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Abstract
The Internet of Things (IoT) consists of billions of embedded devices

connected to the Internet. Secure remote management of many of these
devices requires them to store and use long-term cryptographic keys. In
this work we propose to protect cryptographic keys in embedded IoT devices
using a Trusted Execution Environment (TEE) which is supported on many
embedded platforms. Our approach provides similar protection as secure
co-processors, but does not actually require an additional secure hardware
element.

Keywords: Trusted Execution Environment, cryptographic keys, key manage-
ment

AMS Subject Classification: 68M25 (Computer Security)

1. Introduction

The Internet of Things (or IoT for short) consists of billions of embedded devices
connected to the Internet. This new phenomenon is the basis for today’s smart ap-
plications in the domains of manufacturing (Industry 4.0), transportation (Cooper-
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ative Intelligent Transportation Systems), and healthcare (personalized e-Health),
as well as in everyday life (smart cities, smart homes). However, in almost all ap-
plication areas of IoT, we face security and privacy issues which require solutions
developed for or adapted to the special characteristics of IoT systems. Security and
privacy mechanisms should take into account the resource limitations of embedded
devices and they should not rely on special hardware that would significantly in-
crease the development cost of IoT applications. This leads to interesting challenges
for managing cryptographic keys on IoT devices.

In many applications, IoT devices are managed remotely by system operators.
Such remote management requires secure remote access to the devices, which in
turn, requires the devices to store and use long-term cryptographic keys. For
instance, the operator usually needs to authenticate the device before uploading
configuration data or software updates on it, which may require the device to use
a long-term, device-specific private key. However, as IoT devices are connected
to the Internet, they may be compromised by malicious actors (aka attackers).
If an attacker can obtain the long-term key of a compromised device, (s)he can
impersonate and clone that device, which is undesirable. Hence, there is a need
to protect long-term cryptographic keys on IoT devices such that a key remains
inaccessible to the attacker even if the device itself is compromised.

A possible solution to the problem above would be to store cryptographic keys
on IoT devices in secure co-processors, such as a TPM chip1 that would never
output a key, but only use it internally in cryptographic operations. However,
requiring an additional co-processor on every IoT device would be too expensive in
most cases.

In this work we propose a more cost efficient approach: we ensure protection
of cryptographic keys by using a Trusted Execution Environment (TEE), which
is mostly based on software with some minimal hardware support, and it is sup-
ported on many embedded platforms used in IoT applications. For instance, many
embedded devices use ARM processors that feature the ARM TrustZone technol-
ogy2, which enables the establishment of a software-based TEE and provides some
hardware-based protection mechanisms to them. TEEs usually implement a per-
sistent secure storage service (see, e.g., the TEE specifications3 of GlobalPlatform,
a non-profit industry association aiming at enabling digital services and devices to
be trusted and securely managed throughout their lifecycle), which can be used to
store long-term cryptographic keys. Moreover, operations with those keys can be
performed by trusted applications running within the TEE, hence, the keys would
never leave the protected environment of the TEE.

1https://trustedcomputinggroup.org/resource/tpm-library-specification (last accessed:
Oct 3, 2020)

2https://developer.arm.com/ip-products/security-ip/trustzone (last accessed: Oct 3,
2020)

3https://globalplatform.org/specs-library/?filter-committee=tee (last accessed:Oct 3,
2020)
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2. Background

Long-term cryptographic keys have been traditionally protected using additional
hardware elements, such as Hardware Security Modules (HSMs) or Trusted Plat-
form Modules (TPMs) and secure co-processors. These hardware component pro-
vide cryptographic operations to implement secure boot, trustworthy reporting,
attestation, and other components of secure computing [2]. HSMs are external
hardware modules which can be attached to existing computer systems and used
via PCI, USB, or network connection. They provide cryptographic functional-
ity, as well as tamper-resistance, and are often used to securely generate, store
and use cryptographic keys. Typically, HSMs implement PKCS #114, a platform-
independent API to handle cryptographic tokens. The API itself is called Cryptoki
and has header files for C and C++ applications; vendors usually have their own
compliant implementations. There exists also software-based HSM implementa-
tions, for example, the SoftHSM5, which is a well maintained open source project.
It is part of the OpenDNSSEC project6 with goal of being a complete implemen-
tation of PKCS #11.

