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Abstract. In this paper, we present our first results towards detecting
trigger-based behavior in binary programs. A program exhibits trigger-
based behavior if it contains undocumented, often malicious functionality
that is executed only under specific circumstances. In order to determine
the inputs and environment required to trigger such behavior, we use di-
rected symbolic execution and present techniques to overcome some of its
practical limitations. Specifically, we propose techniques to overcome the
environment problem and the path selection problem. We implemented
our techniques and evaluated their performance on a real malware sam-
ple that launches denial-of-service attacks upon receiving specific remote
commands. Thanks to our techniques, our implementation was able to
determine those specific commands and all other requirements needed to
trigger the malicious behavior in reasonable time.

Keywords: Directed symbolic execution · Trigger-based behavior · Soft-
ware verification.

1 Introduction

Trigger-based behavior is the execution of undocumented, potentially malicious
features in an application upon reception of some inputs that satisfy pre-defined
criteria. Such inputs are referred to as trigger inputs. The pre-defined criteria are
hard-coded into the application in the form of checks and their semantic meaning
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can encompass all sorts of external requirements, e.g. specific system time or
location, special text entered or message received. While not all instances of
trigger-based behavior are malicious (take, for example, software easter eggs3),
such behavior is often used by malware. For example, malware can evade in-
depth analysis by scanning its environment and ceasing malicious activities if
it finds hints of an analysis framework4. Trigger-based behavior also includes
backdoors, a behavior prevalent in firmware images [9], in which case, special
access is granted, if a specific string is received as input. These examples show
that in many cases, the application to be analyzed is only available in binary
form. Therefore, in this paper, we consider applications available as binaries.
Due to the often malicious intent behind the implementation of trigger-based
behavior, its detection is important. However, the combination of inputs required
to trigger the hidden behavior is known only to its author, therefore, uncovering
such behavior via testing is challenging.

Previous work in this field [4,10,12] have demonstrated the usefulness of
symbolic execution [3] to uncover trigger-based behavior. Symbolic execution
was originally developed to automate testing by analyzing execution paths and
generating test cases, which lead execution down the analyzed execution path.
In order to uncover trigger-based behavior, we need to analyze the application’s
interaction with its environment and how the environment influences its behav-
ior. If data from the environment is replaced with symbolic variables, symbolic
execution can analyze this interaction and can obtain the hard-coded conditions
together with the trigger input values satisfying those conditions.

However, using symbolic execution has a limitation: the more symbolic vari-
ables are introduced into the analysis, the more execution paths must be ana-
lyzed, leading to the path explosion problem. Previous work addressed this prob-
lem by considering only a subset of potential trigger input types. In [4], for
example, the human analyst is required to select possible trigger input types in
advance. However, as only the malware author knows the exact trigger inputs,
there is a chance that the human analyst fails to select all necessary types of
input. In [10], the authors describe a technique that works on Android Byte-
code but only consider time, location and SMS objects as trigger inputs. In [12],
a lightweight version of symbolic execution is performed over JavaScript code,
which analyzes the effects of potential values in the navigator’s fields.

In this paper, we want to ovecome the path explosion problem without lim-
iting the trigger input types. Our goal is to develop an approach, which can
consider all external data as potential trigger inputs while relying on symbolic
execution to calculate the inputs and environment required to reach a selected
program point. The overview of our main idea is shown in Fig. 1. We assume that
the analyzed binary is deterministic and interacts with the environment through
the operating system and its API (system calls). Therefore, we consider invoked
library functions as part of the analyzed binary. In real-life execution, the binary

3 https://electrek.co/2017/12/23/tesla-christmas-easter-egg/
4 https://www.fireeye.com/blog/threat-research/2011/01/

the-dead-giveaways-of-vm-aware-malware.html
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Fig. 1. Symbolic Execution for Uncovering Trigger-based Behavior

would invoke multiple system calls and the return values from a subset of those
system calls would be interpreted by the binary as trigger inputs. The binary
would then proceed to match those return values against the pre-defined criteria
hard-coded into its logic and execute the potentially malicious behavior only if
the result of the comparison(s) is a match. In order to analyze this interaction,
the return values of system calls that return data from external sources must be
replaced with fresh symbolic variables. Then, symbolic execution can be used to
analyze this interaction.

Our contributions in this paper are the following:

1) We present an approach for uncovering trigger-based behavior in binaries,
which is capable of considering all external data sources as trigger input
types. Our approach replaces system calls with symbolic summary functions,
which return fresh symbolic variables instead of external data.

2) Our approach relies on directed symbolic execution [14] to guide analysis to-
wards a selected program point. However, directed symbolic execution expects
a semantically correct and complete interprocedural control-flow graph. The
generation of such a control-flow graph is a challenge for binary programs,
mainly due to indirect jumps. Our approach is designed such that directed
symbolic execution can be performed even if the interprocedural control-flow
graph has incorrect/missing edges and/or nodes.

