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Abstract—Having access to the specifications of network pro-
tocols is essential for several reasons in IT security. When
the specifications are not known, one may turn to protocol
reverse engineering methods to reconstruct these, typically by
analysing recorded network traffic or inspecting an executable
that implements the protocol. First, the format and structure
of the messages need to be recovered, then the state machine
of the protocol itself. Over the years, several solutions have
been proposed for both tasks. As a consequence, picking the
right solution for a given scenario is often a complex problem
that involves evaluating and comparing various solutions. In this
paper, we review the current means of evaluating the perfor-
mance of protocol state machine reverse engineering methods.
To help alleviate the shortcomings of the current methodology,
we propose two new metrics of performance to be measured:
correctness and completeness of output for partial runs (when
runtime is bounded). These, combined with previously used
metrics should make it easier to pick the most ideal choice
for a given use case. We also propose the examination of cases
where the algorithms have to work with incomplete or inaccurate
syntactical information. We showcase how these new metrics
and related information may be useful for the evaluation and
comparison of various algorithms by applying these new methods
to evaluate the performance of a recent protocol state machine
reverse engineering method.

Index Terms—protocol reverse engineering, protocol state
machine, performance evaluation, runtime analysis, bounded
runtime, incomplete input.

I. INTRODUCTION

C ommunication protocols describe the formats, contents,
and sequences of messages that are sent and received in

order to exchange instructions and data between the commu-
nicating parties, along with the rules according to which these
messages need to be processed. Knowing this information is
essential for various use cases in the domain of IT security. For
example, knowing the protocol enables fuzz testing software
that implements the protocol for programming errors or hidden
features such as backdoors [1]. It also makes it possible to
develop intrusion detection/prevention systems that understand
the protocol and can trigger alarms or even block the source
when anomalous or malicious protocol messages are detected
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on the network [2]. One may also build honeypots and
honeynets that simulate a device or a network of devices
speaking a protocol in order to attract attackers and analyse
their behaviour [3]. Unfortunately, the specifications in which
these protocols are defined are not always publicly available.

By applying protocol reverse engineering methods, it be-
comes possible to reconstruct the message formats and syntax,
as well as the state machine of the protocol. While it is pos-
sible to perform protocol reverse engineering manually, man-
ual methods are considered time-consuming and error-prone.
Given that results may be needed as quickly as possible and
that new protocols appear frequently, automated approaches
are preferred. However, the two may also be combined –
results from an automated approach may also serve as a basis
for later manual analysis. Automated solutions generally draw
conclusions based on recorded network captures, generate
network traffic and analyse the responses, inspect a binary
(executable) that contains an implementation of the protocol
to be reverse engineered, or a combination thereof [4]. It has
been shown [4] that approaches based on binary analysis can
achieve better results, however, legal agreements may prohibit
such reverse engineering, and binaries may not always be
available.

Protocols may be classified as binary or plain text, based
on how their messages are represented. Binary protocols, such
as Modbus, Message Queuing Telemetry Transport (MQTT),
or Border Gateway Protocol (BGP) exchange binary messages
that are not human-readable. In these messages, the meaning
of each byte at a given position (which may be fixed or
calculable) is known in advance, there are no field separa-
tors, and generally, there is a byte (or group of bytes) that
specifies which of the possible message types it belongs to.
Plain text protocols, such as File Transfer Protocol (FTP) or
Internet Message Access Protocol (IMAP), on the other hand,
exchange human-readable messages consisting of fields that
are separated by delimiters (e.g. spaces, tabs, or line feed
characters). Here, one of the fields contains a command or
keyword that determines which of the possible message types
it belongs to.

Regardless of the above classification, the process of
reverse engineering a protocol consists of three major phases
[5]. The first phase is the preparatory phase, in which the
environment for the analysis is set up. If using an approach
that relies on recorded network traces, then network traffic
is generated and recorded in this phase as well. The second
phase aims to discover the possible message types of the
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protocol, along with the data type (e.g. string, integer, etc.)
and meaning (semantics, e.g. a temperature value) of each
byte or series of bytes in these messages. Sometimes also
referred to as commands or operations, message types are
unique structures of data that each convey a different meaning
and need to be interpreted differently by the receiver. For
example, a protocol might have a read command consisting
of a four-byte integer specifying the address whose value
should be read, followed by a two-byte integer specifying
the number of bytes to read. Another message type could be
a write command that also carries an address, the number
of bytes to be written, as well as the values of the bytes
that need to be written. Finally, in the third phase, the state
machine of the protocol is reconstructed. This state machine
dictates what action should be taken when a specific sequence
of message types is received, starting from a known initial
state. For example, a client connecting to a server might start
from an unauthenticated state, where only authentication
commands are accepted, but once successfully authenticated,
read and write commands are also accepted.

This paper reviews the current means and methods of
evaluating the performance of protocol state machine reverse
engineering methods. Addressing the shortcomings of the
current methodology, we propose two new metrics of perfor-
mance: completeness and correctness of output with bounded
runtime. We also propose the inclusion of the analysis of the
effects of relying on incomplete or partially incorrect input.

The rest of the paper is organized as follows: in Section
II, we discuss related work, briefly going over the history of
protocol reverse engineering, culminating in the most recent
advances. Next, in Section III, we enumerate the current
aspects of performance evaluation: commonly used metrics
of quality, and runtime and complexity. Also in Section III,
we detail our newly proposed metrics and methods. Then, in
Section IV, we show how the previously discussed aspects
are useful and how they may be evaluated in practice: we
first give a summary of a recent protocol state machine
reverse engineering method by Székely et al. [6], then proceed
by evaluating the method according to each aspect. Finally,
Section V concludes our paper.

II. RELATED WORK

The history of protocol reverse engineering dates back to the
1950s. At that time, it was generally used for fault analysis in
electrical circuits that implemented a finite state machine that
represented a protocol [7]. At around the turn of the century,
computers and computerized accessories became increasingly
common. With the Internet also becoming widespread, the
number of network applications increased, which led to the
proliferation of new network protocols. A number of these
were undocumented, or at least had no publicly available
documentation. This meant that in order to develop compatible
applications, for example, an alternative server for a discon-
tinued chat service, the protocol had to be reverse engineered.

