
1

Securing outsourced VNFs: challenges,
state-of-the-art and future directions

Enio Marku, Member, IEEE, Gergely Biczók, and Colin Boyd

Abstract—It is becoming increasingly common for en-
terprises to outsource network functions to a third
party provider such as a public cloud. Besides its well-
documented benefits in cost and flexibility, outsourcing
also introduces security issues. Peeking into or modifying
traffic destined to the cloud are not the only threats we
have to deal with; it can also be desirable to protect
VNF code, input policies and states from a malicious
cloud provider. In recent years several solutions have been
proposed towards mitigating the threats of outsourcing
VNFs, using either cryptographic or trusted hardware-
based mechanisms (the latter typically applying SGX).

In this paper, we provide an overview of methods for
protecting the security of outsourced network functions.
We introduce the challenges and emerging requirements,
analyze the state-of-the-art, and identify the gaps between
the requirements and existing solutions. Furthermore, we
outline a potential way to fill these gaps in order to devise
a more complete solution.

Index Terms—virtualization, security, confidentiality,
middlebox, cloud, outsourcing, VNF, SGX, 5G, RAP, LAP

I. INTRODUCTION

MODERN networks utilize a wide range of network
functions (NFs) to perform advanced networking

tasks beyond merely forwarding packets. NFs can imple-
ment a variety of important components, for example a
network address translator (NAT), a proxy or a firewall,
and are a vital part of modern networks. Traditional NFs
are implemented in dedicated hardware (also referred to
as middleboxes), operating at line rate speed and obtain
some security from their proprietary nature. However,
as network functions are becoming more complex and
new services emerge, owning (or renting) traditional
middleboxes puts considerable financial and operation
& management burden on enterprises. Nowadays, hard-
ware middleboxes are being replaced with software
implementations of NFs (resulting in Virtual Network
Functions, VNFs, i.e., software middleboxes) running on
commodity hardware [1].

The execution of VNFs can be naturally outsourced
to cloud providers (see Fig. 1). The combination of
virtualization and cloud computing brings advantages

Enterprise
NFs

Enterprise traffic
NFs code and policies

To destination

Cloud provider

Fig. 1. Outsourcing NFs to a cloud provider domain

in cost, flexibility, scalability, availability, and ease of
management. Besides these known benefits, outsourcing
of VNFs introduces security issues: malicious providers
may peek into the traffic, or even modify or drop
packets. Moreover, the policies and the VNF itself are
usually provided by the outsourcing enterprise; therefore
protecting the code and input policies of VNFs is also de-
sirable. To further complicate things, the outsourcer and
the outsourcee could be competitors in certain market
segments, making confidentiality protection a sensible
requirement even in the case of benevolent but curi-
ous stakeholders [2]. Therefore, an important question
emerges: how can we provide security for outsourced
VNFs in terms of enterprise traffic, VNF code and
input policies, while maintaining a level of performance
comparable to traditional hardware middleboxes?

To address the question above, several solutions have
been proposed in recent years. These solutions fall into
one of two categories: i) cryptographic approaches [3]–
[5] and ii) trusted hardware approaches [6]–[11]. Note
that, even though we have carefully examined crypto-
graphic approaches and summarized them in Table 1, we
do not focus on them in this paper. This is due to their
limited functionality and low performance, making them
unsuitable for current deployment in real world enter-
prise networking scenarios. Furthermore, our proposed
solution falls into the hardware approach category.

2

The main contribution of this paper is threefold:
i) we introduce the problem of securely outsourcing
network functions to the cloud, outlining its challenges
and emerging requirements; ii) we provide an overview
of existing trusted hardware based solutions and identify
the gaps between requirements and the state-of-the-art;
and iii) we propose a novel architecture (currently under
implementation) capable of filling these gaps.

The rest of the paper is organised as follows. Section II
introduces the necessary background on trusted hardware
based VNF outsourcing including architecture, threat
model and emerging requirements. Section III details
and compares the most promising systems based on
Intel SGX. Section IV provides guidelines for developers
regarding which existing solution should be used in spe-
cific scenarios. Section V briefly introduces SafeLib, a
novel design aiming at providing “full-stack” protection
and support for all VNF types. Section VI concludes the
paper.