3) We implement our approach in angr [18]: we model 36 system calls for Linux
and discuss modifications to angr’s workflow in order to make our approach
feasible in practice.

4) We evaluate our approach on a real malware sample compiled for the ARM
platform, which is known to exhibit trigger-based behavior. The program logic
of the selected sample contains elements known to be challenging for symbolic
execution and its execution relies on multiple sources of environmental input.
Our approach is able to reach program points deep in the binary and obtain
the environmental conditions required to trigger their execution. In addition,
our analysis time is in the order of hours, which is a reasonable performance
considering the complexity of the analyzed sample and the generality of our
approach.

The paper is structured as follows. Section 2 provides an overview of sym-
bolic execution: the main idea behind the technique, its limitations and current
approaches to overcome those limitations. Section 3 discusses our approach to
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uncover environmental conditions without a priori assumptions about trigger in-
put types. The implementation of the proposed approach is discussed in Section
4. In Section 5, we evaluate our approach on a real malware and discuss both its
performance and the recovered environmental constraints. Section 6 concludes
the paper and outlines future research directions.

2 Background

In this section, we discuss the concept of symbolic execution. The techniques has
been well-researched over the years and as such, a full survey of the field is out
of scope for this paper. We only summarize its main characteristics and discuss
the challenges it poses for our research. Readers interested in a full overview of
this field are kindly refered to [3] and [17].

Symbolic execution is an analysis technique originally proposed to automat-
ically generate test cases and increase code coverage during software testing.
During symbolic analysis, registers and memory addresses do not store exact
values but instead special symbols called symbolic variables. When first intro-
duced into the analysis, symbolic variables may take on any value, i.e. they are
unconstrained. When analysis reaches a branch in the analyzed software, two
execution paths are spawned for both sides of the branch, i.e. it forks. In each
spawned execution path, constraints are placed on the symbolic variables to rep-
resent the chosen path. The set of constraints collected on an execution path is
the path constraint. An execution path is satisfiable, if there exists an assign-
ment to its symbolic variables such that the path constraint is satisfied. If no
such assignment exists, the execution path is said to be unsatisfiable.

The challenges of performing symbolic execution on arbitrary software in bi-
nary form are manifold. Firstly, tools implementing the technique have to model
the execution state on the platform the analyzed software is supposed to run
on, including instruction set, registers, memory, interrupts, calling conventions,
flags, etc. Tools implementing symbolic execution, e.g. DART [11], KLEE [5], S2E
[8], Mayhem [7] and angr [18], come with such a model of the target platform.
Secondly, symbolic execution can only reason about code it analyzes and has no
knowledge about library functions, system calls and their side effects. This chal-
lenge is better known as the environment problem and is typically tackled using
summary functions, which are pieces of code that summarize the effects of the
missing piece of code. Thirdly, as symbolic execution spawns execution paths to
pursue at each encountered branch; the number of execution paths to analyze is
exponential with respect to the number of conditional branches in the analyzed
software. This challenge is known as the path explosion problem and it results
in symbolic execution not being able to exhaustively explore all execution paths
in all but the simplest of cases. This challenge is partially tackled by specifying
which parts of the software are of interest to the analysis and only executing
those parts symbolically. In such scenarios, the analysis engine keeps track of
not only the symbolic state, but the concrete execution state as well, earning
the name mixed concrete and symbolic execution. Lastly, since not all execution
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paths can be explored during symbolic execution, analysis has to decide which
paths to pursue. This challenge is known as the path selection problem and it is
usually tackled using a heuristic exploration strategy. The depth-first strategy
explores an execution path to its completion before backtracking to the second
deepest branch. The breadth-first strategy, on the other hand, seeks to explore
all execution paths in parallel. There are also randomized approaches, where
the next pursued path is selected randomly or with some probability. In certain
application domains of symbolic execution, path selection algorithms have been
tailored for a specific goal, e.g. maximizing coverage [5,13] or reaching a certain
program point [14,16].

We use angr, which is capable of mixed concrete and symbolic execution and
has a model for the ARM platform. However, angr in itself does not solve the
environment and the path selection problems. A major part of our work was to
address these problems, and in Section 3, we describe how we did so.

3 Methodology

Our methodology focuses on how to calculate the correct environmental condi-
tions such that a certain behavior implemented by the analyzed malware can
be triggered. We assume that the human analyst has a specific program point
of interest and wishes to uncover the inputs required to trigger its execution.
Towards this end, we employ two techniques:
1) Symbolic summary functions capturing the behavior of invoked system calls

in order to introduce a model of environmental data to the analysis, and
2) Shortest-distance symbolic execution [14], a path selection strategy to guide

analysis towards the selected program point.
We elaborate on these techniques in Sections 3.1 and 3.2, respectively.