TPMs, on the other hand, are chips embedded on the computer’s motherboard
and offer several security-relevant features in a standardized manner: protected
memory and registers to securely execute commands, tamper-evident hardware
module to store keys, cryptographic processing capability and a true random num-
ber generator. They are usually used as hardware roots of trust for measurement,
storage and reporting, as well as to implement critical functionalities. TPM chips
are commercially available on the market [3] and there is research effort [1, 14] to
implement the same concepts in software.

The main disadvantage of the previously mentioned hardware-based solutions is
that they are additional and often costly components of the system. By comparison,
IoT devices are constrained not only in resources but in cost as well [3]. As a result,
hardware-based protection for cryptographic keys is not viable economically in the
IoT setting. There exists software-based implementations of the hardware concepts,
but those are typically implemented as kernel modules which could be compromised
by an attacker with elevated privileges.

However, there exists an emerging technology which can provide a secure and
integrity-protected processing environment: the TEE. TEE runs on the same hard-
ware as the device’s main operating system (OS) but it is also isolated at the
hardware-level. Many chips used in embedded devices offer the hardware support
necessary to realize Trusted Execution Environments [15]. Examples include the
ARM TrustZone7, the Intel Software Guard eXtension8 (SGX) [9], and the AMD

4http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
(last accessed: Nov 04, 2020)

5https://www.opendnssec.org/softhsm/ (last accessed: Nov 04, 2020)
6https://www.opendnssec.org/ (last accessed: Nov 04, 2020)
7https://developer.arm.com/ip-products/security-ip/trustzone (last accessed: Oct 12,

2020)
8https://software.intel.com/content/www/us/en/develop/documentation/

sgx-developer-guide/top.html (last accessed: Oct 12, 2020)
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Secure Encrypted Virtualization [5]. OP-TEE9 and Open-TEE [7] are two TEE
implementations which can be deployed on these chips.

Figure 1 shows the main components of a device with TEE capabilities. Logi-
cally, execution can be separated into the Rich Execution Environment (REE) and
the TEE. Code running in the REE has access only to unprotected resources (e.g.
memory). “Code” in the REE can be partitioned into the Rich operating system,
usually a traditional OS such as Linux, and one or more applications, which run on
top of the Rich OS. Such an application is called a Client Application (CA) in the
TEE architecture. CAs implement the basic features of the device, e.g. web servers
for configuration, applications for sensing physical parameters of the environment,
or the actuator controlling a physical process. When necessary, CAs can request
services from the TEE via the TEE Client API. This API forwards the request to a
special component in the Rich OS, the REE Communication Agent, which triggers
a context switch and gives control to the TEE.

Figure 1. Logical overview of a device with Trusted Execution
Environment capabilities.

Code in the TEE has access to protected resources, which are unavailable to
the REE. For example, certain memory locations are only available to code run-
ning in the TEE. This protection is provided by the hardware components of the
device. In the case of the ARM TrustZone, for example, the architecture includes
a special register storing the Non-secure (NS) bit to determine whether the exe-
cuted code belongs to the REE or the TEE. If the NS bit is set, signalling that the
executed code belongs to the REE, access to certain protected memory locations
is automatically denied. The TEE is similar to the REE in the sense that it has

9https://optee.readthedocs.io/en/latest/index.html (last accessed: Oct 12, 2020)
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an operating system (the trusted OS) and several applications, which are called
Trusted Applications (TAs). TAs provide those services for the REE whose com-
putation requires strong security guarantees, for example, remote attestation [12,
13], tamper-resistant logging and storage [10, 11], or secure real-time computation
for the Industrial IoT [8].

3. Architectural overview

The basic idea of our approach is to use the TEE to provide similar protection
to keys as a secure co-processor but without actually requiring another proces-
sor on the device: the same processor runs a normal execution environment (the
REE) and a TEE, and also implements the required hardware mechanisms that
isolate these two execution environments. This isolation ensures that even if the
REE is compromised, the attacker would not be able to obtain the keys stored
and used within the TEE. This protection mechanism prevents attackers to clone
compromised devices.

Figure 2. Architecture of our TEE based key management solution.
Grey boxes represent components that we developed or modified.