II. TRUSTED HARDWARE APPROACH: SYSTEM

ARCHITECTURE, THREAT MODEL AND EMERGING

REQUIREMENTS

Existing trusted hardware based VNF outsourcing
solutions ([6], [7], [9]–[11]) share a common end-to-end
and system architecture, and, subsequently, a common
threat model stemming from using Intel SGX.
End-to-end architecture. The end-to-end architecture of
hardware solutions is depicted in Fig. 2 (see [6], [7] for
more details). In these solutions, the VNF is deployed in
a cloud acting as Service Provider (SP). First, enterprise
traffic is redirected to the cloud for processing at the
VNF implementing the service. Next, after the traffic
is processed, it is sent back to the enterprise and then
to the receiver at an external site. Enterprises usually
employ a Gateway (GW) to forward traffic to the SP.
This outsourcing setup essentially conforms to the well-
known Bounce architecture [1].

Note that in Fig. 2 two different security protocols are
being used, providing a balance between security and
flexibility. The traffic outsourced to a SP for processing
introduces a more significant security risk than the traffic
between the client and GW. This is because a client
usually has a trust relationship with the enterprise, but
does not trust a third party to process its traffic; for
such a scenario, an IPSec tunnel provides security for
all IP traffic, including packet headers (see Section V
for more details). On the other hand, SSL/TLS is the
superior alternative between client and GW, as it is easier
to configure and implement service access restrictions for
different clients and specific applications, a key feature
for enterprises.

Client

Gateway (GW)

Middlebox(MB)

Enterprise
Cloud provider (SP)

IPSec tunnel
External site

SSL/TLS traffic

Fig. 2. End-to-end architecture of trusted hardware solutions

Intel SGX enclave

VNF framework

Mechanism to overcome
context switch limitation

Kernel bypass
mechanisms

NIC

Enclave region

Non-enclave
regionRx Tx

Fig. 3. High-level system architecture of trusted hardware solutions

Some hardware solutions [7], [10], [11] are also capa-
ble of providing support for the Enterprise-to-Enterprise
architecture in which the traffic is sent directly to the
GW of the other enterprise (after processing), and then
forwarded to the receiver [1]. Such architecture avoids
the setup latency of Bounce, but it can only be used
after both enterprises established a mutual trust. A prime
example for such a scenario is the collaboration of two
(or more) network/cloud operators jointly delivering a
service to a customer via Service Function Chaining
(SFC); a key scenario in 5G systems, where the customer
might be an industry vertical [2]. Note that our solution
[12] aims to support both these architectures.
System architecture. We refer to solutions protect-
ing VNF processing from an adversarial/curious cloud
provider based on a trusted execution environment [6]–
[11], as trusted hardware approaches. All of them follow
the same model for VNF outsourcing (see Fig. 1) and
have a similar end-to-end architecture (see Fig. 2).

By studying numerous systems, we have devised
their common high-level system architecture depicted in
Fig. 3. The common denominator in this architecture
is Intel’s Software Guard Extensions (SGX, [13]) of-
fering hardware-based memory encryption that enables
application code and data isolation in memory. Private
regions of memory allocated by user-level code are

3

called enclaves; these regions are protected even from
processes running at higher privilege levels.

In Fig. 3, boxes of black solid lines represent enabling
technologies: dark gray boxes denote the “must have”
technologies for all solution alternatives (SGX is com-
monly used, but the VNF framework can be specific to
an alternative), while light gray boxes denote optional
mechanisms which can improve VNF performance and
are specific to a solution alternative. Every solution par-
titions its system into enclave and non-enclave regions
to find a sweet spot between security and performance.
This trade-off stems from two major limitations of Intel
SGX.

The first limitation concerns memory size. The pro-
tected memory region called enclave page cache (EPC)
has a limited size of 128 MB (previously 94 MB).
Exceeding this memory triggers the procedure of secure
paging, and therefore leads to a performance penalty.
The goal behind this design choice is to minimize the
trusted area in order to reduce the attack surface and let
the other many processes utilize the maximum amount
of RAM possible. Solutions analysed here overcome this
limitation by carefully placing inside the enclave region
only modules responsible for handling sensitive informa-
tion and leaving other parts in a non-enclave region. Note
that each solution uses different technologies (i.e., VNF
frameworks, networking stacks), and such technologies
determine enclave and non-enclave regions.

