

Transparent Encryption for Cloud-based Services

Gergő Ládi

Department of Networked Systems and Services

Budapest University of Technology and Economics

Budapest, Hungary

me@gergoladi.me

Abstract — Transparent encryption is a method that involves

encrypting data locally, on the user's computer, just before it is

sent to cloud services to be stored, then decrypting said data

later, straight after it is retrieved from the cloud service. All this

takes place without having to alter the client application or the

remote service (hence transparent). Applying this method

ensures that even if the user's account or the provider itself is

compromised, the attackers can only retrieve encrypted data that

is useless without the encryption keys. This paper illustrates the

design of a system that is capable of performing transparent

encryption for various cloud-based services.

Keywords – transparent encryption; cloud; security; DNS

spoofing; tampering proxy; format preserving encryption;

I. INTRODUCTION

Over the course of the past five years, cloud-based services
offering file storage, note and calendar management could be
seen gaining ground over traditional self-hosted or serverless
solutions, not just in the enterprise sector, but among home
users as well [1]. According to a 2016 survey [2], the average
consumer uses three different cloud services actively, at least
one of which he uses daily. While these services offer many
advantages to the end users, they present unique risks that are
often overlooked:

 Users may lose their files if they don't use the
service for a while and their account is deleted, or
if the provider ceases operations without advance
notification (as it was the case with MegaUpload1
in 2011).

 If the provider is breached, anything that is stored
by the users, including potentially sensitive
documents or trade secrets, may be accessed by
unauthorized individuals, possibly even published
on the internet.

 If any website is breached where the user had an
account, data stored at a cloud provider may be in
danger if the user used the same password for both
services, even if the cloud provider itself is
otherwise reasonably secure. As of 20 April 2017,
a total of 2,697,631,690 users had their records

1 A popular file sharing and file storage service of the era that was

shut down by the US Department of Justice for alleged willful copyright

infringement.

leaked from 210 different websites according to
HaveIBeenPwned2.

 The provider (its employees) may be able to
access anything stored, all without the users'
consent or knowledge. Even if the data is not
directly accessed, the provider may still run data
mining algorithms on it to build user profiles to be
sold or used for marketing purposes.

 Finally, the provider may be forced to, or may
decide to hand over user data to nation states or
local authorities. This could put the users' lives at
risk in countries where having opposing views to
the party in power is enough to be threatened.

The first risk can be eliminated by having backup copies of
everything that is stored at cloud providers, the third one by
having different passwords for each and every service, and all
the others by encrypting everything that is stored in the cloud.
While some providers claim that they store everything
encrypted, this does not help against risk no. three, and if the
provider itself is assumed not to be trusted, it does not
eliminate risks two, four, and five either. However, employing
transparent encryption would solve all of the remaining issues
as it could make sure that unencrypted data never leaves the
user's computer.

While some vendors offer solutions (such as BoxCryptor)
to secure certain cloud services, these solutions are limited to
work with a given set of services, and are closed source. Being
closed source means that it is not possible to audit the design or
the implementation for security issues, and it also prevents
developers from adapting it to similar services. In addition,
existing solutions are usually not fully transparent in that they
require the user to change the way he uses or accesses the
cloud service. The solution proposed in this paper does not
suffer from these limitations.

II. CLOUD APPLICATION MESSAGE SEQUENCES

In order to design a transparent encryption layer, one has to
understand how cloud-based applications communicate with
their servers. After having inspected six of the most well-
known applications, I concluded that be it desktop, mobile, or
browser-based, they all follow a common pattern. This pattern
is depicted on Figure 1. , and is as follows:

2 A website that collects dumps of database leaks from breaches and

lets you check if you were affected by any of these.

5

1) When started, the application retrieves the
hostname of the server where the remote service
can be accessed. The hostname is usually stored in
configuration files, but it might also be hard coded
in the client executable. Then, a query is made to
the DNS (Domain Name System) servers to
resolve the server name to an IP (Internet
Protocol) address.

2) A name server resolves the requested hostname
and responds to the client.

3) The application initiates a TCP (Transmission
Control Protocol) connection to the IP address. If
the connection is successfully established, it
attempts to secure the communication channel
using TLS (Transport Layer Security).