The architecture of our solution is illustrated in Figure 2. Private keys and
private-public keypairs are stored in the secure storage of the TEE. We also store
the intended use of keys, e.g. signing or decryption, in an additional attribute in
the TEE. The keys could be generated by the operator off-line and loaded in the
secure storage in a controlled way with the help of a key management client, or
the key can actually be generated and stored in secure storage by the trusted key
management service itself. In the latter case, the trusted key management service
would output the corresponding public key to the key management client such that
it can be made available to applications running outside of the TEE. In both cases,
handles to the private keys would be output from the trusted key management
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service that can be used by applications in the REE to refer to the private keys
when requesting operations with them.

Generating and loading keys into the TEE should only be performed by the
device’s operator, therefore, such requests must be authenticated. Request au-
thentication requires the operator to set up a master password before the device is
deployed. The trusted key management service allows the key management client
to install the master password only once, it cannot be changed later. Requests re-
lated to key management must provide not only the invocation parameters to the
underlying cryptographic library but also a salt and a message authentication code
(MAC). We refer to the combination of salt and MAC as the authentication token.
The master password is used together with the salt to derive a key. The derived key
and the invocation parameters are input to HMAC (RFC 210410) and its output is
compared with the MAC value supplied in the request. The request authentication
process is illustrated in Figure 3. Key management operations are only performed,
if the HMAC-based authentication scheme succeeds without errors. We also log
authentication tokens in the trusted key management service to prevent replay at-
tacks with previous key management requests. If a request contains a previously
used authentication token, the request is automatically denied.

Figure 3. Process overview of authenticating requests from the
key management client in the trusted key management service.

Any application (e.g., a web server that provides a remote configuration possi-
bility for the operator of the device) that runs in the REE can be compiled with a
cryptographic library that we modified such that private key cryptographic oper-
ations are delegated to the trusted key management service running in the TEE.
In TEE terminology, the modified cryptographic library acts as a CA and the
trusted key management service is a TA. From the application’s point of view, the
cryptographic library exposes functions to encrypt and decrypt data, which can
be invoked similarly to API functions, as shown in Figure 4. However, instead of
supplying the key itself, the application provides a handle to the private key with
which to perform the cryptographic operation. The modified cryptographic library
serialized the key handle and the provided parameters as a message and passes

10https://tools.ietf.org/html/rfc2104 (last accessed: Nov 12, 2020)
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Figure 4. Interactions involved in performing cryptographic oper-
ations with private keys stored and managed in the TEE.

that to the trusted key management service. The trusted key management service,
which is compiled with the original cryptographic library, processes the serialized
parameters, retrieves the key referred by the provided key handle, and calls the
original cryptographic library to execute the requested operation. The results are
passed back to the modified cryptographic library and the modified cryptographic
library provides the return value to the application.

The two components can pass parameters and values to each other via shared
memory: a block of memory which is shared between the CA and the TA. Both the
CA and the TA can read data from and write data to the shared memory, however,
only the CA can allocate it. Therefore, the modified cryptographic library must
allocate memory to hold the results of cryptographic operations. Knowing the
requested operation and information about the key, the modified cryptographic li-
brary can estimate the necessary amount of memory. If the modified cryptographic
library underestimated the amount of memory, the trusted key management service
returns a special message requesting more memory to return the result.

4. Prototype implementation

We implemented the proposed TEE-based architecture for protecting long-term
cryptographic keys using the Trusted Firmware11 projects OP-TEE and mbedtls.
Trusted Firmware provides a reference trusted code base for the ARM platform, a
widely used platform in embedded devices. OP-TEE is an open source implemen-
tation of GlobalPlatform’s TEE specification, primarily maintained by Linaro, and
it is usually used in conjunction with the Linux kernel in the REE. mbedtls is a

11https://www.trustedfirmware.org/ (last accessed: Nov 03, 2020)
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cryptographic library written in C with a small code footprint. It can be used in
both the REE and the TEE; OP-TEE can be complied to use mbedtls as the default
cryptographic library.