The first major project that aimed at recovering the spec-
ifications of an unknown protocol was the Samba Project

(2003) [8] that intended to reverse engineer the specifications
of Microsoft’s SMB (Server Message Block) protocol. The
authors used a network trace based approach along with active
random probing to identify message types and semantics. M.
A. Beddoe’s Protocol Informatics Project [9] was next in 2004,
which employed bioinformatical algorithms on network traces
to infer the message types of the text-based protocol HTTP.
RolePlayer (2006) [10], Discoverer (2007) [11], Biprominer
(2011) [12], ReverX (2011) [13], ProDecoder (2012) [14], and
AutoReEngine (2013) [15] soon followed, all of which relied
exclusively on network traffic.

The majority of these early works focused on inferring
message types and formats only. Little emphasis was put on in-
ferring field semantics, and none attempted to recover the state
machine of the protocols. The first works that tried to infer
field semantics did not achieve significant results – Discoverer
achieved between 30 and 40% accuracy [11], and Netzob was
still below 50% on average [16]. However, these results proved
that recovering field semantics was not an impossible task.
In 2015, FieldHunter [17] was published, reaching over 80%
accuracy on semantics. In 2020, GrAMeFFSI [18] was shown
to achieve over 90% accuracy when high-quality network
captures are available, followed by IPART [19] in the same
year that had results between 70 and 100%.

While some of these algorithms, such as FieldHunter, were
designed to be able to reverse engineer both binary and text-
based protocols, others specialized in either. Biprominer, as
its name suggests, targeted binary protocols, as did GrAM-
eFFSI and IPART, while ReverX targeted text-based proto-
cols only. The more specialized algorithms usually achieved
higher performance scores compared to the more general
solutions of their time. Their inner workings vary: RolePlayer
and Discoverer rely on sequence alignment, Biprominer and
AutoReEngine leverage data mining approaches, ProDecoder
makes use of natural language processing algorithms, GrAM-
eFFSI employs graph analysis, while IPART makes use of a
voting expert mechanism.

Before the state machine of a protocol can be reverse
engineered, the message types and formats need to be known,
as this information is not only used for the classification of
protocol messages (i.e. determining which message type a
specific message belongs to), but also for the generation of
new messages (in the case of algorithms that generate and send
new messages). Thus, these reverse engineering methods must
either recover this information themselves or rely on existing
message format inference methods. Based on recent surveys
[5][20], so far, there have been fewer attempts to reconstruct
protocol state machines than to recover message types and
semantics. The majority of the solutions are based on network
traces instead of binary analysis, and the majority of these
trace based solutions are passive, meaning that only captured
network traffic is used as input, no live systems running an
implementation of the protocol are interacted with.

The first notable method for state machine inference was
ScriptGen (2005) [21]. Like Beddoe’s previously mentioned
project, it uses the Needleman-Wunsch sequence alignment
algorithm, along with micro- and macroclustering to build a
protocol state machine from captured network traffic. The state
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machine is then used to formulate responses for a honeypot.
ScriptGen was later followed by Cho et al.’s work on reverse
engineering the protocol of the MegaD botnet (2010) [22] that
leveraged and optimized Angluin’s L∗ algorithm [23] to infer
a Mealy machine based on network traces and live queries.
They achieved between 96% and 99% accuracy on various
protocols. Another important result was Veritas (2011) [24],
which employs statistical analysis on captured network traffic
to build probabilistic protocol state machines that are claimed
to be 92% accurate on average. Yet another notable mention
is PREUGI (2017) [25], which is based on error-correcting
grammatical inference, and also achieves an accuracy that
is over 90%. In 2021, Székely et al. [6] published a state
machine inference method that is based on the LM

+ Mealy
machine inference algorithm of Shahbaz and Groz [26], which
itself is an adaptation of Angluin’s L∗ algorithm for learning
regular languages [23]. This method employs smart message
generation to significantly reduce the number of messages that
need to be sent, making it usable in practice. Despite the
reduction in the number of messages sent, it achieved perfect
scores on several test cases. There also exist approaches that
rely on binary analysis instead of network traces, the most
significant ones being Prospex (2009) [27] and MACE (2011)
[28].

Protocol reverse engineering is a field that is still actively
studied. New methods surface every year [20], some of them
being reiterations of previous algorithms, some of them being
completely new methods that are built on state-of-the-art
applications such as machine learning. Some recent examples
are an algorithm by Yang et al. [29] that leverages deep
learning, and another one by Wang et al. [30] that employs
convolutional neural networks. Probabilistic inference is also a
novel approach that is applied by NetPlier [31], while an even
more recent algorithm is PREIUD [32], which makes use of
deep neural networks to infer message formats and semantics
for industrial control protocols.

III. PERFORMANCE EVALUATION

With numerous approaches, methods, and algorithms having
been published, one may be faced with quite a dilemma trying
to determine the best option for a given use case. Some
approaches expect an executable implementing the protocol to
be reverse engineered, while others expect recorded network
traffic to be available, or possibly the existence of a remote
implementation that may be used as an oracle. Some methods
work only with binary protocols, others only with text-based
ones, while there also exist more general approaches that can
work with both. Some offer quicker results at the cost of
quality, while others take longer to run but provide higher-
quality results. Some methods expect extra conditions to be
satisfied, but may offer better results than more general ones.

In any case, it is essential to have a means of evaluating
the performance of various algorithms so that they can be
compared to one another. This comparison, however, is often
an arduous task – authors employ various metrics to showcase
the significance of their results, but these may be named,
defined, and used differently by the different authors. A second

issue that arises is that even when these metrics are the same
(or can be calculated from one another), the data sets over
which the algorithms are evaluated are seldom the same due
to the lack of a standard data set. Testing with a common data
set is also difficult because the implementations themselves
are rarely published.

Nevertheless, this section aims to provide an overview of the
current and newly proposed aspects of performance evaluation:
commonly used metrics of quality, runtime and complexity,
the effects of (partially) incorrect or incomplete input, and
bounded runtime.

