
Nash Equilibrium of the game when both players
are susceptible is (no, no). This is also the social
optimum, meaning that the players’ aggregated cost
is minimal. The same holds in case both players

3We simplify the well-known SIR model
[Diekmann and Heesterbeek, 2000] since in case of COVID-
19 it is currently unclear if and for how long an individual is
resistant after recovery.
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are infected, as this only adds a constant Ci to the
payoff matrix.

When only one of the players is susceptible as
represented in Table 3, using no mask is a dom-
inant strategy for the infected player4, since it is
a best response, independently of the susceptible
player’s action. Consequently, the best option for
the susceptible player is in, i.e., the NE is (in, no).
On the other hand, the social optimum is different:
(no,out) would incur the least burden on the soci-
ety since Cout << Cin.

In social optimum, susceptible players would ben-
efit, through a positive externality, from an ac-
tion that would impose a cost on infected play-
ers; therefore it is not a likely outcome. In
fact, such a setting is common in man-made dis-
tributed systems, especially in the context of cyber-
security. A well-fitting parallel is defense against
Distributed Denial of Service Attacks (DDoS) at-
tacks [Khouzani et al., 2013]: although it would be
much more efficient to filter malicious traffic at the
source (i.e., out), Internet Service Providers rather
filter at the target (i.e., in) owing to a rational fear
of free-riding by others.

4.1 Bayesian Game

Since in the basic game no player plays out, we sim-
plify the choice of the players to either use a mask
or no (hence, we note the cost of a mask with Cuse).
To represent the situation more realistically, we in-
troduce ambiguity about the status of the players:
we denote the probability of being infected as ρ. We
know from the basic game that if both players are
infected (with probability ρ2) or susceptible (with
probability (1−ρ)2) they play (no,no), while if only
one of them is infected (with probability 2·ρ·(1−ρ))
the infected player plays no, while the susceptible
plays use. Hence, the players play no in most of
the cases (e.g., with probability 1− (ρ · (1− ρ))).

On the other hand, this is not the case if we do
not assume that the players know their statuses.
Consequently, with uncertainty we must minimize
the costs of the players: if both players are infected
with equal probability, the payoff for Player 2 is
Equation 1 where pn is the probability that Player
n plays use (otherwise she plays no). The payoff for
the other player is similar since the game is symmet-
ric. In more detail, the first two lines correspond to
the case when Player 2 is not infected (hence the

4Note that the payoffs does not take into account
the legal consequences of a deliberate infection such
as in https://www.theverge.com/2020/4/7/21211992/

coughing-coronavirus-arrest-hiv-public-health-safety-crime-spread.

multiplication with 1 − ρ at the beginning), while
the last line captures when she is infected. Either
way, she plays use with probability p2, which incurs
a cost of Cuse. Otherwise she plays no, which has
no cost except when Player 1 is infected and she
plays no as well.

U2 = (1− ρ) · [(1− ρ) · [p2 · Cuse + (1− p2) · 0]+

ρ · [p2 · Cuse + (1− p2) · [(1− p1) · Ci + p1 · 0]]]+

ρ · [p2 · (Ci + Cuse) + (1− p2) · Ci]
(1)

Since this formula is linear in p2, its extreme point
within [0,1] is situated exactly at the boundary. We
take its derivative to uncover the function steepness:
the condition for the function to be decreasing (i.e.,
higher probability for using a mask corresponds to
lower cost) is seen below. Consequently, the only
scenario which might admit wearing a mask with
non-zero probability corresponds to the availability
of sufficiently cheap masks.

∂U2

∂p2
< 0⇔ Cuse

Ci
< ρ · (1− ρ) · (1− p1) ≤ 1 (2)

Example.

Lets assume Alice is going to meet Bob after a long
time without any correspondence. Consequently,
she does not know whether Bob has been exposed to
SARS-CoV-2 recently. Actually, Alice herself could
have been exposed as well without her knowledge,
as up to 80% of the infectious cases could be asymp-
tomatic.5 For this reason, without taking into ac-
count any available spatial data, she estimates that
they could be infectious with ρ = 50%: either yes or
no. She also does not have any information about
Bob’s mask wearing habits, so she guesses p1 = 0.5
as well.

