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ABSTRACT
A program exhibits trigger-based behavior if it performs undocu-
mented, often malicious, functions when the environmental condi-
tions and/or specific input values match some pre-specified criteria.
Checking whether such hidden functions exist in the program is
important for increasing trustworthiness of software. In this paper,
we propose a framework to effectively detect trigger-based behav-
ior at the source code level. Our approach is semi-automated: We
use automated source code instrumentation and mixed concrete
and symbolic execution to generate potentially suspicious test cases
that may trigger hidden, potentially malicious functions. The test
cases must be investigated by a human analyst manually to decide
which of them are real triggers. While our approach is not fully
automated, it greatly reduces manual work by allowing analysts to
focus on a few test cases found by our automated tools.

CCS CONCEPTS
• Security and privacy → Malware and its mitigation; Soft-
ware security engineering; • Software and its engineering →
Operational analysis;
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1 INTRODUCTION
Trigger-based behavior in software refers to execution of code that
is activated on specific input values (the so called trigger inputs)
and that performs some undocumented functions. Often, the users
are not aware of the existence of those undocumented functions
in the software. It is clear that using an application that has such
hidden functions, which can be triggered by non-legitimate par-
ties, is dangerous, as those functions can potentially implement
malicious actions. Indeed, the best examples for trigger-based be-
havior include backdoors and logic bombs hidden in applications
by malicious parties [25], although there are benign examples as
well, such as easter eggs. Malware can also exhibit trigger-based
behavior [9, 17, 19]; however, in this paper, we are more interested
in trigger-based behavior in legitimate applications.

The adversary model of trigger-based behavior assumes that
the attacker has access to the software and is able to modify the
implementation to implant the hidden, malicious behavior, which
will be triggered during the execution of the software. In practice,
the attacker may be a compromised developer or a compromised
contractor in the supply-chain trying to insert malicious code in the
software, which can be exploited later in a targeted attack against
the user [6]. Or, the attacker may be a disgruntled employee at a
company with access to the software used by that company [14].

From a software security assurance perspective, the detection
of trigger-based behavior in software is of paramount importance.
Unfortunately, it is a difficult task. One approach is to try detecting
hidden functions by software testing. However, current software
testing approaches have limitations. Specification-based (or black-
box) testing techniques have no knowledge of the internal structure
of the software, therefore, they may only discover the hidden be-
havior if the correct trigger inputs are specified. This limitation
reduces their effectiveness because of the assumption that no one,
but the attacker has knowledge of the trigger inputs. Structural
(or white-box) testing, on the other hand, takes into account the
internal structure of the software which the hidden behavior is
part of. As such, white-box testing approaches can generate better
results.

White-box analysis can be performed at the binary level or at the
source code level. However, analyzing the binary can be difficult
due to the lack of semantic abstractions in low level code. And
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even if one has access to the source code, detecting trigger-based
behavior by manual inspection can be tedious and error prone,
as the human analyst has to interpret a potentially large amount
of code written by someone else. Yet, today, manual source code
analysis seems to be the approach that is used by practitioners
[1]. Although some researchers tried to automate the detection
of trigger-based behavior, most of those works focus on binary
analysis of malware (see e.g., [2]), in which we are not interested
in this work.

In this paper, we apply open-source and commercially available
tools to effectively detect trigger-based behavior at the source code
level. We propose a framework which utilizes existing white-box
analysis tools. Our approach is based on automated source code
instrumentation that makes the source code amenable to analysis
by tools. Detection of trigger-based behavior is achieved by mixed
concrete and symbolic execution, which automatically outputs nu-
merous test cases for uncovered execution paths in the analyzed
software. Among those test cases, a small subset of potentially sus-
picious test cases are automatically highlighted by our tools. Those
highlighted test cases must be investigated by a human analyst to
decide which of them could be a trigger input. Thus, our approach
is not fully automated, but it greatly reduces manual work by al-
lowing analysts to focus on the few highlighted test cases found by
our automated tools. More specifically, our contributions are the
following:

(1) we present a framework for semi-automated detection of
trigger-based behavior based on existing tools. To the best
of our knowledge, we are the first to show that existing
mixed concrete and symbolic execution tools can be suc-
cessfully deployed for detecting trigger-based behavior;

(2) we demonstrate a proof-of-concept implementation of the
framework for programs written in C using the LLVM
toolchain;

(3) we evaluate the results on real-world, open-source soft-
ware samples. Our first result suggests that if mixed con-
crete and symbolic execution succeeds, the hidden, mali-
cious behavior can be detected.