3.1 Symbolic Summary Functions

As mentioned before, the environment is represented by operating system ser-
vices, and the environment manifests itself as the result of invoking system calls.
Therefore, we need symbolic summaries of system calls which model their ef-
fects. Such symbolic summary functions allow us to simulate the environment
for the analyzed application and enable mixed concrete and symbolic execution
to analyze how returned data influences execution.

Our summaries are semantically equivalent to the system calls they replace
with two major exceptions. Firstly, if the system call writes into the environment
(e.g. sends packets or writes in a file), the summary always returns with success.
This allows us to contain the path explosion problem: if we simulated both
success and failure, we would need to simulate the various conditions for failure,
which would further increase the number of execution paths to analyze. However,
we acknowledge the possibility of system call failures being used as triggers.
Secondly, if the system call returns data from the environment (e.g. assigned
process ID, system time, messages over the network), the summary function
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returns fresh symbolic variables instead. Using the fresh symbolic variables, the
influence of the environment on the application can be analyzed.

Symbolic summaries can be written based on the semantic information avail-
able about the system calls in the operating system’s documentation. These
summaries need to be written only once for a particular platform. As an ex-
ample, let us consider the Linux system call fork, responsible for duplicating
processes. On success, it returns the PID of the child process in the parent and
0 in the child. On failure, it returns -1 to the parent, creates no child process
and sets errno appropriately. In order to explore how the invocation of fork

influences the analyzed binary, we need to replace its return value with a fresh
symbolic variable. According to its manpage5, its return value has the type pid t

which is a signed integer. On the ARM platform, a signed integer is 32 bits long,
therefore, the model of this system call for analyzing ARM binaries must return
a 32-bit long symbolic variable. The variable must be constrained as written in
the documentation: it can be a positive number, 0 or -1. Two further constraints
must be added to the model to capture its behavior faithfully. Firstly, if the
return value is greater then 0, than semantically, analysis continues in the child
process. Therefore, the PID and the parent PID of the execution state must be
updated accordingly. Secondly, if the return value is -1, then semantically, the
system call failed and a new symbolic variable is required to represent the error
condition, and its value must be constrained to one of the potential error codes.

3.2 Approach to Symbolic Execution

Symbolic summary functions only introduce the model of environmental data in
the form of fresh symbolic variables. The actual conditions required to trigger a
specific behavior in the analyzed binary are encoded in its instructions. In order
to calculate the correct environmental values, we need to recover and solve these
conditions. To this end, we use mixed concrete and symbolic execution, capable
of both recovering these conditions as path conditions and solving them thanks
to Satisfiability Modulo Theory solvers. Specifically, we employ shortest-distance
symbolic execution (SDSE) [14], designed to prioritize execution paths which are
closer to a selected target according to some metric.

SDSE was originally proposed to solve the line reachability problem: how to
reach a target line in the source code? It requires the interprocedural control-
flow graph in order to guide symbolic execution towards the targeted line. The
approach first translates execution paths to control-flow graph nodes, then com-
putes the shortest distance from said nodes to the node corresponding to the
target line. The computed metric is used as scores to prioritize execution paths.
At branches, SDSE selects the execution path with the lowest score among all
available paths for analysis.

Our scenario is similar to the one SDSE was developed for in the sense
that we need a solution for the reachability problem in order to recover con-
straints placed on environmental data. However, there are key differences as

5 http://man7.org/linux/man-pages/man2/fork.2.html

http://man7.org/linux/man-pages/man2/fork.2.html
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well. Firstly, SDSE was originally proposed and implemented at the source code
level, while we apply it at the binary level. As a result, instead of a target line,
we aim to reach a target binary instruction. Secondly, as stated in [14], SDSE
can only work correctly, if the interprocedural control-flow graph recovered from
the binary does not have mismatching calls and returns. Otherwise, semanti-
cally incorrect or infeasible paths may be computed as shortest paths, resulting
in incorrect scores and priorities. In order to generate a semantically correct
control-flow graph whose structure properly captures function calls and returns
encountered during execution, the generator algorithm has to consider a lot of
context-related information, including call sites, return sites and the call stack.
There exist algorithms capable of handling that information [6,18], however,
their usage in practice poses a challenge. As more context-related information
is taken into consideration, the time and space required to generate and store
the resulting control-flow graph also increases exponentially. Instead of generat-
ing such a control-flow graph, we implemented a heuristic algorithm to discard
edges whose inclusion in the shortest path calculation might result in incorrect
paths. This heuristic allows us to keep the required contextual information at
a minimum by taking into consideration potential changes to the call stack at
edges that result in semantically correct function calls and returns. We discuss
the implementation of this heuristic in Section 4.2.