Alice is tested at her workplace every day, and she
is sent to a 1-week quarantine without payment if
tested positive. If we represent Alice as an average
American, she earns approximately 1000 USD per
week6, hence, we set Ci = 1000. Substituting these
into the right side of Equation (2), she decides to
wear a mask only if it costs less than 125 USD,
which does hold as of September 2020.

5Centre for Evidence-Based Medicine.
https://www.cebm.net/covid-19/

covid-19-what-proportion-are-asymptomatic/
6Bureau of Labour Statistics. https://www.bls.gov/

news.release/pdf/wkyeng.pdf
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no out in
no (Ci, Ci) (0, Cout + Ci) (Ci, Cin + Ci)
out (Cout + Ci, Ci) (Cout, Cout + Ci) (Cout + Ci, Cin + Ci)
in (Cin, Ci) (Cin, Cout + Ci) (Cin, Cin + Ci)

Table 3: Payoff matrices for the cases when only one player is susceptible.

4.2 Efficiency Game

In the basic game we assumed in provides perfect
protection from infected players, while out protects
the other player fully. However, in real life, these
strategies only mitigate the infection by decreasing
its probability (i.e., ρ) to some extent. For this rea-
son, we define a, b ∈ [0, 1] in a way that the smaller
value of the parameter corresponds to better pro-
tection; a measures the protection efficiency of the
protection strategy, while b captures the efficiency of
eliminating the further spread of the disease. Con-
sequently, a and b was set in the previous cases to
aout = 0, ain = 1 (in prevents further spreading,
while out does not), bout = 1 (out has no effect on
protecting the player) bin = 0 (in perfectly protects
the player).

We simplify the action space of the players as we
did in the Bayesian game: in and out is merged into
use Obviously, no corresponds to ano = bno = 0.
We abuse the notion a and b to represent ause and
buse respectively. We set b = 2

3 , as surgical masks
on the infectious person reduce cold & flu viruses in
aerosols by 70% according to [Milton et al., 2013].
Parameter a is much harder to measure. It should
be a ≤ b since any mask keeps the virus inside the
players more efficiently than stopping the wearer
from getting infected. For the sake of the analy-
sis we set a = b

2 = 1
3 , but any other choice would

be possible.

We are interested in the mask-wearing probabil-
ity of a susceptible player when the other player is
infected.7 The utility in such a situation is shown
in Equation (3), where for simplification we defined
p = p1 = p2, i.e., both players play a specific strat-
egy with the same probability. With such a con-
straint, we restrict ourselves from finding all the so-
lutions; however, since the game is symmetric, an
equilibrium of this reduced game is also an equilib-
rium when the players could use different strategy
distributions.

7The Bayesian game combined with efficiency is left for
future work due to the lack of space.

U =p2 · (Cuse + Ci · a · b)+
p · (1− p) · (Cuse + Ci · a)+

(1− p) · p · (Ci · b)+
(1− p)2 · Ci

⇒ U =p2 · (Cuse + Ci · 0.2̇)+

p · (1− p) · (Cuse + Ci)+

(1− p)2 · Ci

(3)

From this we easily deduce that use corresponds
to a smaller cost that no if Cuse

Ci
< 7

9 , which holds by
default as Cuse � Ci (even for less efficient masks).
Moreover, use (i.e., p = 1) is the best response most
of the time because of the following.

1. The utility is a second order polynomial, hence
it has one extreme point.

2. This extreme point is a minimum due to U ′′ =
4
9 · Ci > 0.

3. The utility (i.e., cost) is decreasing on the left
and increasing on the right of this minimum
point.

4. The utility’s minimum point is at p = 9
4 ·

Ci−Cuse

Ci
due to U ′ = Cuse − Ci + 4

9 · Ci · p.

5. The minimum point is expected to be above 1
due to Cuse � Ci.

6. p ∈ [0, 1] is on the left of the minimum point,
hence, a higher p corresponds to a smaller cost.