The second limitation concerns illegal enclave in-
structions. As the most common example, CPU in-
structions leading to a change in privilege level, e.g.,
system calls, are not allowed from within the enclave.
Therefore, a costly transition between enclave and non-
enclave regions is required. The rationale behind this
limitation is that the OS is not part of the trusted
computing base, hence allowing a jump from trusted
enclave code to untrusted OS code would defeat the
purpose of SGX. This limitation is handled in different
ways by the proposed solutions, nevertheless they can
be divided into two categories; i) solutions [6], [8], [9],
[11] using SGX ECALL (entry point to enclave from
non-enclave region), and OCALL (allows an enclave to
call non-enclave functions and then return to enclave);
ii) solutions using an asynchronous interface [7], [10].
Using an asynchronous interface typically offers better
performance due to the negative impact of ECALL and
OCALL.

Solutions using ECALL and OCALL for enclave tran-
sitions basically follow a standard SGX developer proce-
dure. An enclave definition language file (EDL) defines
ECALLs in a trusted section and OCALLs in an untrusted
section. Solutions using an asynchronous interface to

perform enclave transition utilize shared queues which
allows enclave threads to send and receive a batch of
packets to/from a non-enclave region from within the
enclave. Shieldbox [10] uses SCONE to provide such
operations, while SafeBricks [7] developed two inter-
faces (one inside the enclave, one outside the enclave)
to provide such operations via the help of two circular
queues located at heap memory outside the enclave. Note
that the two major limitations of SGX are at odds with
each other, making it challenging to overcome both at
the same time.
Threat model. All trusted hardware based solutions,
including our proposed system, consider a powerful
adversary who can compromise the entire software stack
of the SP outside the trusted enclave, including privileged
software such as kernel and hypervisor. This implies that
the adversary can observe the communication on the
network and between enclaves (see Fig. 3). All existing
solutions (and ours) rely on Intel SGX [13].

Such a threat model raises the concern that all hard-
ware solutions have to trust Intel and make peace with
SGX’s shortcomings when protecting VNFs. It is well-
known that SGX has failed to protect against side-
channel attacks (see Foreshadow [14] and references of
earlier attacks therein). In order to be secure against
those attacks, VNF developers would have to imple-
ment cryptographic primitives themselves, increasing the
switching costs and potentially sacrificing performance.
Intel has promised to partially mitigate known side-
channel attacks in new CPUs; but there is no guarantee
that future versions of SGX will not suffer from certain
weaknesses. However, it is plausible that Intel can make
such attacks very difficult to perform in practice.
Emerging requirements of a complete solution. For a
trusted hardware based VNF outsourcing solution to be
considered complete, it needs to comply with the same
functional and security requirements as NFs in dedicated
hardware.

1) The solution has to support both stateless and
stateful VNFs. Stateless VNFs, operating at L2 and
L3, process packets one-by-one, but more complex
VNFs have to keep flow level states in order
to implement advanced functionality. Examples
of stateful VNFs are load balancers and proxies
which maintain packet pools and connection data
in order to provide support for end-to-end commu-
nication;

2) The solution has to provide “full-stack” protection.
Such a solution needs to protect all parts of a
packet such as payload and header, and also
metadata including timestamps, packet size and
low-level protocol headers, related to the the raw

4

traffic flowing through VNFs. (Often, adversaries
use metadata to mount an attack or infer sensitive
properties of the traffic itself.) Moreover, it also
needs to protect VNF policies and code, e.g., when
network operator 1 (enterprise) outsources traffic
processing to network operator 2 (SP), while still
competing in user-facing services (an emerging
use-case in many 5G scenarios [2]). In case of
VNFs operating at L4, protection of VNF states
is also important. Such states can contain sensitive
information such as personal data; leaving such
information vulnerable is undesirable and may also
be illegal.

3) The solution has to operate at near line rate speed.
It is important for a solution to maintain (almost)
the same performance level as NFs in dedicated
hardware while performing its task.

To the best of our knowledge such a solution does not
yet exist; we describe potential steps to be taken towards
such a complete solution in Section V.

III. TRUSTED HARDWARE APPROACH: EXISTING

SOLUTIONS

Some existing systems are designed for particular
types of VNFs; e.g., S-NFV [8] protects only the VNF
state for a very limited set of VNFs. SGX-Box [9] pro-
tects only deep packet inspection (DPI) VNFs and cannot
be used for other types. Moreover, by not implementing
a kernel bypass mechanism such as DPDK1 and an
asynchronous interface for transitions between enclave
and non-enclave parts, SGX-Box does not achieve line
rate speed. Other solutions use the same VNF framework
but to different effect; e.g., Trusted Click [6] is built
on the same Click framework as ShieldBox [10], but
is simpler in its design and technologies used, and is
less effective in overcoming the limitations of SGX.
Trusted Click uses OCALL and ECALL SGX instructions
heavily for transitioning between trusted and untrusted
regions, resulting in a large performance overhead mak-
ing Trusted Click impractical for many use cases.