A. Common Quality Metrics

The metrics of quality intend to describe the quality of the
output in various manners. The most commonly used ones
are correctness, completeness, and conciseness (or variants
thereof).

Correctness is a measure of how accurately the found ele-
ments of the inferred message type specifications or protocol
state machine match the true specifications or state machine.
Elements that were found but do not actually exist in the
true specifications lower this score, while missing or duplicate
elements do not affect it. It is generally expressed as a
percentage between 0 and 100%. A correctness of 100%
means that everything that was found is correct, but it does not
guarantee that everything was found. For example, the state
machine could be missing states and transitions. Correctness
is similar to precision in classification problems.

Completeness (also referred to as coverage) measures what
portion of the original message types and formats is present in
the inferred specifications (or states and transitions in the case
of state machines). It is also expressed as a percentage between
0 and 100%. A completeness of 100% means that everything
was found, but it does not guarantee that everything that was
found is correct. For example, the resulting state machine
could contain extra states that were not in the original state
machine. Completeness is similar to recall in classification
problems.

Conciseness measures how verbose the result is, compared
to the original, or, in other words, how many found elements
represent one true element. A lower number is better. A
conciseness of 1 means that there are no duplications, while
a score of 1.5 means that half of the elements are represented
twice. For example, detecting one single message type as
two distinct message types increases the conciseness score.
If these message types are later used for state machine reverse
engineering, the resulting state machine will have duplicate
states and transitions compared to the original one, also
increasing this score.

B. Runtime, Time Complexity

Another typical question is the speed of the algorithm, i.e.
how its runtime depends on the number and the properties of
its inputs. Usually, three cases are considered: the worst case,
the best case, and the average case.

Of these, the most relevant case is the worst case: how long
the algorithm takes to finish when given inputs that result
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in the most possible computations being performed in the
background. Worst-case complexity is the property by which
the performance of algorithms is compared, and by which
fitness for a particular purpose is determined. Generally, it
cannot be expressed as an exact function of the (size of the)
inputs, so approximations are used instead. Worst cases are
approximated using an asymptotic upper bound, denoted by
O (e.g. O(n2)), also known as the big O notation.

Best case calculations, on the other hand, aim to determine
the minimum amount of time the algorithm needs to termi-
nate. Since these calculations include trivial and sometimes
unrealistic inputs, best-case complexity is not meaningful in
practice. In a similar fashion to worst cases, the runtime
of the best case cannot typically be expressed as an exact
function, and approximations are used instead. Best cases are
approximated using an asymptotic lower bound, denoted by Ω
(e.g. Ω(log(n))), also known as the big Omega notation.

Finally, average case calculations are intended to show how
long the algorithm takes to run to completion on average,
with relation to (the size of) the inputs. Average cases are
approximated using both an upper and a lower bound (also
called a tight bound), denoted by Θ (e.g. Θ(n)), also known
as the big Theta notation.

C. Correctness and Completeness for Partial Runs

Prior analyses only focused on the previously discussed
common quality metrics and the complexity of the algorithms.
However, other metrics could exist to aid in the selection
process, such as correctness and completeness for partial runs.
There are scenarios where the number of requests made to
the implementation or the window of time that is available
for running the algorithm is limited, or having earlier access
to a partial state machine is more important than having
the complete automaton but only at a later point in time.
For example, a malware analyst who is trying to understand
the command and control (C&C) protocol of a new botnet
might want to fly under the radar and limit the number of
requests that are sent to the C&C server over given periods
of time in order not to get detected. If it takes too long, the
server might be rotated or taken offline while the analysis
is running, and even if it stays up long enough to run the
algorithm to completion, it would be beneficial for the analyst
to be able to see a partial state machine while the rest of the
algorithm is running. With a partial state machine, they can
start documenting the protocol and perhaps develop a custom
implementation of the botnet server that may be used to gain
a better understanding of the clients.

The process of measuring correctness and completeness for
partial runs is similar to that of measuring these metrics for
a complete run, except there are limits concerning the time
within which the algorithm must terminate or the number of
queries the algorithm may issue to an actual implementation
of a protocol. Depending on the inner logic of an algorithm,
it may not be possible to stop the algorithm at arbitrary points
(if at all) and retrieve a partial result, making it difficult
(if not impossible) to measure these metrics effectively and
accurately.

D. Working with Incorrect or Incomplete Information

Reviewing the state-of-the-art message format reverse en-
gineering algorithms, it can be stated that while there exist
algorithms that are capable of achieving a 100% score in
completeness and correctness for certain protocols, there is
no guarantee that these will always perform so well on
all, including presently unknown protocols. In addition, if a
network trace based algorithm is used, its success also largely
depends on the diversity and number of messages captured
in the network traces. Message types that have never been
seen will not be included in the inferred specifications, and
message types of which there was not enough in the traces (or
these were not diverse enough) are likely to have inaccurately
classified fields.

The shortcomings of inferred message formats may be
grouped into three wider categories: missing message types,
duplicate message types, and incorrectly inferred message
types. Each of these may have different effects on the result
of a protocol state machine inference algorithm. Possible
effects include missing states and transitions from the inferred
state machine, duplicate transitions, and even the algorithm
not being able to produce an output (e.g. if an internal
contradiction is reached). Effects may also differ based on
whether the missing, duplicate, or incorrect message type is a
client-to-server or a server-to-client message type.

Investigating how these cases are handled by the algorithm
and what effects these have on the resulting state machine
could be another factor to consider when evaluating, com-
paring, and choosing algorithms, especially when the input is
expected to be imperfect.

IV. A PRACTICAL EXAMPLE

This section is divided into four parts. First, in subsection
IV-A, we summarize the algorithm to be evaluated so that the
reader is not required to read the original paper to understand
the analysis. Next, in subsection IV-B, we analyse the runtime
of the algorithm in the worst possible case, then provide
examples for how long this would mean in the case of some
real-world protocols. Then, in subsection IV-C, we measure
the quality of the output of the algorithm when the runtime
is bounded, and it is not able to or not allowed to run to
completion. Finally, in subsection IV-D, we discuss the effects
of the algorithm having to work with incorrect or incomplete
message format specifications.