4.3 Multi-Player Game

This game can be further extended by allowing more
players to participate. In this extension — if we as-
sume all players meet with probability 1 — with
any number of infected players (who play no as we
showed already) all the susceptible players should
play in. This NE is the SO as well if the ratio of
the infected (which is identical to the probability ρ
of being infected) is sufficiently high: the accumu-
lated cost when the susceptible players play in (and
the infected play no) is less than the accumulated
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cost when the infected players play out (and the
susceptible play no) if Cin

Cout
< ρ

1−ρ . Although it is
mathematically possible that the infected plays no
in the SO, but it is doubtful: both the cost of in is
significantly higher than out, and the infection ratio
ρ is low (at least at the beginning of the pandemic).

5 The Distancing Game
Another phenomenon most people has experienced
during the current COVID-19 pandemic is social
distancing. Here we introduce a simple Distanc-
ing Game; it is to be played in sequence with the
previously introduced Mask Game: once a player
decided to meet up with friends via the Distancing
Game, she can decide whether to wear a mask for
the meeting playing the Mask Game. To improve
readability, we summarize all the corresponding pa-
rameters and variables in Table 4.

Variable Meaning
C Cost of staying home
B Benefit of going out
m Mortality rate
L Value of Life
ρ Probability of infection
p Probability of meeting
t Time duration of meeting
g Group size of meeting

Table 4: Parameters of the Distancing Games

We represent the cost of getting infected with
m · L, i.e., the mortality rate of the disease mul-
tiplied with the player’s evaluation about her own
life.8 Besides the risk of getting infected, going out
or attending a meeting could benefit the player, de-
noted as B. On the other hand, staying home or
missing a meeting could have some additional costs,
denoted as C. The probability of getting infected
is denoted as ρ. With these notations, the utility
of the Distancing Game is captured on the left of
Equation (4), where p is the probability of going
out. Since this is linear in p, its maximum is either
at p = 0 (stay home) or p = 1 (go out). Precisely,
the player prefers to stay home if the right side of
Equation (4) holds.

U = p · (B−ρ ·m ·L)− (1− p) ·C B + C

ρ ·m
< L

(4)

8This is an optimistic approximation, as besides dying the
infection could bear other tolls on a player.

Example.

For instance, should a rational American citizen
(e.g., Alice) go out based on how much she values
her life? We estimate9 m = 0.034 and ρ = 0.0077

as 0.028 ≈ #{deceased}
#{all cases} < m < #{deceased}

#{closed cases} ≈ 0.04

while #{active cases}
#{population} ≈ 0.0077.

Using these values, Alice should go out only if
she values her life less than 3820(= 1

0.034·0.0077 )
times the benefit (of going out) and the loss
(of staying home) together. According to
[Trottenberg and Rivkin, 2013], the value of a sta-
tistical life in the US was 9.2 million USD in 2013,
which is equivalent to 11.3 million USD in 2020
(with 0.3% interest rate). This means, Alice should
only meet someone if the benefit of the meeting (and
thus the cost of missing out) would amount to more
than USD 2, 958 (= 11.3M

3820 ).

5.1 Number of Participants and Du-
ration

One way to improve the above model is by introduc-
ing meeting duration and size. Leaving our disin-
fected home during a pandemic is risky, and this risk
grows with the time. Similarly, a meeting is riskier
when there are multiple participants involved. In
the original model, we captured the infection prob-
ability with ρ = 1− (1− ρ). This ratio increases to
1 − (1 − ρ)g·t when there are g possible infectious
sources for t time. Since g and t are interchange-
able, we merge this two together under a common
notation: z = g · t.

This extended model can be used to determine
the optimal duration and size of a meeting, once
the player decided to go out according to the basic
Distancing Game. We define 0 < z < 100, as no
player has infinite time or meeting partners. More-
over, the benefit and the loss of attending and miss-
ing a meeting should depend on this new parameter.
For instance, staying home in isolation for a longer
period might cause anxiety, which could get worse
over time (i.e., increasing the cost); on the other
hand, attending a meeting with many friends at the
same time could significantly boost the experience
(i.e., increase the benefit). Consequently, a ratio-
nal person should leave her home only if Equation
(5) holds which is the extension of the right side of
Equation (4).

max
0<z<100

(
B(z) + C(z)

(1− (1− ρ)z) ·m

)
< L (5)

9Data from https://www.worldometers.info/

coronavirus/ (accessed September 2020)
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Figure 1: A few examples for various benefit and cost functions of the lower limit on the life value which
would ensure that Alice (i.e., a rational American) would stay home (i.e.,left side of Equation (5)) with
m = 0.034 and ρ = 0.0077.

