
Transparent Encryption for Cloud-based Services

Gergő Ládi

Laboratory of Cryptography and System Security

Department of Networked Systems and Services

Budapest University of Technology and Economics

Budapest, Hungary

me@gergoladi.me

Abstract — Transparent encryption is a method that involves

encrypting data locally, on the user's computer, just before it is

sent to cloud services to be stored, then decrypting said data

later, straight after it is retrieved from the cloud service. All this

takes place without having to alter the client application or the

remote service (hence transparent). Applying this method

ensures that if the user's account or the provider itself is

compromised, the attackers can only retrieve encrypted data that

is useless without the encryption keys. This paper illustrates the

design of a system that is capable of performing transparent

encryption for various cloud-based services, even if the

connection between the client and the provider is secured by
Transport Layer Security.

Keywords – transparent encryption; cloud; security; DNS

spoofing; TLS inspection; tampering proxy; format preserving

encryption;

I. INTRODUCTION

Over the course of the past five years, cloud-based services
offering file storage, note and calendar management could be
seen gaining ground over traditional self-hosted or serverless
solutions, not just in the enterprise sector, but among home
users as well [1]. According to a 2016 survey [2], the average
consumer uses three different cloud services actively, at least
one of which he uses daily. While these services offer many
advantages to the end users, they present unique risks that are
often overlooked:

1) Users may lose their files if they don't use the
service for a while and their account is deleted, or
if the provider ceases operations without advance
notification (as it was the case with MegaUpload1

in 2011).

2) If the provider is breached, anything that is stored
by the users, including potentially sensitive
documents or trade secrets, may be accessed by
unauthorized individuals, possibly even published
on the internet.

3) If any website is breached where the user had an
account, data stored at a cloud-based service
provider may be in danger if the user used the
same password for both services, even if the

1 A popular file sharing and file storage service of the era that was

shut down by the US Department of Justice for alleged willful copyright

infringement.

provider itself is otherwise reasonably secure. As
of 19 May 2017, a total of 3,752,984,562 users
had their records leaked from 210 different
websites according to HaveIBeenPwned2.

4) The provider (its employees) may be able to
access anything stored, all without the users'
consent or knowledge. Even if the data is not
directly accessed, the provider may still run data
mining algorithms on it to build user profiles to be
sold or used for marketing purposes.

5) Finally, the provider may be forced to, or may
decide to hand over user data to nation states or
local authorities. This could put the users' lives at
risk in countries where having opposing views to
the party in power is enough to be threatened.

The first risk can be eliminated by having backup copies of
everything that is stored at cloud-based services, the third one
by having different passwords for each and every service, and
all the others by encrypting everything that is stored in the
cloud. Some providers claim that they store everything
encrypted, but this does not help against risk no. three, and if
the provider itself is assumed not to be trusted, it does not
eliminate risks two, four, and five either. However, employing
transparent encryption would solve all of the remaining issues
as it could make sure that unencrypted data never leaves the
user's computer.

While some vendors offer solutions to secure certain cloud
services, these solutions are limited to work with a given set of
services, and are closed source. Being closed source means that
it is not possible to audit the design or the implementation for
intentional and unintentional security flaws, and it also
prevents developers from adapting it to similar services. In
addition, existing solutions are usually not fully transparent in
that they require the user to change the way he uses or accesses
the cloud service. Furthermore, existing solutions focus on file
sharing or file storage services, while not only the users of
these are exposed to risks, but also those of note, calendar, and
photo management services – anything that may store sensitive
data.

The solution proposed in this paper does not suffer from the
above-mentioned limitations, and may be used to enhance the

2 A website that collects dumps of database leaks from breaches and

lets you check if you were affected by any of these.

64 WICT/III - 69333 - 2109 © SoftCOM 2017

security of any cloud-based service where the provider does
not need to have access to the unencrypted data.

II. CLOUD APPLICATION MESSAGE SEQUENCES

In order to design a transparent encryption layer, one has to
understand how cloud-based applications communicate with
their servers. After having inspected six different cloud
applications, I concluded that be it desktop, mobile, or
browser-based, they all follow a common pattern. This pattern
is depicted on Figure 1. , and is as follows:

1) When started, the application retrieves the
hostname of the server where the remote service
can be accessed. The hostname is usually stored in
configuration files, but it might also be hard coded
in the client executable. Then, a query is made to
the DNS (Domain Name System) servers to
resolve the server name to an IP (Internet
Protocol) address.