A. Summary of the Algorithm to be Analysed

One of the models that state machine reverse engineering
methods can be built on is the teacher-learner model. In this
model, there is a teacher that knows the state machine that
needs to be inferred, and a learner, whose job is to learn this
state machine by communicating with the teacher. The input
and output alphabet are known by both parties.

The learner may submit two kinds of queries to the teacher:
input queries and equivalence queries. Input queries consist of
one or more input characters, to which the teacher responds
with the appropriate output sequence. Equivalence queries are
sent when the learner believes that it has finished learning the
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state machine. The teacher then runs several input sequences
through both the conjectured and the true state machine. If
there is any difference in any of the outputs from the two state
machines, the teacher has found a counterexample: a sequence
of inputs, for which the true and the inferred state machines
behave differently. This counterexample is sent back to the
learner, which now needs to refine the conjectured automaton
by issuing further input queries. If no difference is found, the
algorithm terminates, and the learner is considered successful.

This model works well for learning the state machines of
protocols that are used over a computer network. In this case,
the input alphabet is made up of the protocol messages that
may be sent by clients (i.e. the requests), while the output
alphabet comprises the messages that are sent by the server
(i.e. the responses). The learner acts as a client, while the
teacher acts as a server. However, the teacher typically cannot
answer the queries on its own, as it does not know the state
machine directly either. The teacher needs to talk to an actual
implementation of the protocol (also referred to as a speaker of
the protocol) and relay requests and replies, rely on previously
recorded network traffic to answer the queries, send a cached
reply (if caches are used and the same query was seen before),
or any combination of these.

The learner may run any state machine inference algorithm
that is capable of inferring Mealy machines. A Mealy machine
M(S, S0,Σ,Λ, T,G) is a state machine where S is a set of
states that make up the state machine, S0 ∈ S is the initial
state, Σ and Λ are the input and output alphabet (respectively),
T is the set of transitions that specify the next state if a
specified input arrives in the specified state, and finally, G
is the output function that defines which character should be
output when a specified input arrives in a given state. Less
formally, Mealy machines are state machines where the output
values are determined not only by the current state, but also
by the received input (as opposed to, for example, Moore
machines, where the output is only determined by the current
state, not the input). For this reason, network protocols can be
easily represented as Mealy machines.

In this analysis, we use the algorithm from Székely et al.
[6] as this is not only relatively recent, but we also had
a working implementation of it. However, our findings in
Section IV-D also apply to any algorithm based on a teaching-
learning model, and findings in Section IV-C should also apply
– with some margin of error – to any variant of Shahbaz and
Groz’s LM

+ algorithm [26] as long as the core logic is left
unchanged.

The algorithm starts out knowing nothing about the protocol
state machine, but it knows all the possible input and output
messages. It maintains an observation table that is filled
or appended to based on the requests sent and the replies
received.

Based on message type information, data types and field
semantics, it generates a smartly chosen subset of every
possible protocol message. These are then sent one by one as
queries to the teacher. The teacher uses a speaker to answer
the queries, resetting the speaker’s state machine (e.g. by
reconnecting to the server) after each sequence of queries.
The learner keeps issuing input queries in rounds, based on

the observation table, until the table is considered closed. The
table is considered closed when each transition that follows
from the observations ends in a state that has already been
processed.

When this point is reached, an automaton is constructed
based on the information in the observation table, which is
then submitted to the teacher in an equivalence query. If
the teacher returns a counterexample, the observation table is
extended based on the counterexample, more input queries are
run until the table is considered closed again, and this process
is repeated until no counterexample is found. At that point, the
algorithm terminates, the state machine has been successfully
learnt. This process is illustrated in Figure 1 for clarity.

Fig. 1. The operation of Székely’s algorithm in a flowchart.

The messages that are sent by the learner have to be chosen
carefully. Sending every possible protocol message is not a
viable strategy – considering a very simple protocol where
each message contains nothing but a 4-bytes-long integer, there
are 232 possibilities. Sending this many messages, possibly
multiple times when trying to determine the states of the
automaton, would lead to unfeasible running times, large
amounts of network traffic, and a heavily redundant state
machine. For this reason, the messages are chosen in a smart
manner. Since the message types and semantics are assumed
to be fully known, this information may be used to generate
message instances dynamically on the fly, paying attention
to the values in certain fields that might trigger different
behaviours. For example, a protocol having a command to read
data at a given memory address will return the requested data
when a valid memory address is supplied, while it will result
in an error message or disconnection if an invalid address
is specified. If these cases are not considered and handled
properly, the state machine of the implementation (the speaker)
could appear to be indeterministic.

80 JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, VOL. 20, NO. 1, MARCH 2024



B. Runtime, Complexity

As explained in the previous subsection, the algorithm first
needs to fill the observation table to the point where it is
considered closed. The first row needs |Σ| queries to be filled.
Then, in each following round, for each element of Σ (there
will be |Σ| of these), one new request will be issued for each
new entry added in the previous round (there will also be |Σ| of
these), making it a total of |Σ|2 requests for a round. However,
the length of the request (i.e. how many queries are needed to
fulfil it) depends on the length of the requests in the previous
round. In the worst case, this length is always the number of
the current round, which occurs when the automaton being
inferred is maximally deep (see Figure 2 for an example).
This follows from the property that there is no shorter path to
any of the states in such a state machine than through all the
previous states. The number of rounds is |S|+1 as |S| rounds
are needed to find all |S| states, plus 1 to confirm that there
are no more.

S0 S1 S2 S3 S4
a / x b / y c / z d / v

Fig. 2. A maximally deep state machine with 5 states and 4 possible inputs
that will result in the worst case number of queries (324 in this case) when
filling the observation table.