In Figure 1, we present three use-cases of the for-
mula inside the maximization above: the left one
represents the case when both the benefit and the
cost are constant, the right one corresponds to the
case when both of them are linear. In the middle,
there is a mixture of these two. Note that we needed
to restrict z to be under a certain amount as it rep-
resents both the time and the size of a meeting.

6 Pandemic Mechanism De-
sign

Pandemic response is a complex affair. The two
games described above model only parts of the big-
ger picture.

6.1 The government as mechanism
designer

We refer to the collection (and interplay) of mea-
sures implemented by a specific government fight-
ing the epidemic in their respective country as
mechanism. Consequently, decisions made with re-
gard to this mechanism constitutes mechanism de-
sign [Mas-Colell et al., 1995]. In its broader inter-
pretation, mechanism design theory seeks to study
mechanisms achieving a particular preferred out-
come. Desirable outcomes are usually optimal ei-
ther from a social aspect or maximizing a different
objective function of the designer.

In the context of the corona pandemic, the im-
mediate response mechanism is composed of e.g.,
wearing a mask, social distancing, testing and con-
tact tracing, among others. Note that this is not an
exhaustive list: financial aid, creating extra jobs to
accommodate people who have just lost their jobs,
declaring a national emergency and many other con-
ceptual vessels can be utilized as sub-mechanisms by
the mechanism designer, i.e., usually, the govern-
ment; we do not discuss all of these in detail due to

the lack of space. Instead, we shed light on how gov-
ernment policy can affect the sub-mechanisms, how
sub-mechanisms can affect each other and, finally,
the outcome of the mechanism itself. We illustrate
the importance of mechanism design applying dif-
ferent policies to our two games, and adding testing
and contact tracing to the mix.

6.2 Policy impact on sub-
mechanisms and the final mech-
anism

Here we analyze the impact of commonly seen poli-
cies: compulsory mask wearing, distributing free
masks, limiting the amount of people gathering and
total lock-down.

Compulsory mask wearing and free masks.

If the government declares that wearing a sim-
ple mask is mandatory in public spaces (such as
shops, mass transit, etc.), it can enforce an out-
come (out,out) that is indeed socially better than
the NE. The resulting strategy profile is still not
SO, but it i) allocates costs equally among citizens;
ii) works well under the uncertainty of one’s health
status; and iii) may decrease the first-order need
for large-scale testing, which in turn reduces the re-
sponse cost of the government. By distributing free
masks, the government can reduce the effect of self-
ishness and, potentially, help citizens who cannot
buy or afford masks owing to supply shortage or
unemployment.

Limiting the amount of people gathering and
total lock-down.

If the government imposes an upper limit l for the
size of congregations, this will put a strict upper
bound on the “optimal meeting size” g∗, and the
resulting group size will be min(l, g∗). Note that if
l < g∗ then it creates an “opportunity” for longer
meetings (larger t), as Equation (5) maximizes for
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Figure 2: Pandemic response mechanism as influenced by government policy (dotted lines) and the inter-
play of sub-mechanisms (solid lines)

z = gt. On the other hand, if the chosen restrictive
measure is a total lock-down, both the Distancing
Game and the Mask Game are rendered moot, as
people are not allowed to leave their households.

Testing and contact tracing.

It is clear that the Distancing and the Mask Games
are not played in isolation: people deciding to meet
up invoke the decision situation on mask wearing.
On the other hand, so far we have largely ignored
two other widespread pandemic response measures:
testing and contact tracing.

With appropriately designed and administered
coronavirus tests, medical personnel can determine
two distinct features of the tested individual: i)
whether she is actively infected spreading the virus
and ii) whether she has already had the virus, even if
there were no or weak symptoms. (Note that detect-
ing these two features require different types of tests,
able to show the presence of either the virus RNA or
specific antibodies, respectively.) In general, testing
enables both the tested person and the authorities
to make more informed decisions. Putting this into
the context of our games, testing i) reduces the un-
certainty in Bayesian decision making, and ii) en-
ables the government to impose mandatory quaran-
tine thereby removing infected players. Even more
impactful, mandatory testing (as in Wuhan10) com-
pletely eliminates the Bayesian aspect, essentially
rendering the situation to a full information game:
it serves as an exogenous “health oracle” imposing
no monetary cost on the players. To sum it up, the
testing sub-mechanism outputs results that serve as
inputs to both the Distancing and the Mask Game.