4 Implementation

We implemented our approach in angr (version 7.8.2.21), an open-source binary
analysis tool written in Python, capable of analyzing binary formats of ma-
jor operating systems, such as ELF, PE and Mach-0 files. The tool implements
many analyses for binary code, including mixed concrete and symbolic execution,
constraint solving, control-flow graph generation, program slicing, dependency
analysis, etc. These analyses are performed over the intermediate representa-
tion (IR) of valgrind [15], called VEX, to provide platform independence. VEX
translates a sequence of binary instructions into a block of IR instructions. As
a result, most analyses are not performed on a per instruction basis, but rather
on a per IR block basis. Our implementation uses the following features of angr:
1) mixed concrete and symbolic execution engine with a constraint solver,
2) control-flow graph generation, and
3) model of execution states, including registers, memory, and elements from

POSIX, such as files and sockets.
There were cases, in which we needed to modify the workflow and execution of
angr. We discuss these modifications in the rest of this section.

4.1 Symbolic Summaries for System Calls

angr supports system call invocations during mixed concrete and symbolic ex-
ecution. However, developers focus more on defining the environment at the
library level and therefore, the tool has more symbolic summaries for standard
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libc functions than it has for system calls. As a result, many system calls invoked
during our tests were missing and had to be added to the tool manually. The
list of 36 system calls we had to create symbolic summaries for is shown in Tab.
1.

Table 1. System Calls on Linux for Which Symbolic Summaries Were Created

newselect arm set tls brk clone close connect

exit exit group fcntl fcntl64 fork futex

geteuid32 getgid32 getpid getppid gettimeofday getuid32

ioctl kill mmap2 nanosleep open read

recv rt sigaction rt sigprocmask sendto setrlimit setsockopt

socket time ugetrlimit uname wait4 write

4.2 Control Flow Graph

There are two algorithms to generate an interprocedural control-flow graph in
angr. The first algorithm is called CFGFast and it relies on heuristics and as-
sumptions to greatly decrease the time required for generation. The second algo-
rithm is called CFGAccurate (CFGEmulated in later versions) and it performs
lightweight symbolic execution to generate the control-flow graph, increasing ac-
curacy. In our implementation, we used CFGAccurate as accuracy is important
for using SDSE.

Extending the Control Flow Graph There are program constructs which
pose a challenge during control-flow graph generation, e.g. indirect jumps. We
encountered scenarios where CFGAccurate detected the indirect jumps but it
was unable to accurately determine the address the analyzed code jumped to.
The limitation is caused by the lightweight nature of its symbolic execution: if
a read or write operation involves an operand which could be assigned multiple
values, that operand is skipped and a fresh, unconstrained symbolic variable
is used instead. However, angr’s symbolic execution has an upper limit on the
number of successor states it generates when analyzing an execution state. If the
instruction pointer of the analyzed execution state has more than 256 solutions
(by default), then the tool assumes that the instruction pointer was overwritten
with unconstrained data, and flags the execution state as one producing uncon-
strained successors.6 As a result, CFGAccurate may fail to analyze certain parts
of the binary due to the inaccurate execution state used during construction.
This scenario is illustrated with the following two instructions:

ldr r4, [r3, #4] ; load function address from memory

blx r4 ; call function

6 This assumption is included in angr’s documentation together with the fact that it
is not sound in general.
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The code includes a call to the address contained in r4, whose value is loaded
from memory. The address from where the value is to be loaded is influenced
by r3. If r3 holds an operand with multiple potential values while control-flow
recovery analyzes this code segment, then analysis has to read a multi-valued
operand from the register. However, as discussed before, instead of performing
the read, the recovery algorithm creates a fresh, unconstrained symbolic variable
to represent the result of the read operations. As a result, r4 will also hold an
unconstrained symbolic variable when the recovery algorithm tries to determine
the jump address. Because the unconstrained symbolic variable has more than
256 solutions, the state is flagged as one producing unconstrained successors and
address resolution fails.

Normal mixed concrete and symbolic execution, however, never skips operands
and is much less likely to run into such a scenario. Execution states have operands
with semantically correct values and correct path constraints. If control-flow
graph generation is resumed from such a state, CFGAccurate can accurately
identify the indirect jump addresses, if the value of r4 has less than 256 solu-
tions. Therefore, during control-flow graph generation, we take note of addresses
where unconstrained successors were computed as potential extension points
of the control-flow graph. When normal mixed concrete and symbolic execu-
tion reaches such an address, we use the accurate execution state to extend the
control-flow graph on the fly.