4) Now that there is a secure channel, authentication
proceeds. If successful, the user may read or
modify data that is stored online. This is usually
done via REST3APIs (Application Programming
Interface) over HTTP (Hypertext Transfer
Protocol).

10.1.2.3
Cloud provider

10.1.2.3
Cloud provider

Client
application

1: Where is
cloudprovider.example.com?

2: It's at 10.1.2.3.

DNS Server3: Create TCP session,
negotiate TLS

4: Download/upload
files, etc.

Figure 1. A typical cloud application message sequence (the IP address and

the hostname are fictional)

It is not surprising to see REST APIs being used, since
web-based protocols are widely supported in all environments,
making it possible to use the same API for desktop, mobile,
and browser-based versions of applications as well.

III. DESIGNING TRANSPARENT ENCRYPTION

In order to perform encryption and decryption on user data,
we need to divert the flow of data between the application and
the cloud provider in a way that all data from the client to the
server, as well as all data from the server to the client must pass
through the transparent encryption layer. Neither the client nor
the server should notice that they are not talking directly to
each other anymore. It is also required that messages flowing
through this layer be unprotected by TLS (or any other kind of
encryption) so that the relevant messages may be identified and
their contents may be changed in transit. This, in effect,
describes a MitM (man-in-the-middle) attack.

3 Representational State Transfer (REST): A kind of API that relies

on HTTP as the layer 7 protocol, using HTTP verbs to indicate the action to

be carried out (query, creation, modification, deletion), URLs to specify the

resource to be manipulated, and HTTP's status codes to signal success/failure.

A. Diverting Traffic

Since all cloud services rely on DNS, the diversion of
traffic is most easily achieved by setting up a local DNS server
that:

 resolves the provider's hostname to a local IP
address (where the transparent encryption service
is running) when asked by external applications,

 resolves provider's hostname to the actual IP
address when requested by the transparent
encryption service, and

 resolves everything else to their actual IP
addresses, regardless of who the requestor is.

A possible method of differentiating between requests
coming from the proxy service and external applications is
using the reserved .local top-level domain [3] for internal
requests in a way that if the original hostname was
a.example.com, we query for a.example.com._nospoof.local
internally. The local DNS server should be configured to
resolve addresses according to these requirements.

B. Handling Connections

Once the DNS server is set up, requests to the cloud
provider will be arriving at the local computer instead. To
handle these, we need to design and implement a service that
listens on TCP port 443 (the port of HTTPS – Secure HTTP)4.

The service must be able to negotiate a secure (TLS)
connection with the client, and in order to do so, a security
certificate5 is needed. These certificates aim to protect against
exactly the same kind of MitM attack that we are performing,
so further effort is needed to make this possible. Whilst some
applications do not actually check the validity of certificates,
but simply require their existence, this is bad security design
and should not be relied upon. Since most applications delegate
certificate validation to the operating system (or the browser, if
running a browser application), it is possible to generate
certificates that will be accepted as valid in most cases. First,
we need to create a root CA6, for example by using the openssl
or makecert utilities. Then, we need to add the root CA's
certificate to the list of trusted CAs. This ensures that
certificates issued by this CA will be accepted as valid. Finally,
we can use the root CA's certificate to issue and sign
certificates for any domain, including that of the cloud service
provider.

After a connection was established between the client and
the proxy service, we also need to establish a connection to the
actual cloud provider, then secure the connection using TLS.
For this, we don't need a certificate, however, extensive care
should be taken to validate the provider's certificate, otherwise
we are opening ourselves up to MitM attacks by other parties.

4 In case of services that use a different protocol and/or a different

port, this should be adjusted accordingly.
5 Cryptographically verifiable evidence proving that a peer is indeed

the one he is claiming to be.
6 Certificate Authority (CA): an entity that can issue certificates

6

Figure 2. The architectural diagram of the transparent encryption system

At this point, we now have the channels established and
secured, and are just missing the message manipulation logic.