The paper is structured as follows. The challenges of detecting
trigger-based behavior are discussed in Section ??, together with
existing approaches to overcome those challenges. We present our
framework in Section 3. Our preliminary results of applying the
framework to real-life, open-source examples are presented in Sec-
tion 4. Finally, Section 5 concludes the paper and sketches future
work.

2 CHALLENGES OF DETECTING
TRIGGER-BASED BEHAVIOR AND
EXISTING APPROACHES

The challenges of detecting trigger-based behavior mainly arise
from the fact, that the analysis has to uncover a hidden, stealthy
type of behavior which is executed only under very specific circum-
stances. Black-box testing approaches observe only the inputs and
outputs of the software and have no knowledge of the internals of
the software. Therefore, the hidden behavior can only be detected,
if the analyst either knows the trigger inputs beforehand or can

correctly guess them. Considering the threat model, it is unreason-
able to assume that the tester knows the trigger inputs. In addition,
the probability of correctly guessing the trigger inputs is low.

White-box testing approaches, on the other hand, take into ac-
count the internal structure of software. However, current auto-
mated vulnerability-finding tools tend to focus on typical program-
ming vulnerabilities that are exploited by well-known and under-
stood attacks (e.g. buffer overflow). To assist analysts in creating test
cases that cover trigger-based behavior as well, the SQA Tool [1]
highlights code segments based on how much test-coverage would
improve with their execution. This approach certainly improves
the performance of human analysts, but the detection process is not
automated enough. Test cases must still be written by the analysts,
which requires interpretation of the source code, as well as correctly
determining of trigger inputs based on the source code.

Taking into account the internal structure of software is useful
for the detection of trigger-based behavior, as shown in [8]. The au-
thors modeled malicious behavior observed during execution, and
were able to detect similar code segments in new malware samples.
However, this approach relies on already observed behavior and
cannot detect new types of trigger-based behavior.

The ideal approach for detecting trigger-based behavior should
be able to:

(1) interpret how input values are handled, which is analogous
to how input values modify the behavior of the analyzed
software,

(2) automatically generate input values based on the interpre-
tation,

(3) identify conditions required to reach any part of the code,
(4) detect suspicious conditions and decide whether the exe-

cution path is malicious or benign

The first three requirements can be satisfied with symbolic exe-
cution [5], a technique that is able to calculate the constraints on
inputs such that execution takes a certain path (also known as the
path condition). The technique assigns symbolic values to variables,
that describe and track how the value of the variables depend on
the input. At branches in the software, symbolic execution splits
into two instances: in one instance, the symbolic variables are con-
ditioned so that they satisfy the branching condition, in the other,
they do not. Solving the path condition results in concrete input
values that can be used as test cases covering previously uncovered
code. Solving the path condition is typically performed by a deci-
sion procedure (also known as the solver) such as Yices [11], Z3
[10] or STP [13].

However, traditional symbolic execution suffers from a number
of limitations. Here we only summarize these limitations, interested
readers are directed to the study presented in [5].

• Path explosion: by splitting execution at each branch, the
number of program paths to be explored usually grows
exponentially

• Environment problem: all code that resides outside of the
analyzed software, but is used by it, should be executed
symbolically as well for precise results, including all li-
braries and the operating system
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• Resource constraint: constraint solving takes up much of
the time during symbolic execution and hinders the tech-
nique’s scalability, moreover, splitted execution instances
require much memory

• Unsolvable conditions: some conditions cannot be solved
by the solver (e.g. matching the cryptographic hash value
of the symbolic input to a hard-coded one)

To overcome some of the challenges, a hybrid approach was
proposed that mixes concrete and symbolic execution [4, 15, 21].
Analysis maintains two states: one maps variables to their con-
crete values, while the other maps symbolic variables. As execution
progresses, both states are updated with the new concrete values
and the new constraints on symbolic values. The advantage of this
approach is that even if the solver fails, the state that maps variables
to concrete values can be used to explore at least one of the two
paths emanating from the branch. In addition, the stored concrete
values cane be used when interacting with external code, thereby
solving the environment problem.