Shortest Path Calculation The accuracy of CFGAccurate is influenced by
its level of context-sensitivity. This parameter captures how deep the call stack
is taken into consideration when determining the calling context of any given
control-flow graph node. By default, the algorithm analyzes each address only
once per distinct calling context. As a result, different levels of context sensi-
tivity result in different graph structures, which in turn influence the available
paths computed by generic shortest path algorithms. Fig. 2 shows the different
contexts in which functions are analyzed at different levels of context sensitivity.
Because of the different contexts, functions may be replicated multiple times in
the control-flow graph. Note, that we demonstrate the effect of context sensitiv-
ity at the source code level only for ease of understanding, but our techniques
work at the binary level.

In order for generic shortest path algorithms to compute semantically correct
paths in the interprocedural control-flow graph, edges connecting mismatched
call sites and return sites must be discarded. CFGAccurate can record the exe-
cution state from which a specific control-flow graph node was created, allowing
access to its call stack. The algorithm also annotates edges with attributes re-
covered by VEX during lightweight symbolic execution. One of these attributes
is the semantic meaning of the jump at the end of each IR block (e.g. function
call, return, etc.). Inspired by the control-flow graph model of [2], a visibly push-
down automaton which keeps track of the calling context of functions, we rely
on the call stack and the edge annotation to implement a heuristic that discards
semantically incorrect paths violating the following rules:
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0-context
sensitivity

1-context
sensitivity

2-context
sensitivity

a a main→a (library init)→main→a
b b main→b (library init)→main→b

c c
a→c
b→c

main→a→c
main→b→c

printf printf
a→printf
b→printf
c→printf

main→a→printf
main→b→printf

a→c→printf
b→c→printf

Fig. 2. Different Contexts of Functions During Control-flow Graph Generation

1. The call stack depth difference between the source node and the destination
can only change by -1, 0 or 1, corresponding to returning, staying in the
function or calling another function, respectively.

2. In case of calls and returns, the edge’s attributes must support the deduction
made from the call stack depth difference. For example, if the call stack depth
difference is 1, then the edge’s attributes must state that the edge represents
a function invocation.

If any of the above rules is violated, the edge is discarded during the shortest
path calculation.

Fig. 3. Fake Return Edges in an Interprocedural Control-Flow Graph
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Our approach can rely on generic shortest path algorithms thanks to special,
so called fake return edges. These edges are directed edges from the call site to the
return site and are automatically added by angr whenever a call is encountered.
Their importance is highlighted in Fig. 3, which shows the fake return edges
in the interprocedural control-flow graph of the source code shown in Fig. 2
when context sensitivity level is set to 0. For the sake of clarity, the actual
instructions responsible for setting up the execution state for calling functions
were omitted. By default, CFGAccurate analyzes each IR block once per distinct
calling context. With 0 context sensitivity level, the calling context is only the
currently analyzed function, which leads to each function being present in the
graph exactly once. For each analyzed block, angr adds a call edge to the called
function and a fake return edge to the return site. These special edges mainly
serve the purpose of ensuring connectivity in the graph. Because each block is
analyzed once per distinct calling context, each function has only 1 return edge.
For example, consider the printf function. Even tough it is called from a, b
and c, it is analyzed only once, the first time it is encountered when called from
a. As a result, printf has only 1 return edge, leading to its return site in a.
Without fake return edges, printf’s call site in b would not be connected to its
return site in b.

Our edge discarding heuristic can also lead to loss of connectivity without
fake return edges. For example, our heuristic discards the call edge between c and
printf because the control-flow graph nodes’ call stack depth does not support
a function call. The call site has the context main→a→c, while printf has a
the context main→a→printf. Because the call stack depth difference is 0, the
edge should indicate staying in the function instead of calling another function.
Without the discarded call edge, generic shortest path algorithms must rely on
the fake return edge to calculate shortest paths. However, even if the fake return
edge is used, simulation must execute the function represented by the said edge.
In order to faithfully capture the cost of calling a function, we assign weights
to fake return edges: the smallest number of IR blocks simulated between the
call and return sites throughout analysis, i.e. the shortest path mixed concrete
and symbolic execution uncovered. Thanks to this heuristic, we are able to keep
context sensitivity at level 1.

4.3 Call Stack Management

During our work, we discovered mismatches between how the call stack is man-
aged in CFGAccurate and how it is managed during mixed concrete and symbolic
execution. The discrepancies between the algorithms hinders us in translating
execution states into control-flow graph nodes.

In case of mixed concrete and symbolic execution, function calls are detected
by statically looking at the semantic information about the jump at the end
of the analyzed IR block. Function returns, on the other hand, are detected by
looking at the stack pointer. The function returns if either the stack pointer
has a lower value than it had at the call (which is the convention in e.g. Intel
platforms) or execution has reached the return address recorded at the call and
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the stack pointer has the same value as it had at the call (which is the convention
in platforms like ARM where the return address is stored in the link register).