C. Inspecting Traffic

Having reached this point, it is possible to read the client's
requests (unencrypted) from the client-to-proxy connection,
interpret them, change message contents if desired, and then
write the messages to the proxy-to-provider pipe. Processing
responses from the provider is analogous (with the pipes
swapped). Since the protocol used above TLS is HTTP, it is
suggested that HTTP libraries be used to parse messages. This
eliminates the need to manually decompress messages, process
and interpret headers and convert between character sets,
saving the programmer from a series of potentially dangerous
pitfalls. Furthermore, the data types used within the HTTP
requests are JSON7 or XML8/SOAP9, with several serialization
(deserialization) libraries available for both.

In order to discover the message types and data structures
used by a particular service, one can first design the proxy in a
way that it does nothing but relay requests and responses
unaltered, while also dumping messages to a file or database.
Setting up the proxy and using the cloud application for a while
should uncover most message types. Services often offer
publicly available APIs to developers so that they can interface
with the cloud service from 3rd party applications. It is
recommended to check these APIs, as even if the endpoints are
different, the message types and the data structures might be
the same or similar.

D. Altering Traffic

Once we understand the message types and data structures,
we need to decide what should be protected. Typical candidates
are file contents, text fields, dates, phone numbers, and e-mail
addresses. After the relevant fields are identified, one can make
a list of requests that contain these, then create filters based on
the API endpoints or message signatures. The filters should be

7 JavaScript Object Notation (JSON): a notation that uses JavaScript-

like syntax to describe data structures. It is often used in applications that have

a web-based front-end since it is easy to work with JSON from JavaScript.
8 Extensible Markup Language (XML): a markup language with well-

defined rules for encoding documents and messages (data structures).
9 Simple Object Access Protocol (SOAP): a method for exchanging

data structures and invoking remote procedures. Uses XML for messaging.

chained together to inspect each request and response that
passes through, deciding whether the current filter should alter
the current message before passing it on to the other end of the
pipe. In this case, altering messages means encrypting or
decrypting certain fields of the data structure.

Putting all of the above together results in a system (Fig. 2) that
can transparently encrypt data that is being sent to a cloud
service provider, then decrypt it on the way back.

IV. FORMAT PRESERVING ENCRYPTION

Cloud providers typically perform format and range
validation on anything that is submitted to the service. For this
reason, the naïve idea of encrypting fields with a usual stream
cipher, then sending resulting ciphertext to the service will not
work, since the raw binary data will not pass validation checks.
While this could sometimes be worked around by applying
Base64 encoding 10 to the binary data, this unnecessarily
increases the length of the output, and APIs often impose
maximum length restrictions. This is where format preserving
encryption algorithms (FPEs) are useful.

An encryption algorithm 𝓕 is said to be format preserving
if the domain and the range (the 𝓜 message space) are the
same (with the exception that the algorithm also takes a key
parameter 𝓚) [4].

 𝓕: 𝓚 ⨯ 𝓜→ 𝓜

Using such algorithms, we can encrypt data in a way that
the ciphertext passes format validations from simple length
checks to more complex range or integrity checks.

The first format preserving algorithms with provable
security were described by Black and Rogaway [5], who
proposed three possible approaches:

10 A two-way transformation that transforms its input in a way that the

output contains only the non-capital and capital letters of the alphabet, the ten

numbers, and two other characters: '=' and '/'.

Cloud
provider
Cloud

provider

Client
application

Local
DNS Server

Local
DNS Server

ISP
DNS Server

ISP
DNS Server

TLS

TLS
Message

Parser
Filter 1 Filter 2 Filter N Message

Parser

7

 a prefix cipher-based construction that is only
effective for small domains as we have to store a
lookup table of a size that of the domain,

 a construction based on cycle walking, which does
not use a lookup table, but is a recursive function
that may take several cycles to complete (as such,
its runtime is unpredictable), and

 a construction based on Feistel networks 11 that
does not need a lookup table, but may need cycle
walking (however, the number of rounds can be
limited by tweaking the parameters).

Based on the above, we can see that the Feistel network-
based algorithms are the best for general use. Multiple
implementations exist, typically differing in the number of
rounds, the maximum supported range of values, and whether
the algorithm takes a tweak 12 or not. These algorithms,
however, are only capable of transforming integers of a given
range to other integers in the same range. To overcome this
limitation, ranking functions can be used to map the elements
of the message space to integers.