The modern approach of mixing concrete and symbolic execu-
tion has been proposed for the detection of trigger-based behavior
in literature. Minesweeper [2], for example, utilizes this technique
together with dynamic binary instrumentation and has been shown
to successfully identify trigger-based behavior in real-world mal-
ware in binary form. Triggerscope [12] also relies onmixed concrete
and symbolic execution but it focuses on Dalvik bytecode instead of
native binaries. Rozzle [16] maintains symbolic values for JavaScript
variables dependent on environmental-specific values and splits
execution at branches to explore multiple program paths.

The above mentioned related works resulted in the implementa-
tion of new mixed concrete and symbolic execution engines. How-
ever, there exists already many open-source or commercially avail-
able mixed concrete and symbolic execution tools, such as KLEE
[4] and CUTE [21] on the source code level, Triton [20] and Angr
[22] on the binary level. Our approach is different from previous
work in that we study how existing tools could be used for detecting
trigger-based behavior. The rationale of our approach is that mixed
concrete and symbolic execution is an active research area and
improvements in the field will lead to better tools in the future.
Therefore, it is advantageous to have an approach in which tools
can be interchanged with minimal overhead.

3 OUR APPROACH
In this section, we present our approach to detect trigger-based
behavior using existing mixed concrete and symbolic execution
tools. Our approach works at the source code level and is capable
of both detecting trigger-based behavior and supporting human
analysts by outputting the instructions leading to the suspicious
behavior. The high-level overview of our proposed framework is
shown in Fig. 1.

3.1 Automatic Source Code Instrumentation
Many existing mixed concrete and symbolic execution tools, in-
cluding KLEE [4], S2E [7] and CREST [3], require additional library
calls to specify which variables in the software should be treated as
symbolic. Therefore, the first step of the analysis is to instrument
the source code with the required library calls.

Figure 1: High-level Overview of the Framework

In order to detect trigger-based behavior, instrumentation must
first identify variables and function calls that may guard the hidden
behavior. Considering that the hidden behavior is triggered by
the attacker during execution, the trigger inputs must be supplied
via interaction with the software, thus, the attacker is part of the
environment. As software typically interacts with its environment
via function calls, calls that return data from the environment are
potential entry points for trigger inputs. By replacing these calls
so that fresh symbolic values are returned, mixed concrete and
symbolic execution can determine how execution depends on the
environment.

We propose that replacement should happen with dummy func-
tions. Dummy functions are empty functions, they do not implement
any functionality, only introduce fresh symbolic values to the soft-
ware under analysis. They have the same prototype as their original
counterpart (i.e. same return type, same number and type of ar-
guments). The introduction of fresh symbolic values can happen
either as a return value or by making certain arguments symbolic,
depending on the semantics of the original function. Dummy func-
tions should be easily identifiable in the source code, e.g. with
naming convention, so that the introduction of symbolic values is
obvious. For example, consider the pcap_next() function from the
libpcap library. The function reads the next packet from a packet
capture, and as such, it may return the trigger inputs embedded
in a packet. The original function has the signature const u_char
*pcap_next(pcap_t*, struct pcap_pkthdr*). The correspond-
ing dummy function has the same return type and arguments, but
it is easily identified with a naming convention: const u_char
*pcap_next_dummy(pcap_t*, struct pcap_pkthdr*). In addi-
tion, instead of returning a pointer to a concrete packet, the dummy
function returns a pointer to a symbolic value representing a packet.

3.2 Mixed Concrete and Symbolic Execution
The instrumented source code is then analyzed by the mixed con-
crete and symbolic execution tool which is capable of automatically
generating test cases for the analyzed software. To increase the ef-
fectiveness of our approach, we require the following two features:

(1) The tool must be able to output path conditions at any
given program point

(2) Path conditions output at potentially malicious points must
be easily differentiated from other test cases generated at
different program points
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Figure 2: Trace Generation

The first feature is used to output path conditions before po-
tentially dangerous instructions. We define potentially dangerous
instructions as system and library calls that could be used for im-
plementing malicious behavior. For example, the execv() call in C
is potentially dangerous because it may be used to give malicious
commands to the operating system. Other potentially dangerous
instructions include calls to system() and send(). Given a list of
potentially dangerous functions, their use in the source code can be
identified automatically. Thus, the source code can be automatically
instrumented in such a way, that the mixed concrete and symbolic
execution tool generates a test case immediately before reaching
the suspicious behavior. Since potentially dangerous system and
library calls can be used for benign purposes as well, false positives
are possible.