2) A name server resolves the requested hostname
and responds to the client.

3) The application initiates a TCP (Transmission
Control Protocol) connection to the IP address. If
the connection is successfully established, it
attempts to secure the communication channel
using TLS (Transport Layer Security).

4) Now that there is a secure channel, authentication
proceeds. If successful, the user may read or
modify data that is stored online. This is usually
done via REST3APIs (Application Programming
Interface) over HTTP (Hypertext Transfer
Protocol).

Client

application

1: Where is

cloudprovider.example.com?

2: It's at 10.1.2.3.

3: Create TCP session,

negotiate TLS

4: Data transfer

Cloud­based Service

at 10.1.2.3

Figure 1. A typical cloud application message sequence

(the IP address and the hostname are fictional)

It is not surprising to see REST APIs being used, since
web-based protocols are widely supported in all environments,
making it possible to use the same API for desktop, mobile,
and browser-based versions of applications as well.

3 Representational State Transfer (REST): A kind of API that relies

on HTTP as the layer 7 protocol, using HTTP verbs to indicate the action to

be carried out (query, creation, modification, deletion), URLs to specify the

resource to be manipulated, and HTTP's status codes to signal success/failure.

III. DESIGNING TRANSPARENT ENCRYPTION

In order to perform encryption and decryption on user data,
we need to divert the flow of data between the application and
the service provider in a way that all data from the client to the
server, as well as all data from the server to the client must pass
through the transparent encryption layer. Neither the client nor
the server should notice that they are not talking directly to
each other anymore. It is also required that messages flowing
through this layer be unprotected by TLS (or any other kind of
encryption) so that the relevant messages may be identified and
their contents may be changed in transit. This, in effect,
describes a MitM (man-in-the-middle) attack.

A. Diverting Traffic

Since all cloud services rely on DNS, the diversion of
traffic is most easily achieved by setting up a local DNS server
that:

� resolves the provider's hostname to a local IP
address (where the transparent encryption service
is running) when asked by external applications,

� resolves provider's hostname to the actual IP
address when requested by the transparent
encryption service, and

� resolves everything else to their actual IP
addresses, regardless of who the requestor is.

A possible method of differentiating between requests
coming from the proxy service and external applications is
using the reserved .local top-level domain [3] for internal
requests in a way that if the original hostname was
a.example.com, we query for a.example.com._nospoof.local
internally. The local DNS server should be configured to
resolve addresses according to these requirements, and the
local computer should be set to use the local DNS server
instead of the one assigned originally.

B. Handling Connections

Once the DNS server is set up, requests to the service will
be arriving at the local computer instead. To handle these, we
need to design and implement a service that listens on TCP
port 443 (the port of HTTPS – Secure HTTP)4.

The service must be able to negotiate a secure (TLS)
connection with the client, and in order to do so, a security
certificate5 is needed. These certificates aim to protect against
exactly the same kind of MitM attack that we are performing,
so further effort is needed to make this possible. Whilst some
applications do not actually check the validity of certificates,
but simply require their existence, this is bad security design
and should not be relied upon. Since most applications delegate
certificate validation to the operating system (or the browser, if
running a browser application), it is possible to generate
certificates that will be accepted as valid in most cases. First,

4 In case of services that use a different protocol and/or a different

port, this should be adjusted accordingly.
5 Cryptographically verifiable evidence proving that a peer is indeed

the one he is claiming to be.

WICT/III - 69333 - 2109 © SoftCOM 2017 65

we need to create a root CA6, for example by using the openssl
(Linux or Windows) or MakeCert (Windows) utilities. Then,
we need to add the root CA's certificate to the list of trusted
CAs. This ensures that certificates issued by this CA will be
accepted as valid. Finally, we can use the root CA's certificate
to issue and sign certificates for any domain, including that of
the cloud service provider. Note that some browsers, most
notably Firefox and its forks, have their own lists of trusted
CAs that are managed separately. This means that in case of
cloud services that are also accessed from a browser, we also
need to add our root CA's certificate to the list of trusted root
CAs in these specific browsers.

After a connection was established between the client and
the proxy service, we also need to establish a connection to the
actual service provider, then secure the connection using TLS.
For this, we don't need a certificate, however, extensive care
should be taken to validate the provider's certificate, otherwise
we are opening ourselves up to MitM attacks by other parties.

At this point, we now have the channels established and
secured (see Figure 2.), and are just missing the message
manipulation logic.