For example, for simple text fields, we can use a function
that maps each letter to its (1-based) position in the alphabet,
then encrypt this rank value using the cardinality of the
alphabet as the maximum value parameter to the FPE
algorithm. Date-and-time type fields can be expressed as the
number of seconds that passed since a given reference date.
This number, together with a desired maximum offset value
can be used as parameters to an FPE algorithm [6].

V. FURTHER CONSIDERATIONS

This section is meant to briefly introduce how the system
could possibly be improved in the future, as well as highlight
features that might make it unfavorable to use in certain cases.

A. Possible Threat: Ever-changing APIs

For the system to work properly, the filters have to be able
to recognize the message types and data structures. If the cloud
service provider keeps making frequent changes to the API, the
maintainers of the transparent encryption layer will also have to
make frequent changes to the code of the filters. In the
meantime, user data might be inaccessible, and unencrypted
information might leak to the provider.

B. Possible Threat: New Security Measures

New security measures such as certificate pinning 13 or
HSTS14 might make it impossible to perform the MitM attack.

11 A Feistel network is a symmetric iterated cipher construction that

uses an internal round function. The symmetry makes it possible to use the

same construction for both encryption and decryption by changing the order
of the parameters.

12 An extra parameter used during encryption that helps ensure that
even if the key and the plaintext are the same, the ciphertext will be different.

This is similar to how Initialization Vectors (IV) work for other algorithms.
13 A security check that, in addition to requiring a valid certificate,

also requires that the certificate have a specific serial number or be issued by

one of the certificate authorities on a list.

Disabling these might require the application to be patched, at
which point the method is no longer transparent.

C. Supporting Multiple Services

The system could be improved to support multiple cloud
services side-by-side, by modularizing the proxy further,
adding a dispatcher that routes incoming requests to the
appropriate module based on the Host header received during
TLS negotiation.

D. User Key Management

With the current design, if the user intends to use the cloud
service on multiple devices, he has to copy the key file to each
device manually. By employing a password-based key
derivation function, it should be possible to generate the same
key separately on each device, without having to transport files.

CONCLUSION

Cloud-based services are popular and will stay popular in
the near future. They bring with themselves several risks from
a security standpoint that are often underestimated. The aim of
this work was to elaborate a method to increase the security of
cloud-based applications, even in cases where the cloud service
provider cannot be trusted at all. The proposed solution relies
on hijacking DNS queries and performing MitM attacks against
certain SSL/TLS sessions, then analyzing and selectively
encrypting/decrypting message contents.

RELATED WORKS

A working proof of concept having the previously
discussed architecture and properties was implemented in C#
for Google Calendar and the note-taking service Evernote as
part of a different project.

ACKNOWLEDGMENT

I would like to express my thanks to my advisor Dr.
Levente Buttyán and the CrySyS laboratory for the useful
advice and support.

REFERENCES

[1] S. Nag, L. Lam, Y. Dharmasthira et al, “Forecast: public cloud services,
worldwide, 2014-2020, 2Q16 update,” Gartner, G00310051, 2016.

[2] K. Weins, "Cloud computing trends: 2016 state of the cloud survey,"
(online), http://www.rightscale.com/blog/cloud-industry-insights/cloud-
computing-trends-2016-state-cloud-survey, 2016

[3] S. Cheshire, M. Krochmal, Apple Inc., “Multicast DNS,” (online),
https://tools.ietf.org/html/rfc6762, Internet Engineering Task Force
(IETF) RFC 6762, 2013, p. 5.

[4] J. Black, P. Rogaway, “Ciphers with arbitrary finite domains,” RSA-CT,
2002, p. 114.

[5] M. Bellare, T. Ristenpart, P. Rogaway, T. Stegers, “Format-Preserving
Encryption,” Cryptology ePrint Archive: Report 2009/251 (online:
https://eprint.iacr.org/2009/251), 2009

[6] Z. Liu, C. Jia, J. Li, X. Cheng, “Format-preserving encryption for
DateTime,” IEEE International Conference on Intelligent Computing
and Intelligent Systems (ICIS), 2010

14 Hypertext Strict Transport Security (HSTS): a security mechanism

that can be used to enforce HTTPS and make certificate checks stricter.

8

http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2016-state-cloud-survey
https://tools.ietf.org/html/rfc6762
https://eprint.iacr.org/2009/251