CFGAccurate uses the same approach with an additional feature. For each
IR block address encountered during CFG construction, it checks with angr’s
loader whether the address corresponds to a symbol. If it does, it forcefully
simulates a call to that symbol. This approach has the advantage of providing
more meaningful nodes in the control-flow graph. However, it hinders us from
accurately matching execution states to control-flow graph nodes as the calling
contexts are different. As an example, consider the following instructions:

000105a4 <getspoof>:

...

105bc: eb0022aa bl 1906c <rand>

...

0001906c <rand>:

1906c: ea000065 b 19208 <__GI_random>

...

00019208 <__GI_random>:

...

The getspoof function at 0x105bc calls rand, which immediately jumps to
GI random. In case of symbolic execution, the execution state at 0x19208 has

the calling context getspoof→rand, while the control-flow graph node represent-
ing 0x19208 has the context getspoof→rand→ GI random, because 0x19208

corresponds to a symbol. Due to the different calling contexts, the execution
state cannot be translated to the control-flow graph node. Thus, we removed
the forceful simulation of function calls from CFGAccurate.

We have also encountered call stack management issues in scenarios where
mixed concrete and symbolic execution forks in functions with only one of the
paths returning. The issues are caused by angr running its call stack management
code before adding path constraints to the state. We illustrate the problem with
an example. Consider the following snippet from the strcasecmp l function.

179c4: lsl r3, r3, #1 ; increment index for string1

179c8: lsl r0, r0, #1 ; increment index for string2

179cc: ldrsh r3, [lr, r3] ; load next char of string1

179d0: ldrsh r0, [lr, r0] ; load next char of string2

179d4: subs r0, r3, r0 ; compare the chars

179d8: popne {pc} ; (ldrne pc, [sp], #4)

179dc: ldrb r3, [ip], #1

The function iterates over two strings character by character to check whether
they are equal. The comparison between two characters is implemented using
subtraction. If the result of the subtraction is 0, i.e. the characters are the same
and the function continues, otherwise, it returns. If any of the input strings
consists of symbolic variables as characters, the comparison has two outcomes:
equals and not equals. At the end of simulating the block starting at 0x179c4,
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angr forks and creates the two successor states, one at 0x179dc and another at
the return site. It then proceeds to check whether any of these states returned.
However, the path condition has not been added to the successors yet, therefore,
the stack pointer of the state at the return site is a symbolic expression encoding
both staying in the function and returning. As a result, the call stack manage-
ment code cannot deduce that the state returned and fails to pop strcasecmp l

from the call stack. To overcome this issue, we concretize the stack pointer after
forks and re-run the call stack management code to get correct call stacks.

4.4 Model of the Execution State

In order to model the side effects of system calls and any additional data they
might return, we extended the original execution state model provided by angr.
The extended model includes additional POSIX elements on a per-path basis,
such as group ID, thread ID and parent process ID.

We also modified how system time is tracked throughout mixed concrete
and symbolic execution. Originally, angr used a monotonically increasing, global
symbolic variable to model system time which is suitable for the default breadth-
first exploration strategy. However, SDSE’s prioritization strategy can backtrack
to an earlier execution state, which semantically means taking us “back in time”.
In order to support such a backward flow of time, we model system time on a
per-path basis with local symbolic variables.

Throughout mixed concrete and symbolic execution, we also monitor the ex-
ecution state to detect whether branches are the result of references to uninitial-
ized memory addresses. This scenario can be the result of a bug in the analyzed
binary, but might also signal missing side-effects of system call models. As a
result, we do not pursue such paths any further, but keep them separated from
the rest of execution states for further analysis.

5 Evaluation

We evaluated our approach on a slightly modified sample from the Kaiten 7

malware family. Kaiten variants are Trojan horses which open backdoors on
various platforms and perform malicious tasks when remotely instructed to do
so. Our sample implements its own IRC protocol parser and expects remote
commands to be delivered as IRC private messages. Some commands are used
to launch denial-of-service attacks, execute shell commands and download files.

We chose this sample because its execution relies heavily on its environ-
ment. In order to trigger any malicious behavior, the sample must be able to
communicate over the network. It needs to connect to the IRC server at the
preprogrammed address and log into the also preprogrammed IRC channel. The
sample uses randomly generated strings as nick and user name in the IRC com-
munication; the seed is calculated from the system time, the process ID and the

7 https://www.symantec.com/security-center/writeup/2015-102008-3612-99?

tabid=2

https://www.symantec.com/security-center/writeup/2015-102008-3612-99?tabid=2
https://www.symantec.com/security-center/writeup/2015-102008-3612-99?tabid=2
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parent process ID. Once connection to the IRC channel has been established, the
correct IRC private message must be received in order to trigger any behavior
implemented in the sample.