Based on the above, in the worst case, the number of
steps for the initial fill of the observation table is given by
Equation 1, which can be rearranged and rewritten through
series expansion as Equation 2.

ql ot init = |Σ|+
|S|+1∑
i=2

i ∗ |Σ|2 (1)

ql ot init =
1

2
(|Σ|2 ∗ |S|2) + 1

2
(3 ∗ |Σ|2 ∗ |S|) + |Σ| (2)

Once the observation table is closed, the conjecture is
submitted to the teacher. The teacher then needs to run a
number of queries against both the conjecture and the speaker.
The number of queries is given by Equation 3.

qt conj single = |Σ| ∗ sf ∗ ntests (3)

In this equation, sf is a stretching factor that is defined as
10 in [6]. The number of tests (ntests ) is defined in [23], and
is a more complex formula (see Equation 4).

ntests = ⌈1
ε
∗ (log 1

δ
+ (log 2) ∗ (nfalse conj + 1))⌉ (4)

Here, ε and δ are accuracy and confidence parameters, set
to 10−2 and 10−6, respectively, as per [6]. In addition, log
denotes the natural logarithm function, while nfalse conj is the
number of conjectures that have been tested previously. This
shows that the number of tests also depends on the number of
previous (and failed) equivalence queries.

It should be noted that since the test sequences are gen-
erated randomly, the number of input queries needed for an

equivalence query varies per run of the algorithm, even if the
same inputs are used.

The root cause of why the algorithm might make a mistake
(and the teacher will find a counterexample) is the automaton
having states within reach of each other, with almost identical
transitions, as in the case of Figure 3.

S0 S1 S2 S3
a / x

b / y

c / z c / z

c / z

Fig. 3. An example of an automaton where the learner will make a mistake.

Considering only the inputs and outputs of S2’s and S3’s
transitions, these states appear to be identical, and the al-
gorithm will make a mistake here. The conjectured (and
incorrect) automaton can be seen in Figure 4.

S0 S1 S2
a / x

b / y

c / z

c / z

Fig. 4. The incorrect automaton, as conjectured for the first time.

When a counterexample is found, the learner updates its
observation table and issues further input queries to close it
again. In the worst case, the number of input queries sent is
given by Equation 5, which may be rearranged and expanded
as Equation 6.

ql ot update = |S|2 ∗
|Σ|∗sf+|S|∑

i=|S|

i (5)

ql ot update =
1

2
∗ |S|2 ∗ (|Σ|+ sf +1)(|Σ|+2∗ |S|+ sf ) (6)

The maximum number of counterexamples is |S| − 1,
because the initial state is always found. Thus, the number
of steps in Equation 5 will need to be repeated at most |S|−1
times. Furthermore, in the worst case, the total number of
counterexample checks is |S| − 1 + 1 (that is, |S|) because
of the final counterexample check that is always performed.
From Equations 3 and 4, the total number of input queries
required for these can be given as Equation 5.

qt conj total =

|S|−1∑
i=0

|Σ|∗10∗⌈102∗(log 106+(log 2)∗(i+1))⌉

(7)
Putting this all together, the number of input queries needed

in the absolute worst case is the sum of Equation (1), (|S|−1)
times Equation (4), and Equation (5):

qtotal = ql ot init+(|S| − 1) ∗ ql ot update+ qt conj total (8)
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The complexity of the terms in this equation is
O(|S|2 ∗ |Σ|2), O(|S|4 ∗ |Σ|+ |S|3 ∗ |Σ|2), and O(|S|2 ∗ |Σ|),
respectively, with the highest order term being the second one.
From this, it follows that the worst-case complexity of this
algorithm is O(|S|4 ∗ |Σ|+ |S|3 ∗ |Σ|2).

For the sake of clarity, we have summarized the previous
notations and their descriptions in Table I.

TABLE I
NOTATIONS AND THEIR DESCRIPTIONS.

Notation Meaning
|Σ| Number of elements in the input alphabet of the state

machine of the protocol.
|S| Number of states in the state machine of the protocol.
ql ot init Number of queries the learner needs to close the initial

observation table.
qt conj single Number of queries the teacher needs to test a single

conjecture.
ql ot update Number of queries the learner needs to update its observa-

tion table after a counterexample is found by the teacher.
qt conj total Total number of queries the teacher needs to test every

conjecture in the worst possible case.
qtotal Total number of queries the learner and the teacher need

in the worst possible case.

We were interested to know how many input queries this
would mean in the case of real-world protocol automata, and
ultimately, how long these would take to be inferred in the
absolute worst case. For this reason, we collected information
on such protocols. This is shown in Table II.

TABLE II
COMPLEXITY OF SOME REAL-WORLD PROTOCOL AUTOMATA

Protocol States
(|S|)

Input Msg. Types
(|Σ|)

Output Msg. Types
(|Λ|)

Modbus/TCP
[33]

- min. 8 min. 8

MQTT [34] min. 3 7 + 4 7 + 4
BGP [35] 6 4 4
POP3 [36] 4 10 2
IMAP [37] 3 25 15
FTP [38] min. 8 33 42
MegaD C&C
[22]

18 15 13

For Modbus/TCP, there are no protocol states, only TCP states. The typical
minimal implementation supports 8 basic commands, but device vendors
may add support for additional function codes, including vendor-specific
ones. For MQTT, the minimum number of states is 3. This is with a single
client, a single topic, and a QoS level of 0. The number of states increases
with the number of concurrent clients, topics, and QoS level 2. There are
7 message types that may be sent by either clients or servers, 4 that are
only sent by clients, and 4 that are only sent by servers. For POP3 and
IMAP, the number of message types may vary per implementation. The
table contains the number of message types as per the referenced RFC.
For FTP, the number of message types is given based on the referenced
RFC. The number of states is based on the work of J. Antunes and N.
Neves [39]. Newer versions and custom implementations of FTP support
additional message types, and may also have more states. The details of the
MegaD botnet’s command and control (C&C) protocol were sourced from
the paper of Cho et al. [22], who were the first ones to reverse engineer
the MegaD botnet’s protocols.

Using this information and the above formulas, we calcu-
lated the total number of steps required to reverse engineer
the state machine of each protocol in the absolute worst
case, along with an estimation of how long this would take,

assuming that 1000 requests are processed per second1. The
results are shown in Table III.