Figure 2. Message paths between the client and the service, with the proxy

enabled

C. Inspecting Traffic

Having reached this point, it is possible to read the client's
requests (unencrypted) from the client-to-proxy connection,
interpret them, change message contents if desired, and then
write the messages to the proxy-to-provider pipe. Processing
responses from the provider is analogous (with the pipes
swapped). Since the protocol used above TLS is HTTP, it is
suggested that HTTP libraries be used to parse messages. This
eliminates the need to manually decompress messages, process
and interpret headers and convert between character sets,
saving the programmer from a series of potentially dangerous
pitfalls. Furthermore, the data types used within the HTTP
requests are JSON7 or XML8/SOAP9, with several serialization
(deserialization) libraries available for both.

In order to discover the message types and data structures
used by a particular service, one can first design the proxy in a
way that it does nothing but relay requests and responses
unaltered, while also dumping messages to a file or database.

6 Certificate Authority (CA): an entity that can issue certificates.
7 JavaScript Object Notation (JSON): a notation that uses JavaScript-

like syntax to describe data structures. It is often used in applications that have

a web-based front-end since it is easy to work with JSON from JavaScript.
8 Extensible Markup Language (XML): a markup language with well-

defined rules for encoding documents and messages (data structures).
9 Simple Object Access Protocol (SOAP): a method for exchanging

data structures and invoking remote procedures. Uses XML for messaging.

Setting up the proxy and using the cloud application for a while
should uncover most message types. Services often offer
publicly available APIs to developers so that they can interface
with the cloud service from 3rd party applications. It is
recommended to check these APIs, as even if the endpoints are
different, the message types and the data structures might be
the same or similar.

D. Altering Traffic

Once we understand the message types and data structures,
we need to decide what should be protected. Typical candidates
are file contents, text fields, dates, phone numbers, and e-mail
addresses. After the relevant fields are identified, one can make
a list of requests that contain these, then create filters based on
the API endpoints or message signatures. The filters should be
chained together to inspect each request and response that
passes through, deciding whether the current filter should alter
the current message before passing it on to the other end of the
pipe. In this case, altering messages means encrypting or
decrypting certain fields of the data structure.

When working with services that store metadata, proper care
should be taken to identify and protect the elements of the
metadata that might contain sensitive information. Such
elements may be file or folder names, modification dates or
GPS coordinates.

Putting all of the above together results in a system (see Figure
3. on the next page) that can transparently encrypt data that is
being sent to a cloud service provider, then decrypt it on the
way back.

IV. FORMAT PRESERVING ENCRYPTION

A. Principles of FPE Algorithms

Services typically perform format and range validation on
anything that is submitted to the service. For this reason, the
naïve idea of encrypting fields with a usual stream cipher, then
sending resulting ciphertext to the service will not work, since
the raw binary data will not pass validation checks. While this
could sometimes be worked around by applying Base64
encoding10 to the binary data, this unnecessarily increases the
length of the output, and APIs often impose maximum length
restrictions. This is where format preserving encryption
algorithms (FPEs) are useful.

An encryption algorithm � is said to be format preserving
if the domain and the range (the � message space) are the
same (with the exception that the algorithm also takes a key
parameter ��	�4�.

�:	�	⨯	�→	� � ����

Using such algorithms, we can encrypt data in a way that
the ciphertext passes format validations from simple length
checks to more complex range or integrity checks.

10 A two-way transformation that transforms its input in a way that the

output contains only the non-capital and capital letters of the alphabet, the ten

numbers, and two other characters: '=' and '/'.

66 WICT/III - 69333 - 2109 © SoftCOM 2017

The first format preserving algorithms with provable
security were described by Black and Rogaway [5], who
proposed three possible approaches:

� a prefix cipher-based construction that is only
effective for small domains as we have to store a
lookup table of a size that of the domain,

� a construction based on cycle walking, which does
not use a lookup table, but is a recursive function
that may take several cycles to complete (as such,
its runtime is unpredictable), and

� a construction based on Feistel networks 11 that
does not need a lookup table, but may need cycle
walking (however, the number of rounds can be
limited by tweaking the parameters).

Based on the above, we can see that the Feistel network-based
algorithms are the best for general use. Multiple
implementations exist, typically differing in the number of
rounds, the maximum supported range of values, and whether
the algorithm takes a tweak 12 or not. These algorithms,
however, are only capable of transforming integers of a given
range to other integers in the same range.