Our chosen sample poses two challenges. Firstly, due to our assumptions and
the sample’s implementation, a vast number of execution paths are available for
analysis. There are three main sources for such a high number of paths:

1) Environmental data. The sample relies on the system time, process IDs and
communication over the network. As we assume no prior knowledge about
its functionality, our analysis has to analyze all those inputs using symbolic
variables, leading to many branches.

2) String handling. The sample implements an IRC protocol parser and uses
standard libc functions such as strlen, strtok and strcasecmp to manipu-
late the string messages received over the network. These functions typically
loop over the string character by character. As their inputs are returned from
the kernel, our analysis must consider each of the characters as symbolic
variables. Such loops are known to contribute to the path explosion problem.

3) Infinite loop. The sample is implemented to run in an infinite loop, contin-
uously listening for messages from the IRC server and trying to reconnect
in cases of communication failure. As a result, exploring all execution paths
cannot be done in a finite amount of time.

Another challenge is in the sample’s logic. In case of receiving a well-formed
IRC message, the sample dispatches the message to the appropriate handler
function via jump tables. These jump tables are represented in the control-flow
graph by nodes with many call edges leading to different handler functions. The
use of jump tables decreases the accuracy of shortest path calculation, as the
shortest path is always to take the correct call edge, even if said edge is infeasible.

5.1 Setting Up Our Experiment

Modifications to the Sample Before we applied our implementation to the
chosen sample, we made a few modifications to it which we describe here. First,
we downloaded its publicly available source code8. Then, we shortened all strings
in the jump tables of the source code to contain only a single character and the
terminating null. With this modification, we can contain the path explosion of
looping over strings to a certain extent. Note, however, that the modified sample
still includes multiple jump tables organized into layers with each layer requiring
multiple characters with specific values. Therefore, even with this modification,
the sample still requires a string with multiple characters to invoke the necessary
handler functions. We also set the address of the IRC server to 127.0.0.1 in
order to avoid symbolically analyzing a DNS lookup. Finally, we recompiled the
modified source code for the ARM platform and performed our analysis on the
resulting binary. Both the original and the modified source code are available as
supplementary materials [1].

8 https://packetstormsecurity.com/files/25575/kaiten.c.html

https://packetstormsecurity.com/files/25575/kaiten.c.html
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Target Behavior As the target behavior, we selected one of the functions
launching denial-of-service attacks (tsunami in the source code). The attack is
executed in a child process and sends spoofed packets to the target IP specified
in the command. We inserted a call to the kill libc function before the child
process is created and set the underlying kill system call as our target. Note,
that this system call is used in other functions as well, therefore, we only accept
reaching it, if it is done via the tsunami function.

In order to reach this function, mixed concrete and symbolic execution has
to simulate the communication with the IRC server and “send” a specific string
to the sample. The string must meet the following requirements:
1) The sample must interpret its first part as an IRC private message, i.e. it

must start with the corresponding code from the jump table of IRC message-
handling functions (4 in our case).

2) It must contain the preprogrammed name of the IRC channel to which the
sample logged into (# in our modification).

3) It must be intended for the sample, either by specifically mentioning the
sample’s IRC nick (randomly generated) or by using a wildcard character.

4) The sample must interpret its last part as a command for launching the DoS
attack implemented in tsunami, i.e. it must contain the corresponding code
from the jump table of command-handling functions (0 in our case).
Unfortunately, while generating the control-flow graph with context sensi-

tivity level 1, angr did not flag the IR blocks implementing the jump tables as
producing unconstrained successors. As a result, jump tables were not treated
as potential extension points, forcing us to specify the missing edges manually.

Parameters of the Machine We ran the sample on a machine with two Xeon
E5-2680 CPUs of 10 cores each, running at 2.8 GHz. The machine has 378 Gb
of RAM available. Note that angr is not multithreaded and uses only a single
core. We also restricted angr to run with 100 Gb of memory.

5.2 Results

Table 2. Runtime Performance of Each Stage of Approach on Modified Kaiten Binary
Sample

Stage Runtime (hh:mm:ss)

Control-flow graph generation and extension 0:10:42

Simulation of execution paths 19:08:54

Shortest distance calculation 8:05:44

Other management tasks 5:05:11

Runtime Performance Tab. 2 shows the performance of our prototype imple-
mentation on the modified Kaiten binary sample. The execution path reaching
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the targeted program point at the source code level is available as supplementary
material [1]. The execution time of a single run consists of four components:

1) generation and extension of the control-flow graph,
2) simulating execution paths,
3) calculating scores during backtracking, and
4) other management tasks, e.g. concretizing stack pointers when necessary,

logging events, checking if our target was reached, etc.