TABLE III
NUMBERS OF QUERIES AND THE TIME REQUIRED TO REVERSE ENGINEER

REAL-WORLD PROTOCOL STATE MACHINES, ABSOLUTE WORST CASE
CALCULATIONS

Protocol Queries Required
(Worst Case)

Time to Recover
(Worst Case)

MQTT 508266 8.47 minutes
BGP 425456 7.09 minutes
POP3 637622 10.63 minutes
IMAP 1159434 19.32 minutes
FTP 5101613 85.03 minutes
MegaD C&C 9919884 165.33 minutes

C. Correctness and Completeness for Partial Runs

To gain insight into what level of correctness and com-
pleteness is attainable under limitations, we generated 1000
random message format specifications, each having between 5
and 25 input message types, and between 3 and 15 output
message types. For each message format specification, we
generated 100 state machines having between 3 and 23 states.
The number of input and output message types, as well as
the number of states were initially chosen based on prior
experience with protocols, but were also confirmed using
Table II. The message format specifications were generated
to resemble those of real network protocols, as described in
[18]. We used a variant of the Erdős-Rényi algorithm [40] to
generate random graphs with the necessary properties, which
were then used as a basis for the protocol state machines. The
algorithm had to be modified to ensure that the resulting graph
is connected (all protocol states must be reachable), the edges
describe the transitions, the transitions occur in a way that
each input and output message type is used at least once, and
that there is at least one valid transition from each state (which
could also be a self-loop). Our implementation is available on
Github2.

Next, we executed the state machine inference algorithm on
each of the 100000 scenarios. In all of the cases, the learner,
the teacher, and the speaker all had a 100% correct, complete,
and concise description of the message format specifications,
and only the speaker had initial knowledge of the protocol
state machine (this knowledge was 100% correct, complete,
and concise). In each scenario, we monitored the execution
of the algorithm: we counted the number of queries from the
teacher to the speaker, and after each query, we also queried
the learner for its current idea of the state machine. This was
then compared to the true state machine.

We found that in 83% of the cases, the algorithm finished
without finding counterexamples. In these cases, the number of
queries required for a 100% complete protocol state machine
is, on average, 12% of the total. This also follows from

1The exact number of requests that can be sent to and processed by a
speaker in a second depends on several factors. It varies by protocol and even
by different implementations of the same protocol. The number 1000 was
chosen based on prior experience, and is believed to be correct within one
order of magnitude, considering non-clustered, networked services.

2https://github.com/GergoLadi/StateMachineGenerator
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Equations 1 and 3 in Section IV-B. Filling the observation
table to the point where it is considered closed requires
a number of requests that is generally at least one order
of magnitude smaller compared to the number of queries
performed while checking for counterexamples. In addition,
less complex protocols require a fewer percentage of the total
number of queries, while more complex ones require more: a
protocol with 10 input message types and 5 states will need
2010 queries to fill the observation table in the worst case
scenario, and it will take a further 145100 queries to check
for counterexamples. Meanwhile, a protocol with 20 input
message types and 10 states will need at most 26020 queries
to fill the observation table, and a further 290200 to check
for counterexamples. In these examples, the percentage of the
queries needed to fill and close the observation table is 1.37%
and 8.23%, respectively, in the worst case scenario.

Should these amounts be also considered to be over the
limit, it is also possible to ask the algorithm for the inferred
state machine between each fill operation, without having to
wait for the observation table to be closed. In these cases, the
completeness of the inferred state machine is proportional to
the number of queries performed during the fill operations, but
the relationship is not linear since the inferred state machine is
only (and can only be) updated after a fill operation. Queries
made after a previous operation do not directly contribute to
the completeness score until the end of the current operation.
Figure 5 shows an example. The number of fill operations and
the number of queries needed for a given operation varies by
state machine.
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Fig. 5. Completeness in the case of partial runs (example).
In this example, the partial inferred state machine was retrieved and compared
to the true state machine between fill operations. Six rounds are required
to fill and close the observation table. With each fill operation, more states
and transitions are discovered, increasing the completeness score. The first
one and the last two rounds improve the score more than the others. The
last two rounds require more queries to finish. The whole process makes up
less than 10% of the total queries, the rest are issued while looking for a
counterexample.

Correctness is always 100% as the observed state machine
never contains states or transitions that do not exist in the
true state machine.

At least one counterexample was found in the rest of the
cases (18%). Since finding a counterexample results in addi-
tional queries to fill the observation table again, followed by

another round of counterexample checks, we were expecting
these cases to require significantly more queries to run to
completion. In addition, the queries issued to fill the initial
observation table should now make up a smaller percentage
of the total.

To confirm our hypothesis, we took the average of all
such cases, and looked at the results. We found that the
average number of counterexamples was 2.24. The queries
needed to fill the initial observation table, on average, make
up 1.81% of the total queries. We also found that while
the number of queries does increase based on the number
of counterexamples found, this increase is generally between
10 and 20 percent per counterexample, far below our ex-
pectations. Further analysis showed that the most expensive
operation is the final counterexample check that confirms that
the inferred state machine is correct and complete, while
the other counterexample checks terminate early on, saving
a considerable number of queries.

Finding a counterexample also means that there is at least
one transition in the inferred state machine that is not correct.
Therefore, when analysing these cases, we also considered
correctness. The results show that there is a strong corre-
lation between correctness and completeness in these cases,
with counterexamples having a lesser degree of effect on
correctness than completeness. This is as expected, since
the counterexamples stem from single incorrectly assumed
transitions, as a result of which, multiple states and their
transitions may be missing. Figure 6 illustrates this phe-
nomenon well: considering a concrete example, the first 2
percent of the queries are used to fill the initial observation
table. At the end of this phase, over 80% of the state machine
is recovered, however, some incorrect transitions were also
included, reducing the correctness score. The following 8
percent of the queries are spent looking for counterexamples
until one is found. The observation table is extended using
this counterexample, eliminating an incorrect transition and
discovering real states or transitions, improving both the
correctness and the completeness score. The next 12 percent
are spent searching for counterexamples again, until one more
is found. The observation table is extended again, further
improving the scores, then another search for counterexamples
begins. Once more, after a further 13 percent of queries,
another counterexample is found and is handled accordingly.
At this point, all the incorrect transitions have been eliminated,
and the entire state machine has been recovered. However, this
is not known until the final counterexample check finishes,
which takes up the remaining 65 percent of the queries.