For our prototype implementation, we set mbedtls as OP-TEE’s default crypto-
graphic library. We implemented a Trusted Application which fulfills the role of
trusted key management service and handles incoming requests for cryptographic
and key management operations. The Trusted Application stores the key pair
object in the secure storage and passes it to mbedtls whenever cryptographic op-
erations are to be performed. We also compiled a modified version of mbedtls’s
source code in the REE such that it includes wrapper functions to direct requests
to our Trusted Application. Our prototype implementation consists of eight wrap-
per functions as follows:

• tee_set_master_password: Installs the specified master password into the
trusted key management service to authenticate key management requests.
This function can only be called once, we assume that it is done in a controlled
environment by the device’s operator.

• Key management functions: These functions perform privileged operations
allowed only for the operator. Therefore, the Trusted Application performs
the request authentication process described in Section 3 on their inputs.

– tee_generate_keypair: Generates a long-term private-public key pair
and stores it in the TEE. The function returns a handle to the key pair
which can be later used for other cryptographic operations.

– tee_load_keypair: Allows the operator to load an existing key pair
into the TEE. The key pair must be encrypted and in PEM format.
Similarly to tee_generate_keypair, this function also returns a handle
to the key pair.

– tee_remove_keypair: If a key pair becomes compromised or is consid-
ered weak, the operator can inactive it. We do not permanently delete
keys because the attacker might try to reinstall old and weak keys. In-
stead, inactivating keys allows us to maintain a list of all previously and
currently used keys. The list could be reviewed by the operator or used
for attestation purposes.

• Functions available for all applications: All of these functions reference a key
stored in the TEE with a key handle. In our prototype, handles are 32 bytes
long and calculated as the SHA256 hash value of the key pair.

– tee_pk_decrypt: Decrypts the supplied data with a given key.
– tee_pk_sign: Digitally signs the input data with a given key.
– tee_get_keyinfo: Returns the type, the size, and the intended usage

of a given key.
– tee_get_publickey: Returns the public key of a public-private key pair

in plaintext.
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For each function, we defined a custom message format which can hold the serialized
parameters to be passed to the trusted key management service prototype. In all
cases, messages start with an ID field identifying the operation requested, followed
by the key handle. Depending on the function, the key handle can be an input pa-
rameter and an output parameter. For example, the function tee_remove_keypair
expects a key handle as an input, while for the function tee_load_keypair, the
field for the key handle is empty and must be filled with the handle assigned by
the TA. The remainder of the message formats follow the length-value convention:
first comes the length of the data as an 8-byte-long unsigned integer, then the data
as a variable length field.

5. Evaluation

In order to measure the added overhead of TEE-based key protection, we conducted
the following experiment. We set up a QEMU-based12 environment for running our
prototype implementation and manually saved an RSA long-term key pair in the
TEE. We deployed two versions of mbedtls’s example web server with TLS capabil-
ities in REE: one without any modifications and another with the modification to
relay cryptographic operations to our trusted key management service prototype.
We used mbedtls’s example client to test the connection to the web server and
repeatedly send HTTP GET requests to both versions.

Our experiment was concerned with the amount of time required to perform
cryptographic operations using our trusted key management service prototype. We
sent 10 HTTP GET requests from the client to the webserver and measured the
amount of time it took for the sign operation to complete. Communicating parties
used the TLS-ECDHE-RSA-WITH-CHACHA20-POLY1305-SHA256 chiper suite during
the TLS Handshake. The communication between client and server succeeded in
all 10 exchanges. In case of the unmodified mbedtls operations, all operations take
place in REE memory. In case of our trusted key management service prototype,
the measured amount of time includes the context switch between REE and TEE,
as well as the time necessary to perform the requested operation and return the
result.

The results of the experiment are shown in Table 1. Our trusted key manage-
ment service prototype needed an average of 204 ms for the sign operation. This is
5x slower than mbedtls’s unmodified operations which take place in REE memory.
However, it is worth noting that after the first run, mbedtls’s unmodified operations
gain a performance boost: their required time to complete changes from 87 ms to
ca. 30 ms. This performance boost is the result of mbedtls’s implementation to
prevent timing attacks. The authors of [6] presented timing attacks in which they
measured the amount of time required to perform private key operations, conse-
quently finding fixed Diffie-Hellman exponents and factor RSA keys. The proposed
protection against such attacks involves the use of blinding values, a pair of ran-