B. Employing FPE Algorithms

To overcome the limitation of having only integers to work
with, ranking functions can be used to map the elements of the
message space to integers. For example, for simple text fields,
we can use a function that maps each letter to its (1-based)
position in the alphabet, then encrypt this rank value using the
cardinality of the alphabet as the maximum value parameter to
the FPE algorithm. Date-and-time type fields can be expressed
as the number of seconds that passed since a given reference
date. This number, together with a desired maximum offset
value can be used as parameters to an FPE algorithm [6].

Encryption for more complex types of data, such as images
needs different approaches to remain format preserving.

11 A Feistel network is a symmetric iterated cipher construction that

uses an internal round function. The symmetry makes it possible to use the

same construction for both encryption and decryption by changing the order

of the parameters.
12 An extra parameter used during encryption that helps ensure that

even if the key and the plaintext are the same, the ciphertext will be different.

Fortunately, some solutions have already been proposed: for
JPEG images, we can employ the length-preserving,
recompression-free method by Andreas Unterweger and
Andreas Uhl [7], or if thumbnails should be preserved as well,
the method by Charles V. Wright, Wu-chi Feng and Feng Liu
[8] could be used instead. There also exists a solution for the
encryption of PNG images, by Zheli Liu et al [9].

C. Keys and Tweaks

In the proposed system, the user has a different key for each
cloud-based service. For each service, a random key is
generated the first time one is needed. This has the advantage
of generating keys with high entropy (which means more
security against brute force attacks), but also has the downside
that the user has to copy the key file manually to each device
on which he wishes to use the cloud service. By employing a
password-based key derivation function such as PBKDF2 or
Argon2, it is possible to generate the same key separately on
each device, by using passwords, without having to transport
files. However, if the password is weak or the number of
rounds for the derivation function is low, the resulting key
might be weaker.

For the tweak, a never-changing element of the item's
metadata should be chosen, such as server-side identifiers or
creation dates. If there is no metadata or if it contains no
constant elements, a unique ID may be generated and
prepended or appended to (or otherwise mixed with) the item
to be encrypted if the length does not have to be preserved.

V. ADAPTABILITY

The system may be adapted to work with services that differ
from the ones analyzed in section II.

In case of services that do not rely on DNS to find the
provider, it is possible to use DNAT (Destination Network
Address Translation) techniques with iptables (Linux) or
portproxy (Windows) to reroute outgoing connections. The list
of IP addresses used by the client should be known in advance.
This may be retrieved from the provider's website, local
connection logs, or by analyzing a strings13 dump of the client
binary.

13 A tool that attempts to find string constants in files of binary format.

Client

application

TLS

TLS

Message

Parser
Filter 1 Filter 2 Filter N Message

ParserLocal DNS

server

ISP DNS

server

Figure 3. The architectural diagram of the transparent encryption system

WICT/III - 69333 - 2109 © SoftCOM 2017 67

If a protocol other than TCP is used as a transport layer
protocol, the sender and the receiver ends of the proxy have to
be reworked. If it is UDP, the change should be simple as
programming languages that support TCP will also support
UDP natively. If it is neither TCP nor UDP, we will have to
implement the handler ourselves, unless a library already exists
for that given protocol. In addition, if the transport protocol is
not TCP, the upper layers are also going to be different.

If the application does not use TLS or does not use HTTP,
further analysis will be needed. In most cases, this means that
the application uses a proprietary (usually binary) protocol,
which will have to be reverse engineered unless prior research
is available. One such notable difference I found is HTTP over
QUIC14 over UDP. This combination is already being used by
Google Chrome when talking to certain servers and may be
adopted by other providers in the future.

VI. FURTHER CONSIDERATIONS

This section is meant to briefly introduce how the system
could possibly be improved in the future, as well as highlight
features that might make it unfavorable to use in certain cases.

A. Possible Threat: Ever-changing APIs

For the system to work properly, the filters have to be able
to recognize the message types and data structures. If the cloud
service provider keeps making frequent changes to the API, the
maintainers of the encryption layer will also have to make
frequent changes to the code of the filters. In the meantime,
their data might be inaccessible to the users, and unencrypted
information might leak to the provider. The latter issue may be
worked around by letting through only known message types.

B. Possible Threat: New Security Measures

New security measures such as certificate pinning 15 or
HSTS16 might make it impossible to perform the MitM attack.
Disabling these might require the application to be patched, at
which point the method is no longer transparent as the client
had to be altered. A quick non-representative test showed that
among the three file storage services I tested, all of them
employ certificate pinning, although one may be set to run with
a magic switch to disable this feature. As for the three note-
taking or time management services, their clients did not have
any protection measures in place, and disabling HSTS in the
browser made it possible to succeed with the MitM attacks.