We single out three solutions for detailed introduc-
tion [7], [10], [11]. Two of these [7], [10] use a VNF
framework inside the enclave and, to our best knowledge,
offer the best performance, security and functionality.
The third design [11] is the only solution from Table I not
to provide a VNF framework inside the enclave; and the
only one to provide both full stack protection of packets
and support for stateful VNFs. Note that depending
on the scenario, one of these three solutions offers
the optimal state-of-the-art design alternative. However,

1DPDK, Data Plane Development Kit, https://www.dpdk.org

the definition of “optimal” depends on the priorities of
enterprises outsourcing VNFs. In section IV we consider
how to choose a solution for specific needs.

ShieldBox [10] is a solution based on SGX and built
on top of Click, a framework for building VNFs by
exposing to VNF developers a set of elements (ab-
stractions), and can be used to build various types of
VNFs. ShieldBox is built on SCONE, a framework that
protects the running VNFs from the outside world (e.g.,
untrusted operating system) through shields. SCONE
uses user-level threading and asynchronous system call
mechanisms from inside the trusted memory (enclave)
which allows threads in untrusted memory to execute
system calls asynchronously without forcing the enclave
threads to exit. Due to the usage of SCONE and DPDK,
ShieldBox achieves nearly line rate speed making it
practical in real-world scenarios. Owing to the usage of
Click, this solution provides support for a wide range of
network functions, with the notable exception of stateful
VNFs; Click does not have built-in functionalities for
flow-based stateful traffic. Our analysis also revealed
another disadvantage: placing DPDK inside the enclave.
This design choice increases the size of the enclave,
violating the trust minimization argument and harming
RAM usage flexibility. In addition, ShieldBox does not
protect the VNF code, therefore it does not fully satisfy
the requirements in Section II.

SafeBricks [7] is built on top of NetBricks, another
framework used to build various types of VNFs. Our
analysis showed that NetBricks has multiple advantages
over Click: i) it is based on Rust, an inherently secure
programming language, ii) it enables Service Function
Chaining, i.e., realizing complex services via chaining
VNFs after each other, and iii) it uses zero-copy seman-
tics leading to superior performance. To our knowledge,
SafeBricks is the only solution which protects the code
of VNFs, while also offering the best performance and
lowest overhead out of all studied solutions; it operates
at almost line rate speed owing to the usage of DPDK
and an asynchronous mechanism for handling transi-
tions between trusted and untrusted memory regions. By
placing DPDK outside the enclave, SafeBricks reduces
the EPC size resulting in improved performance and a
reduced attack surface. Moreover the chaining of all
VNFs in a single enclave improves performance due
to the encryption/decryption process being performed
only once. Note that SafeBricks does not protect traffic
metadata, and does not explicitly declare support for
stateful VNFs.

LightBox [11] is a system used to provide support
for stateful VNFs while offering full-stack protection
for packets. It consists of two modules: etap and state

5

TABLE I
COMPARISON OF PROPOSED SOLUTIONS REGARDING SECURITY AND FUNCTIONALITY.

Protection Supported Functionality Supported
System Header Payload Code Policies State Stateful VNF Stateless VNF Operation

Crypto
BlindBox [4] 7 X 7 X 7 7 X regular expression
SplitBox [5] X X 7 X 7 7 X range matching
Embark [3] X X 7 X 7 7 X range matching
S-NFV [8] 7 7 7 7 X X 7 generic operation

Trusted Click [6] 7 X 7 X 7 7 X generic operation
Trusted ShieldBox [10] X X 7 X 7 7 X generic operation

Hardware SGX-Box [9] 7 X 7 X X X 7 generic operation
SafeBricks [7] X X X X ? ? X generic operation
LightBox [11] X X 7 X X X ? generic operation
SafeLib [12] X X X X X X X generic operation

X– Feature provided
7 – Feature not provided
? – Feature not explicitly handled

management. The former is a virtual network interface
used to provide in-enclave access of traffic from within
enclave, while the latter provides an automatic memory
efficient method for managing the huge amount of states
tracked by VNFs.