Naturally, a “health oracle” does not exist: some-
one has to bear the costs of testing. From the

10New York Times. https://www.nytimes.com/2020/05/

26/world/asia/coronavirus-wuhan-tests.html

government’s perspective, mandatory mass test-
ing is extremely expensive11. (Similarly, from
the concerned individual’s perspective, a single
test could be unaffordable.) Contact tracing,
whether traditional or mobile app-based, serves
as an important input sub-mechanism to test-
ing [Ferretti et al., 2020]. It identifies the individ-
uals who are likely affected based on spatial prox-
imity, and inform both them and the authorities
about this fact. In game-theoretic terms, for such
players, the benefit of testing outweigh the cost (per
capita) with high probability. From the mechanism
designer’s point of view, contact tracing reduces the
overall testing cost by enabling targeted testing, po-
tentially by orders of magnitude, without sacrificing
proper control of the pandemic. Another potential
cost of contact tracing for individuals could be the
loss of privacy. Note that mobile OS manufacturers
are working on integrating privacy-preserving con-
tact tracing into their platform to eliminate adop-
tion costs for installing an app12.

The big picture.

As far as pandemic response goes, the mechanism
designer has the power to design and parametrize
the games that citizens are playing, taking into ac-
count that sub-mechanisms affect each other. After
games have been played and outcomes have been
determined, the cost for the mechanism designer it-
self are realized (see Figure 2). This cost function is
very complex incorporating factors from ICU beds
through civil unrest to a drop in GDP over mul-
tiple time scales [McDonald et al., 2008]. There-
fore, governments have to carefully balance the –

11But not without precedence, e.g., in
Slovakia (https://edition.cnn.com/world/
live-news/coronavirus-pandemic-10-18-20-intl/h_

beb93495fe9b83701023eafd5f28e39d)
12Apple. https://covid19.apple.com/contacttracing
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very directly interpreted – social optimum and their
own costs; this indeed requires a mechanism design
mindset.

7 Conclusion

In this paper we have made a case for treating
pandemic response as a mechanism design prob-
lem. Through simple games modeling interacting
selfish individuals we have shown that it is necessary
to take individual incentives into account during a
pandemic. We have also demonstrated that spe-
cific government policies significantly influence the
outcome of these games, and how different response
measures (sub-mechanisms) are interdependent. As
an example we have discussed how contact trac-
ing enables targeted testing which in turn reduces
the uncertainty from individual decision making re-
garding social distancing and wearing masks. Gov-
ernments have significantly more power than tradi-
tional mechanism designers in distributed systems;
therefore it is even more crucial for them to carefully
study the tradeoff between social good and the cost
of the designer when implementing their pandemic
response mechanism.

Limitations and future work.

Clearly, we have just scratched the surface of pan-
demic mechanism design. The models presented
are simple and mostly used for demonstrative pur-
poses. Also, the mechanism design considerations
are only quasi-quantitative without proper formal
mathematical treatment. In turn, this gives us
plenty of opportunity for future work. A potential
avenue is extending our models to capture the tem-
poral aspect, combine them with epidemic models
as games played by many agents on social graphs,
and parametrize them with real data from the ongo-
ing pandemic (policy changes, mobility data, price
fluctuations, etc.). Relaxing the rational decision-
making aspect is another prominent direction: be-
havioral modeling with respect to obedience, other-
regarding preferences and risk-taking could be in-
corporated into the games. Finally, a formal treat-
ment of the mechanism design problem constitutes
important future work, incorporating hierarchical
designers (WHO, EU, nations, municipality, house-
hold), an elaborate cost model, and analyzing opti-
mal policies for different time horizons. If done with
care, these steps would help create an extensible
mechanism design framework that can aid decision
makers in pandemic response.
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