The second requirement increases the level of support our ap-
proach gives to human analysts by prioritizing them. We refer to
solutions to path conditions output at potentiallymalicious program
points as highlighted test cases. Highlighting potentially malicious
test cases orients analysts towards potential trigger inputs. The
differentiation between ordinary and highlighted test cases may be
based on special file extensions, storage in a different folder, etc.

3.3 Trace Generation
Highlighted test cases show the potential trigger inputs, but give no
information about how the trigger inputs are used in the software.
This information is acquired by trace generation. The idea here is to
replay the highlighted test cases to see the sequence of instructions
executed (the trace) and follow the same execution path, that the
mixed concrete and symbolic execution tool did. The overview of
trace generation is shown in Fig. 2.

Firstly, the instrumented source code has to be compiled into
an executable which contains the dummy functions. The compiled
software is then executed in the test case refeeder, which also takes
as input the highlighted test case. The task of the refeeder is to
monitor the execution of the instrumented software and replace
symbolic values with the concrete values from the highlighted test
case. Whenever dummy functions would introduce fresh symbolic
values, the test case refeeder intercepts the call and returns the input
value calculated by the mixed concrete and symbolic execution tool.
Meanwhile, a debugger is attached to the process to generate the

Table 1: Tools Used in Prototype Implementation

Framework Element Tool in Prototype
Automatic source code instrumentation Clang [18]
Mixed concrete and symbolic execution KLEE
Compilation GCC [24]
Test case refeeder klee-replay
Debugger GDB [23]

trace. The debugger steps through the software line by line and
outputs each line into the execution trace. The execution trace can
then be inspected by human analysts to determine whether the
execution path is indeed malicious or not.

3.4 Prototype Implementation
We implemented our approach as a prototype using the GNU and
LLVM toolchains. The tools are summarized in Table 1. Automatic
source code instrumentation was implemented as a standalone
tool using clang. Our prototype automatically generates dummy
functions based on a list of function names and semantic data
about how to introduce fresh symbolic values. The following JSON
document shows the semantic data required to generate dummy
functions:
{

"function_name" : "recv",
"include_file" : "sys/socket.h",
"symbolic_return" : false,
"symbolic_return_size" : 0,
"symbolic_params" : [

{
"index" : 1,
"has_fixed_length" : false,
"fixed_length" : 0,
"has_dynamic_length" : true,
"length_param_index" : 2

}
]

}

The JSON document contains the name of the original function and
the header file from which it is included. It also encodes whether
the return value of the dummy function should be made sym-
bolic ("symbolic_return") and the size of the symbolic return
value ("symbolic_return_size"). There function calls, however,
that write the environment-specific data into one of their param-
eters, such as recv(), which writes the message from the socket
into its second parameter, a buffer. Therefore, the structure en-
codes whether any of the parameters should be made symbolic
("symbolic_params"). For each such parameter, its index is given
(starting from 0) with additional information about how to create
the symbolic value. Some function calls, like pcap_next(), allocate
the buffer themselves based on the environment-specific data and re-
turn a pointer to it. In such cases, our prototype implementation gen-
erates a symbolic value with fixed length ("has_fixed_length").
The fixed length is a numeric value, e.g. 35 ("fixed_length").
There are function calls, however, which also expect a numeric
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parameter giving the upper limit of data size the buffer can hold. In
such cases, our prototype generates a symbolic value with dynamic
length ("has_dynamic_length") using the index of the parameter
holding the size limit ("length_param_index").

Our prototype uses KLEE as a mixed concrete and symbolic exe-
cution tool, because KLEE satisfies the two feature requirements
mentioned in Section 3.2. Our implementation signals KLEE to
output highlighted test cases using the klee_assert() function.
The function takes a logical formula as input and is intended for
sanity checks. Failing sanity checks result in the termination of the
current execution path and KLEE outputs the uncovered path condi-
tion with its solution (if it can be computed). We signal potentially
dangerous program points by giving the function an always failing
logical formula and in this way, forcing KLEE to calculate and out-
put the potential trigger inputs. Currently, the klee_assert() call
is placed in the source code before the following functions:

• system() and exec(), as they can be used to give com-
mands to the operating system, and

• send(), as it can be used to leak information about the
system.

The list can be extended to include more potential malicious func-
tions, for example, from unistd.h and socket.h headers.