We emphasize that LightBox does not fall into the
same category as the solutions mentioned above; rather,
it is complementary to them. On one hand, Shield-
Box and SafeBricks provide modular implementation of
VNFs from within the enclave and, therefore, VNFs are
secured by design. On the other hand, when VNF devel-
opers use LightBox they need to port their VNFs inside
the enclave in order to utilise Lightbox’s performance
and security enhancing features.

The main advantage of LightBox is that it provides full
stack protection of packets while maintaining near line
rate speed. It also provides efficient state management
in the case of stateful VNFs. The etap module has also
been adapted to work with mOS, an advanced networking
stack used to develop stateful VNFs. On the other hand,
i) LightBox does not offer VNF code protection, ii) it
does not provide a VNF framework, meaning that VNF
developers need to port VNFs on their own, requiring
familiarity with SGX, and iii) the etap device may need
to be adapted in order to support the necessary system
calls.

IV. DISCUSSION

Table I summarizes our analysis and compares all
studied solution alternatives focusing on security and
supported functionality. It is safe to say that crypto-
graphic solutions are limited in both functionality and
performance, thus they cannot provide support for com-
plex network functions in an enterprise, let alone in

carrier-grade deployment. Even relaxing these require-
ments, no cryptographic solution provides protection
even close to the desired level. Trusted hardware based
alternatives in general show great promise with regard to
functionality and performance, and have made consid-
erable progress towards satisfying the requirements of
a complete protection solution for outsourced network
functions. Depending on the scenario, different state-of-
the-art hardware solutions are preferable.
VNF developers protecting stateful VNFs. In such a
case, SGX-Box [9] or Lightbox [11] should be cho-
sen. When packet protection is the main concern then
Lightbox [11] is the way to go since it provides full
stack protection. In cases when VNF developers need a
VNF framework to provide a set of abstractions and to
avoid porting their developed DPI VNFs to an enclave
by themselves they should use SGX-Box [9]. Note that
there is no existing solution which provides a general
VNF framework to provide APIs for different types of
stateful VNFs.
VNF developers protecting stateless VNFs. In such
a case, either SafeBricks [7] or ShieldBox [10] should
be chosen. Trusted Click [6] does not provide favorable
performance when compared to other solutions, nor
full stack protection, so we conclude there are better
options. When VNF developers need code protection
then SafeBricks [7] is the only solution available. If VNF
developers prefer to use Click for developing their VNFs,
we suggest they use ShieldBox [10]. Both options [7],
[10] provide good performance.

V. A FUTURE DIRECTION: SAFELIB

Imagine a scenario in which an enterprise wants to
outsource both stateful and stateless NFs operating at
near line speed while the confidentiality of traffic data,

6

 VNF processing logic Configuration and keys

libVNF code and data

mTCP code and data

mTCP I / O interface

D P D K

N I C

E
n

cla
v

e

N
o

n
-e

n
cla

v
e

Encryption

Engine

Decryption

Engine

 Remote data

store

local data

store

Fig. 4. Detailed SafeLib architecture: light grey boxes denote the
mTCP stack, dashed boxes denote the libVNF framework. Note that
enclave here represents the main enclave and is used for stateful
VNFs. When it comes to stateless VNFs then mTCP and remote
data store are not required.

metadata, VNF policies, code and states are all being
protected. As of now, the enterprise cannot achieve
its goal using a single VNF outsourcing solution, as
evidenced by our analysis in Table I. Our proposed solu-
tion SafeLib [12] is designed specifically to fulfil these
requirements; while it is currently under implementation,
we are confident that the meticulous design and the
choice of technologies used (detailed below) will ensure
the envisioned properties.
Technologies used. SafeLib is built on top of lib-
VNF [15], a framework for scalable and high perfor-
mance VNFs. The main reason for choosing libVNF over
other VNF implementation frameworks is its remarkable
API; it is easy-to-use, flexible and generic enough to
provide support for VNFs operating at L2/L3 and also
at L4. Furthermore, libVNF is built on top of mTCP,
a user level TCP stack; the usage of mTCP, brings
two main benefits: i) departure from kernel complexity
which allows us to directly benefit from DPDK and ii)
performing batch I/O processing, partially alleviating the
burden of transitioning between enclave and non-enclave
regions.
SafeLib deployment. The deployment of SafeLib in-
volves a two-phase procedure and two enclaves. Pre-
phase enclave is used to access the raw VNF source code
and then to compile it. During the pre-phase procedure,
the GW runs the remote attestation protocol (RAP) in
order to verify the pre-phase enclave which in turn
returns a public key to the GW. Using that key, the GW
encrypts the VNF code and policies, and sends them
to the pre-phase enclave, which in turn decrypts the