In practice, these findings mean that when the number
of queries is limited, one may run the algorithm until the
observation table is filled and considered closed for the first
time, retrieve the current conjecture for the state machine,
and consider this the final state machine without running the
counterexample checks. In the majority of the cases (82% in
our tests), this will be 100% complete and correct, with less
than 12% of the queries done. Table IV shows how long some
real-world protocol state machines would take to recover using
this method compared to the absolute worst case and a more
realistic case with a successful first counterexample check. (As
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Fig. 6. An example of a run where 3 counterexamples were found.

before, 1000 requests per second are assumed.)
If restrictions allow, counterexample checks should continue

running in the background, as even a few checks are better than
none. In our experiments, when counterexamples existed, they
were generally found within the first 5% of checks, however,
this is subject for further research.

D. Working with Incorrect or Incomplete Information

As mentioned in subsection IV-A, the FSM recovery algo-
rithm assumes that the message formats it is working with are
100% complete and correct. We have also assumed so in the
previous analyses. However, this is usually not the case. For
this reason, we conducted an analysis on how the teaching
and learning based protocol state machine reverse engineer-
ing algorithm handles situations where there is something
wrong with the message format specifications. We modified
the arrangement from the previous section in order to be
able to deterministically inject faults into the message format
specifications that are used, repeated the tests, and observed
the results. Taking into account the three wider categories of
shortcomings regarding the message format specifications as
well as the direction of the messages, a total of six cases were
examined:

1) Missing client-side message type: For the teaching-
learning algorithm, a missing client-side message type is
equivalent to missing an element from the input alphabet of
the (inferred) FSM. The learner will never send messages of
this type to the teacher, who will also never use this message
type when verifying the learner’s conjectures. The fact that
such a message type is missing will not be detected at any
point, and the resulting automaton will be missing all the
possible transitions for this message type, all the states that are
only reachable through one of these missing transitions, and
all the transitions from the missing states. Assuming that the
true FSM is defined as M(S, S0,Σ,Λ, T,G) and the resulting
FSM is M ′(S′, S0,Σ

′,Λ, T ′, G), where S′ ⊆ S, Σ′ ⊆ Σ, and
T ′ ⊆ T , the difference may be formalized as follows:
Tmiss in = {t ∈ T : t(si ∈ S, a ∈ Σ \ Σ′) = sj ∈ S}
Smiss = {s ∈ S : ∄t1, t2, ..., tn ∈ T \ Tmiss in :

tn(...(t2(t1(si, a), b), ..., e) = s} (a, b, ..., e ∈ Σ)
Tmiss out = {t ∈ T \ Tmiss in : t(si ∈ Smiss, a ∈ Σ) =

sj ∈ S}

Here, Tmiss in is the set of transitions that would be
triggered by a missing element of the input alphabet; Smiss is
the set of states that are not reachable as no path exists to them
without the transitions in Tmiss in; and Tmiss out is the set of
transitions that would be triggered by a known (not missing)
element of the input alphabet, but originate in unreachable
states. Knowing these sets, the graph edit distance between
M and M ′ may be given using the formula:

GED(M,M ′) = |Tmiss in|+ |Smiss|+ |Tmiss out| (9)

Graph Edit Distance (GED) [41] is a measure of similarity
between two graphs. Since state machines can be represented
as graphs, it is possible to compare a true and an inferred
state machine using GED. A distance of 0 means that the two
graphs are isomorphic, thus the inferred state machine behaves
the same way as the true one.

While the formula assumes that the true FSM (M ) is known,
this is rarely the case. However, it may still be used to estimate
the difference between M and M ′ if some information is
known about the quality of the reverse engineered message
format specifications (e.g. the expected number of missing
message types) and the properties of the protocol state machine
(e.g. the density of the state machine’s graph). In addition,
when the true FSM is known, the formula proves to be useful
for the analysis of the effects of (injected) faults in the message
format specifications.

A missing client-side message type does not have an effect
on correctness or conciseness, but completeness is negatively
affected.

2) Missing server-side message type: This is similar to the
previous issue in that entire message types may be missing.
In this case, a server-side message type is missing, such as
an indication of an error for a failed authentication attempt.
(This could be the result of no network traces containing sign-
in attempts with an incorrect password.)

For the algorithm, this case is equivalent to missing an
element from the output alphabet of the FSM. The teacher
will detect this the first time an unknown message type is
received as a response from the actual server implementation.

Since having message format specifications that are as cor-
rect and complete as possible is paramount, the state machine
reverse engineering process should be stopped, and the newly
discovered message type should be analysed, understood, and
added to the message format specification. Only then should
the state machine reverse engineering process be restarted.

3) Duplicate client-side message type: In this case, there
is at least one true message type that was identified as two
(or more) different message types in the message format
specifications. For example, this may happen if a flag field
precedes the operation code field in the message header, and
the flag field is incorrectly assumed to be a part of the
operation code field. Under these circumstances, inference
algorithms might identify each true message type as two
different message types if the messages sometimes appear with
the flag set and sometimes unset.

For the teaching-learning algorithm, this is equivalent to
having two (or more) almost identical copies of the same
element in the input alphabet of the FSM. The learner and the
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TABLE IV
NUMBER OF QUERIES REQUIRED AND TIME TO RECOVER FOR REAL-WORLD PROTOCOL STATE MACHINES, ASSUMING NO COUNTEREXAMPLES AND

SKIPPING COUNTEREXAMPLE CHECKS.

Protocol Queries Required Time to Recover Percent of
Worst Case

Percent of a More
Realistic Case

MQTT 1100 1.10 seconds 0.22 % 0.68 %
BGP 436 0.43 seconds 0.10 % 0.75 %
POP3 1410 1.41 seconds 0.22 % 0.96 %
IMAP 5650 5.65 seconds 0.49 % 1.53 %
FTP 47949 47.95 seconds 0.94 % 9.10 %
MegaD C&C 42540 42.54 seconds 0.43 % 16.35 %

teacher will both use the duplicate message types, and for each
transition triggered by these elements, the resulting automaton
will have two (or more) practically identical transitions: one
for each copy of the element.