C. Multiple Services in One Proxy

The system could be improved to support multiple cloud
services side-by-side, by modularizing the proxy further,
adding a dispatcher that routes incoming requests to the
appropriate module based on the Host header received during
TLS negotiation.

14 A Google-developed transport/session layer protocol that offers

rapid connection establishment and TLS-like security.
15 A security check that, in addition to requiring a valid certificate,

also requires that the certificate be issued by one of the CAs on a list.
16 Hypertext Strict Transport Security (HSTS): a security mechanism

that can be used to enforce HTTPS and make certificate checks stricter.

RELATED WORK

The method of intercepting TLS traffic (as described in
section II/B) is based on Jeff Jarmoc's model (2012) [10],
altered in a way such that only relevant traffic is intercepted.
The filtering proxy (sections II/C, II/D) is based on Steven J.
Murdoch and Ross Anderson's design (2008) [11], improved to
be capable of modifying traffic instead of just allowing or
blocking it. We do not rely on trusted third parties or special
hardware (e.g. cryptographic coprocessors), however, such
methods ensuring privacy have been proposed by W. Itani, A.
Kayssi and A. Chehab (2009) [12].

CONCLUSION

Cloud-based services are popular and will stay popular in
the near future. They bring with themselves several risks from
a security standpoint that are often underestimated. The aim of
this work was to find and elaborate a method to increase the
security of cloud-based applications, even in cases where the
cloud service provider cannot be trusted at all. The proposed
solution relies on hijacking DNS queries and performing MitM
attacks against certain SSL/TLS sessions, then analyzing and
selectively encrypting/decrypting message contents. Format
preserving encryption algorithms are applied to ensure that the
ciphertext passes validation performed by the services.

REFERENCES

[1] S. Nag, L. Lam, Y. Dharmasthira et al, “Forecast: public cloud services,

worldwide, 2014-2020, 2Q16 update,” Gartner, G00310051, 2016.

[2] K. Weins, "Cloud computing trends: 2016 state of the cloud survey,"
(online), http://www.rightscale.com/blog/cloud-industry-insights/cloud-

computing-trends-2016-state-cloud-survey, 2016

[3] S. Cheshire, M. Krochmal, Apple Inc., “Multicast DNS,” (online),

https://tools.ietf.org/html/rfc6762, Internet Engineering Task Force
(IETF) RFC 6762, 2013, p. 5.

[4] J. Black, P. Rogaway, “Ciphers with arbitrary finite domains,” RSA-CT,
2002, p. 114.

[5] M. Bellare, T. Ristenpart, P. Rogaway, T. Stegers, “Format-Preserving

Encryption,” Cryptology ePrint Archive: Report 2009/251 (online:
https://eprint.iacr.org/2009/251), 2009

[6] Z. Liu, C. Jia, J. Li, X. Cheng, “Format-preserving encryption for
DateTime,” IEEE International Conference on Intelligent Computing

and Intelligent Systems (ICIS), 2010

[7] A. Unterweger, A. Uhl, “Length-preserving bit-stream-based JPEG
encryption,” MM&Sec '12 Proceedings of the 14th ACM multimedia and

security workshop, 2012, pp. 85-90.

[8] C. V. Wright, W. Feng, F. Liu, “Thumbnail Preserving Encryption for
JPEG,” IH&MMSec '15 Proceedings of the 3rd ACM Workshop on

Information Hiding and Multimedia Security, 2015, pp. 141-146.

[9] Z. Liu, M. Li, X.-Y. You, C. Jia, “Format-preserving encryption for
PNG image,” Beijing Ligong Daxue Xuebao/Transaction of Beijing

Institute of Technology, 2013

[10] J. Jarmoc, “SSL/TLS Interception Proxies and Transitive Trust,” Black
Hat Europe, 2012

[11] S. J. Murdoch, R. Anderson, “Access denied: The practice and policy of
global internet filtering,”, The MIT Press, ISBN 9780262251440, 2008,

pp. 58-63.

[12] W. Itani, A. Kayssi, A. Chehab, “Privacy as a Service: Privacy-Aware
Data Storage and Processing in Cloud Computing Architectures,”, 2009

Eighth IEEE International Conference on Dependable, Autonomic and
Secure Computing, Chengdu, 2009, pp. 711-716.

68 WICT/III - 69333 - 2109 © SoftCOM 2017