code, and then compiles it. After the pre-phase enclave
compiled the code, it attests the main enclave using
the local attestation procedure (LAP) of SGX. If this
procedure is successful then the pre-phase enclave sends
the compiled code to the main enclave.

Note that we have used the standard RAP of SGX
between the GW and the pre-phase enclave. Standard
RAP includes 4 messages, and we modify the last
message according to our needs. Specifically we include
encrypted VNF policies, codes, and cryptographic keys
depicted by the box Configuration and keys in Fig. 4.

During the second phase, the GW creates a set of
IPSec tunnels with the main enclave and starts sending
packets. The GW does not have to perform RAP with
the main enclave after performing it with the pre-phase
enclave. Since the pre-phase enclave performed LAP
with the main enclave then by design the GW trusts the
main enclave.

Using a two-phase procedure, SafeLib protects the
VNF code and policies. Setting up a set of IPSec tunnels
between the GW and the main enclave, SafeLib protects
packet payloads and headers. Note that SafeLib re-uses
the idea of these mechanisms from SafeBricks [7].
SafeLib high level architecture. Designing SafeLib has
been a non-trivial endeavour, mainly owing to the two
major limitations of SGX being at odds with each other.
As shown in Fig. 4, we have divided our solution into
enclave and non-enclave regions. We place only com-
ponents responsible for processing sensitive information
inside the enclave. At the bare minimum, we should
place libVNF code and data and VNF specific processing
logic inside the enclave. Concerning the first limitation,
in order to alleviate the overhead of system calls we
use DPDK, a packet capture library processing packets
in batches. In our design we place DPDK outside the
enclave. This approach requires some additional steps
because DPDK does gain access to packets inside the
enclave once they are decrypted. We overcome this issue
by implementing IPSec endpoints within the enclave: En-
cryption engine and Decryption engine represent IPSec
endpoints in Fig. 4.

To overcome the second limitation of SGX, we use an
asynchronous interface following the ideas in [7], [10].
To achieve that we modify DPDK I/O and mTCP I/O
in order to communicate with each other. Our initial
approach is to place the mTCP I/O interface inside the
enclave, and DPDK I/O outside the enclave (see Fig. 4).
Note that we anticipate the need of extensive changes
to the I/O interfaces of DPDK, mTCP and libVNF.
Alternatively, we may fall back to using Graphene-SGX,
which offers an asynchronous interface by design.

Using libVNF as a VNF framework allows us to

7

provide support for both stateful and stateless VNFs [15].
Note that libVNF provides built-in data structures used
to keep the states. To design and implement an efficient
state management procedure our aim is to keep only the
states of active flows inside the enclave, potentially at
the local data store, a data structure of libVNF. The rest
we encrypt and store at the remote data store outside
the enclave. We are aware that libVNF’s data structures
used for storing states may not be efficient enough for
our case. To this end, we are currently working on
utilizing more succinct data structures. We are also in
the process of designing metadata protection methods,
exploring the usage of random IP fragmentation and
maximum transmission unit (MTU) for each packet.

VI. CONCLUSION

In this paper we provided an overview of confidential
outsourcing of network functions to the cloud, highlight-
ing the challenges and emerging requirements, state-of-
the-art solutions of different types and potential future
directions. We concluded that existing systems based
on trusted execution environments, notably Intel SGX,
outperform pure cryptographic solutions regarding pro-
tection level, functionalities provided and performance.
Furthermore, we identified the gaps between require-
ments and the state-of-the-art, and briefly introduced
SafeLib, a novel design currently under implementation,
filling these gaps.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy,
and V. Sekar, “Making middleboxes someone else’s problem:
network processing as a cloud service,” ACM SIGCOMM Com-
puter Communication Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] G. Biczók, M. Dramitinos, L. Toka, P. Heegaard, and
H. Lønsethagen, “Manufactured by Software: SDN-Enabled
Multi-Operator Composite Services with the 5G Exchange,”
IEEE Communications Magazine, vol. 55, no. 4, pp. 80–86,
2017.