While this does not adversely affect the correctness and
coverage of the result, it does impact conciseness. Assuming
that the algorithm runs to completion, and that there were no
missing or incorrect client-side message types, this impact may
be calculated as follows:

∆conciseness = 1− |T ′|
|T |

(10)

where T is the set of transitions in the true protocol state
machine, and T ′ is the set of transitions in the inferred protocol
state machine. An impact of 0 means that there were no
duplicate client-side messages, while an impact of 1 means
that there are twice as many transitions in the inferred protocol
state machine due to message type duplication. For example,
in a state machine with 5 client-side message types with 2
transitions each, having 2 duplicate message types results in
4 extra transitions, resulting in an impact of 0.4.

Duplicate client-side message types may be remedied by
employing better message format inference algorithms or
having higher quality input (e.g. better network traces). Al-
ternatively, duplicate message types may also be detected by
inspecting the resulting protocol state machine: for any pair
of inputs, if all the transitions (and all the outputs for the
transitions) are the exact same, the pair of message types
should be marked for further inspection.

4) Duplicate server-side message type: Just as a single
client-side message type might end up getting identified as
two (or more) different message types in the specifications,
the same may happen to server-side message types, and for
the same reason.

For the state machine inference algorithm, this is equivalent
to having two (or more) slightly different copies of the same
element in the output alphabet of the FSM. Suppose that in
the true specifications, there exists a server-side message type
x that is sent in response to a client-side message type a. In
the inferred specifications, x appears as y and z; for example,
because a flag field was considered to be part of the operation
code field. The teacher and the learner will classify responses
as y or z, while the software that is running the implementation
will operate according to the true specification.

Due to this discrepancy, it will eventually happen that the
teacher sends query a in the same state twice, and once
it receives y, once z as a response. This can and will be

detected as indeterministic behaviour. If this happens, the
state machine reverse engineering process cannot continue; the
message format specifications need to be reconciled first.

5) Incorrect client-side message type: Apart from being
missing and duplicate, message types may also be incorrect,
i.e. not matching the true specifications. Depending on what
exactly is incorrect, the effects range from nothing to a heavily
incomplete protocol state machine.

Consider a field in one of the requests that is supposed to be
a transaction identifier and is expected to be a random value in
each request. If this field appears incorrectly as a constant of
some value in the reverse engineered specifications, the same
value will be used in each request, but requests will complete
successfully, and this will have no effect on the characteristics
of the resulting protocol state machine.

On the other hand, if, for example, a field that is supposed to
be a sequence number is identified as a constant (or random)
value in the reverse engineered specifications, the server will
consider messages from the teacher-learner algorithm to be
out of sequence, and either respond with an error message to
every request or terminate the connection. This situation can be
detected, and the message format specifications can be fixed,
but in more subtle cases, only a subset of the message types
will be affected, and this may remain unnoticed, resulting
in an incomplete protocol state machine. In these cases, the
effect of incorrect client-side message types is similar to that
of missing client-side message types: transitions triggered by
these message types will not be present in the protocol state
machine, and neither will be states that are only reachable
through these, nor transitions that originate in these missing
states.

6) Incorrect server-side message type: Not only client-
side message types may be incorrect, so may be server-side
message types. As long as the teacher can identify which
message type a given received message corresponds to (failing
that, this is no longer a case of just an incorrect message
type), inconsistencies found between the true and the inferred
message format specifications may be ignored. However, it
would be preferable for the algorithm to make notes of these,
as this information may be used to improve the message format
specifications.

For example, in the inferred message format specifications,
there could be a field that was identified to be a random
value in each message, but by looking at the responses of the
server, it might become apparent that this is a counter that is
always increased by one. The message format specifications
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can then be updated accordingly.

Based on the above, it can be stated that the different problems
related to the different message types have varying effects
on the resulting protocol state machine. As summarized in
Table V, the most problematic issue is the missing client-
side message type, as there is no way to detect that this is
the case, and this prevents the algorithm from recovering the
entire true protocol state machine. The second worst issue is
the presence of incorrect client-side message types; while these
can be detected and fixed in some cases, in the others, these
will also prevent the algorithm from recovering the entire true
protocol state machine. In all the other cases, the presence of
the issue will always be detected, and steps can be taken to
remedy the situation.

It is also worth noting that fixing these issues also improves
the quality of the inferred message format specifications. As
a consequence, if a live speaker of the protocol is available,
it may be worth running the protocol state machine reverse
engineering algorithm even if we are only interested in the
message format specifications since the algorithm will be able
to detect and pinpoint some mistakes and inconsistencies in
the message formats.

V. CONCLUSION

In this paper, we have reviewed the means and methods of
the evaluation of the performance of protocol state machine
reverse engineering methods, including commonly used met-
rics of quality, and runtime and complexity. We have proposed
new performance metrics related to bounded runtime, and
shown the importance of analysing the effects of incomplete
or incorrect input.

Applying these existing and new methods, we have analysed
the teaching and learning based protocol state machine reverse
engineering method of Székely et al. We have given a formula
for the worst case complexity of the algorithm and calculated
how long real-world protocols would take to have their state
machines reverse engineered. We have shown that when run-
time is limited, as few as 12% of the total queries may be
enough to recover a 100% correct and complete protocol state
machine for a realistic protocol (however, one can never be
sure that this is the case until all of the queries have been
performed). We have also analysed how the algorithm handles
cases where the message type specifications are not 100%
correct, complete, and concise, as the algorithm originally
requires. The results indicate that the different classes of
problems affect the reverse engineered protocol state machine
in different ways, and that the direction of the problematic
message type also matters. For example, missing client-side
messages type cannot be detected, and will result in missing
states and transitions in the state machine, while missing or
duplicate server-side message types will be detected, and will
cause the algorithm to halt without producing a state machine.

In the future, we plan to analyse other protocol state ma-
chine reverse engineering methods following the same process
and compare the results. Unfortunately, concrete implementa-
tions are still rarely published, making this difficult to achieve.
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[5] J. Duchêne, C. Le Guernic, E. Alata, V. Nicomette, and M. Kaâniche,
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