The measured execution time of our analysis was 32.5 hours. Most of the time was
spent with either simulating execution paths or calculating shortest distances.

The execution time of simulating execution paths can be accredited to the
logic of the sample. During our tests, analysis encountered addresses, whose sim-
ulation took hours for mixed concrete and symbolic execution. These addresses
were part of libc, including rand and multiple string-manipulating functions
whose simulation involved computations with complex symbolic values. rand is
used by the modified sample to generate random 1-character-long strings for
communication with the IRC server. While the generated string for the nick has
to be analyzed in order to reach the target system call, its value does not matter:
the symbolic string representing network input either matches it, or it does not.
Therefore, we replaced rand with angr’s built-in symbolic summary and used
a fresh, unconstrained symbolic variable to represent its result. However, the
results of string manipulations contribute directly to the execution path leading
towards the selected target behavior: they affect how long the symbolic string
representing network input is and what constraints are placed on its characters.
Therefore, we did not influence the execution of string manipulations and settled
for the increased execution time.

Recovered Path Condition The execution state which first reached the target
system call had 76 constraints, encoding the network conditions and the remote
command required to trigger the target behavior. We checked their correctness
manually by looking at the source code.

Depending on their complexity, some constraints are intuitive to interpret.
For example, <Bool socket retval 23127 32 == 0x3> can be interpreted as
the requirement for successfully creating sockets. socket retval 23127 32 is
the symbolic variable introduced in the socket system call. The two numbers
are appended by angr: the first is a unique identifier, while the second is the
length of the variable in bits. The return value of socket in case of success is
a file descriptor (positive integer) and -1 in case of failure, it is -1. Given that
the right-hand side of the equation is positive, we can deduct that the sample
invoked the system call to create a socket which had to be completed successfully.

The human interpretation of other constraints, however, is quite challenging
due to their complexity. For example, our modified sample sets an upper limit
of 4096 on the number of characters it reads from a socket in one go. Therefore,
our symbolic summary of recv returns a 4096-character-long string made up
of symbolic variables. The sample then invokes multiple string manipulating
functions which loop over the string character by character. The corresponding
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binary instructions are conditional in many cases, which means that in real life,
the CPU would execute them only if necessary. During simulation, however, one
of their operands is a symbolic character and therefore, they cannot be skipped.
Instead, when possible, their results are encoded into If-Then-Else structures:
if the flag evaluates to true, then the result is the Then value, else the Else

value. These structures can be nested into each other, leading to constraints
whose evaluation is tedious manually. In such cases, the constraint solver can be
used to calculate the assigned values, giving the inputs required to trigger the
targeted program point.

6 Conclusion

In this paper, we proposed an approach to determine what inputs and envi-
ronmental conditions must be met in order to trigger undocumented, hidden
behaviors in binary programs. Our approach consists of two techniques. Firstly,
we model the environment at the operating system level by providing symbolic
summary functions of system calls. Our summary functions have the same num-
ber and type of arguments as their real-world counterparts, but introduce fresh
symbolic variables in order to model the effects of system calls. Secondly, we
use shortest-distance symbolic execution to find a feasible path to a selected
program point and collect the constraints along said path to acquire insight
into the required input values and environmental settings. This technique relies
on a semantically correct, complete inter-procedural control-flow graph, which
is often unavailable for binary programs due to indirect jumps. Therefore, our
approach is designed to allow for incorrect/missing edges and/or nodes.

We implemented our approach using angr and evaluated it on a sample from
the Kaiten malware family. The sample implements an IRC bot client, which,
among other things, launches denial-of-service attacks when remotely instructed
to do so. The logic of the chosen sample poses additional challenges as many
of its implementation details are known to be hard to analyze symbolically.
Nevertheless, our approach successfully found a feasible path within reasonable
time. The path condition along that path gave additional insight as to what kind
of environment is needed to trigger a specific attack.

The manual interpretation of conditions can be tedious, so we recommend to
automate this process as much as possible, but we leave the details of such auto-
mated evaluation of trigger conditions for future work. Another possible future
research direction is to alleviate the task of manually finding program points
whose trigger condition is of interest to the human analyst. Our recommenda-
tion is to identify patterns of suspicious behaviors in an off-line manner, e.g. by
syntactic analysis. Given a set of such patterns, their presence in the analyzed
sample could be determined by automated static analysis and the correspond-
ing program points could be listed as targets for our approach described in this
paper. We also leave as future work the evaluation of our approach on a larger
sample set. We envision a study of other malware families and their variants,
studying the differences in their environmental requirements.
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