[3] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu,
“Embark: Securely outsourcing middleboxes to the cloud,” in
13th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2016, 2016, pp. 255–273.

[4] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox:
Deep packet inspection over encrypted traffic,” in ACM Con-
ference on Special Interest Group on Data Communication,
SIGCOMM, 2015, pp. 213–226.

[5] H. J. Asghar, L. Melis, C. Soldani, E. D. Cristofaro, M. A.
Kâafar, and L. Mathy, “Splitbox: Toward efficient private net-
work function virtualization,” in Workshop on Hot topics in
Middleboxes and Network Function Virtualization, HotMiddle-
box@SIGCOMM, 2016, pp. 7–13.

[6] M. Coughlin, E. Keller, and E. Wustrow, “Trusted click: Over-
coming security issues of NFV in the cloud,” in ACM Inter-
national Workshop on Security in Software Defined Networks
& Network Function Virtualization, SDN-NFVSec@CODASPY,
2017, pp. 31–36.

[7] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “SafeBricks:
Shielding Network Functions in the Cloud,” in 15th USENIX
Symposium on Networked Systems Design and Implementation,
2018, pp. 201–216.

[8] M. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV:
securing NFV states by using SGX,” in ACM International
Workshop on Security in Software Defined Networks & Network
Function Virtualization, SDN-NFV@CODASPY 2016, 2016, pp.
45–48.

[9] J. Han, S. M. Kim, J. Ha, and D. Han, “SGX-Box: enabling visi-
bility on encrypted traffic using a secure middlebox module,” in
First Asia-Pacific Workshop on Networking, APNet 2017, 2017,
pp. 99–105.

[10] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia,
and C. Fetzer, “Shieldbox: Secure middleboxes using shielded
execution,” in Symposium on SDN Research, SOSR 2018, 2018,
pp. 2:1–2:14.

[11] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren,
“Lightbox: Full-stack protected stateful middlebox at lightning
speed,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London,
UK, November 11-15, 2019. ACM, 2019, pp. 2351–2367.

[12] E. Marku, G. Biczok, and C. Boyd, “Towards protected VNFs
for multi-operator service delivery,” in IEEE The 1st Interna-
tional Workshop on Cyber-Security Threats, Trust and Privacy
Management in Software-defined and Virtualized Infrastruc-
tures, co-located with IEEE NetSoft 2019, 2019.

[13] V. Costan and S. Devadas, “Intel SGX explained,” IACR
Cryptology ePrint Archive, vol. 2016, no. 86, 2016. [Online].
Available: https://eprint.iacr.org/2016/086

[14] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx, “Foreshadow: Extracting the keys to the Intel
SGX kingdom with transient out-of-order execution,” in 27th
USENIX Security Symposium, 2018, pp. 991–1008.

[15] P. Naik and M. Vutukuru, “libVNF: A Framework for Building
Scalable High Performance Virtual Network Functions,” in Pro-
ceedings of the 8th Asia-Pacific Workshop on Systems. ACM,
2017, p. 12.

Enio Marku (enio.marku@ntnu.no) received his M.Sc. degree in
electrical engineering in 2017 from CTU Prague, and is currently a
Ph.D. candidate at Norwegian University of Science and Technology
in Trondheim. His research interests include network security, 5G
networking and network function virtualization (NFV).

Gergely Biczók (biczok@crysys.hu) is an associate professor in the
CrySyS Lab at the Budapest University of Technology and Eco-
nomics (BME). He received the PhD (2010) and MSc (2003) degrees
in Computer Science from BME. Previously, he was a postdoctoral
fellow at the Norwegian University of Science and Technology,
a Fulbright Visiting Researcher to Northwestern University and a
research fellow at Ericsson Research. His research focuses on the
privacy, security and economics of networked systems.

Colin Boyd (colin.boyd@ntnu.no) is Professor in the Applied Cryp-
tology Laboratory at NTNU, Trondheim, Norway. He previously held
posts at the Queensland University of Technology, Australia; Univer-
sity of Manchester, UK; and British Telecom Research Laboratories,
UK. He holds a BSc and PhD in Mathematics from University of
Warwick, UK. His research interests focus on design and analysis
of cryptographic protocols and their applications in areas including
electronic voting and payments.