The instrumented source code is compiled with GCC and fed to
klee-replay, a replay library provided by KLEE. The replay library
also takes as input the test cases generated by KLEE, which have the
KTEST extension. Sanity check failures result in outputting not only
the generated test case and the path condition, but also a text-based
file named test<numerical ID>.external.err. This special file
extension highlights potential trigger inputs. The contents of the
binary file can be read with the ktest-tool utility, which lists the
concrete values deducted from the path condition:
object 1: name: 'arg0'
object 1: size: 11
object 1: data: '-X\x00\x00\x00\x00\x00\x00\x00\x00\x00'

During replay, gdb is connected to the process in which the in-
strumented software is executed. Using the step and next gdb
commands, the source code lines executed are outputted into a file
for further inspection.

4 PRELIMINARY RESULTS
To evaluate our approach, we collected open-source software from
GitHub using keyword search for the terms “backdoor”, “logic
bomb”, “time bomb” and “portknock”. All collected samples were
written in C and implement some form of trigger-based behavior.
For the evaluation, we used a virtual machine with 4 CPUs and 10
GB memory. The virtual machine ran Ubuntu 14.04.5 LTS. We set
the maximum memory available to KLEE to 8 GB.

Our results are summarized in Table 2. While KLEE explored
many paths in the samples, we configured it in such a way, that only
test cases covering previously uncovered code would be outputted.
Hence the low number of test cases generated.

The cd00r project uses a filtered packet capture and starts an
interactive shell after a successful portknock. This sample executes
in an infinite loop and exits only, if portknocking is successful.
Because of the infinite loop, however, our analysis would have
taken an infinite amount of time as well. Therefore, we modified

the code so that unsuccessful attempts cause it to exit as well. With
this modification, KLEE generated 5 test cases of which 1 was
highlighted. The highlighted test case was a true positive detection,
and the only malicious path in the sample: no false negative test
case was generated.

The giardia project expects a password to be delivered to the
correct port. The password is configurable, in the original code, it
is "s3cr3t", which we did not change. In this case, KLEE generated
4 test cases with 1 highlighted. The highlighted test was a true
positive detection, and the tool did not miss any malicious paths.

The project osx-ping-backdoor was written for the OSX oper-
ating system, while our prototype implementation ran on Ubuntu.
Therefore, we copied the malicious logic from the OSX implemen-
tation and injected it into the Ubuntu-compatible source code of
the ping command. The malicious logic introduces two undocu-
mented commandline parameters (-x and -X), both leading to the
same code segment. 122 test cases were generated with 1 high-
lighted. The highlighted test case was a true positive detection,
but KLEE missed the other commandline parameter. After the cre-
ation of the first successful highlighted test case, the second call to
klee_assert() failed and the tool abandoned the execution path
without outputting any results.

Analysis of the portknockd project failed because the maximum
of 8 GB memory was not enough for KLEE. When the memory limit
was exceeded, the tool abandoned thousands of paths, including
the one implementing the hidden behavior.

The portknocking functionality in the portknocking project is
protected by time: a portknocking attempt is considered success-
ful only, if it happens within an small timing window. The timing
window is implemented in a different thread, and so, the sample
executes concurrently. However, KLEE was unable to analyze con-
current execution, and so, the analysis failed.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented a framework for detecting trigger-based
behavior utilizing automatic source code instrumentation, mixed
concrete and symbolic execution and test case refeeding. Our frame-
work automates most of the analysis and involves human analysts
only during its latest phases. What is more, our approach works
with existing tools which makes it both affordable and easily avail-
able to all developers.

The first results of the framework are promising: out of five real-
life samples with trigger-based behavior, the framework correctly
identified the hidden behavior in three of them. In the unsuccessful
cases, the limitations experienced were caused by shortcomings of
the chosen tool, not our approach.

Nevertheless, there are some improvements we list as future
work. Firstly, our approach is currently capable of generating the
execution trace, but the analysis of the trace left to the human
analyst. We wish to amplify this approach by automatically an-
alyzing the trace and generating a report on the behavior of the
analyzed software at a higher semantic level. Therefore, interpre-
tation of analysis results will be easier for the human analyst. We
also wish to use the presented framework for a large scale analysis
of open-source software and test them for trigger-based behavior.



ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy D. Papp, L. Buttyán and Z. Ma

Table 2: Samples and Results

Sample Name Completed paths Generated test cases (trigger inputs) Detected
cd00r 1299 5 (1) Yes (1/1)
giardia 48 4 (1) Yes (1/1)
osx-ping-backdoor 212754 122 (2) Yes (1/2)
portknockd 11902399 1 No
portknocking 39077 8 No
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