12https://www.qemu.org/ (last accessed: Nov 10, 2020)
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dom numbers (𝑣𝑖, 𝑣𝑓 ) such that in the case of Diffie-Hellman, 𝑣𝑓 = (𝑣−1
𝑖 )𝑥 mod 𝑛,

and in the case of RSA, 𝑣𝑖 = (𝑣−1
𝑓 )𝑒 mod 𝑛. The chosen numbers are then used

similarly to blind signatures [4]: the input is multiplied by 𝑣𝑖 and the result is
corrected by multiplying it with 𝑣𝑓 mod 𝑛. However, computing the inverses is
slow, therefore, mbedtls’s implementation uses SSL session information to deter-
mine whether (𝑣𝑖, 𝑣𝑓 ) has been chosen before and if yes, it updates their values by
squaring. Unfortunately, our trusted key management service does not have access
to SSL session information and must select a new random (𝑣𝑖, 𝑣𝑓 ) pair for each
computation.

Table 1. Comparisons between the performance of the unmodified
mbedtls library and our trusted key management service prototype
in the TEE. The first two columns show the performance of the
operation on the server-side, while the last two columns show the
amount of time required to build a secure communication channel
and exchange an HTTP GET request and response between the

client and the server.

mbedtls’s
sign

operation

Our TEE-based
sign

operation

Communication
using mbedtls

Communication
using TEE

Run 1 87 ms 208 ms 410 ms 533 ms
Run 2 30 ms 204 ms 331 ms 505 ms
Run 3 30 ms 203 ms 341 ms 516 ms
Run 4 29 ms 206 ms 319 ms 501 ms
Run 5 29 ms 204 ms 305 ms 507 ms
Run 6 30 ms 203 ms 326 ms 522 ms
Run 7 29 ms 203 ms 312 ms 504 ms
Run 8 29 ms 206 ms 315 ms 511 ms
Run 9 38 ms 202 ms 388 ms 503 ms
Run 10 33 ms 204 ms 341 ms 500 ms
Mean 36 ms 204 ms 339 ms 508 ms

Std.dev 18 ms 2 ms 34.22 ms 10.59 ms

From the client’s perspective, completing a full TLS handshake and exchang-
ing an HTTP GET request and response over the secure channel is 1.49x slower, if
cryptographic operations with the long-term key are performed in the TEE. In case
of the unmodified mbedtls library, the exchange takes 339 ms on average, while in
case of our trusted key management service prototype, the same exchange is com-
pleted in 508 ms on average. The results in Table 1 suggest that network latency
and SSL session management in both cases accounts for ca. 300 ms. Thus, the
increased time necessary to complete the exchange using our trusted key manage-
ment service in the TEE is the result of the overhead caused by the TEE-based
sign operation.

254 D. Papp, M. Zombor, L. Buttyán



6. Conclusion and future work

Remote administration is one of the key enabling features of IoT devices. However,
remote administration requires secure communication channels, which in turn re-
quire the protection of long-term cryptographic keys. Traditionally, such keys are
protected using additional hardware components, however, the cost of including
such components in IoT devices is economically unviable.

In this paper we proposed Trusted Execution Environments as alternative.
Their main advantage is that they are mostly software components requiring min-
imal hardware support for isolation. Our basic idea is to use the TEE’s secure
storage to protect keys in rest and run cryptographic libraries in the TEE which
can protect the keys during execution thanks to access to protected resources. Our
architecture includes a trusted key management service in the TEE whose task is
to handle the TEE’s secure storage and invoke the cryptographic library inside the
TEE. Applications not running in the TEE can request operations from the trusted
key management service. We created a prototype implementation of the proposed
architecture using OP-TEE, an open-source TEE implementation, and mbedtls, a
cryptographic library designed to run on small devices. We measured the perfor-
mance overhead of performing cryptographic operations in the TEE. While there
certainly was an overhead due to context switches, the overhead we measured was
bearable and did not threaten the communication between client and server. Thus,
we can conclude that TEEs are indeed viable alternatives to HSMs and TPMs to
protect long-term cryptographic keys.

Other security-critical operations could be implemented in the TEE, as well.
Our current research ideas include integrity monitoring from the TEE and using
the results for remote attestation of IoT devices. One of the main challenges of
remote attestation is how to ensure the trustworthiness of attestation results in
the presence of an attacker. TEEs can solve this problem: even if the attacker
compromises the main operating system, the device’s hardware support for TEEs
isolates the attestation process and cryptographic keys from the attacker.
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