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Abstract—In mission critical cyber-physical systems, dependability is
an important requirement at all layers of the system architecture. In this
paper, we propose protocols that increase the dependability of wireless
sensor networks, which are potentially useful building blocks in cyber-
physical systems. More specifically, we propose two private aggregator
node election protocols, a private data aggregation protocol, and a
corresponding private query protocol for sensor networks that allow for
secure in-network data aggregation by making it difficult for an adversary
to identify and then physically disable the designated aggregator nodes.
Our advanced protocols resist strong adversaries that can physically
compromise some nodes.

1 INTRODUCTION

Wireless sensor and actuator networks are potentially
useful building blocks for cyber-physical systems. Those
systems must typically guarantee high-confidence opera-
tion, which induces strong requirements on the depend-
ability of their building blocks, including the wireless
sensor and actuator network. Dependability means re-
sistance against both accidental failures and intentional
attacks, and it should be addressed at all layers of the
network architecture, including the networking proto-
cols and the distributed services built on top of them,
as well as the hardware and software architecture of
the sensor and actuator nodes themselves. Within this
context, in this paper, we focus on the security aspects of
aggregator node election and data aggregation protocols
in wireless sensor networks.
Data aggregation in wireless sensor networks helps

to improve the energy efficiency and the scalability of
the network. It is typically combined with some form
of clustering. A common scenario is that sensor read-
ings are first collected in each cluster by a designated
aggregator node that aggregates the collected data and
sends only the result of the aggregation to the base
station. In another scenario, the base station may not be
present permanently in the network, and the aggregated
data must be stored by the designated aggregator node
in each cluster temporarily until the base station can
eventually fetch the data. In both cases, the amount of

communication, and hence, the energy consumption of
the network can be greatly reduced by sending aggre-
gated data, instead of individual sensor readings, to the
base station.
While data aggregation in wireless sensor networks

is clearly advantageous with respect to scalability and
efficiency, it introduces some security issues. In partic-
ular, the designated aggregator nodes that collect and
store aggregated sensor readings and communicate with
the base station are attractive targets of physical node
destruction and jamming attacks. Indeed, it is a good
strategy for an attacker to locate those designated nodes
and disable them, because he can prevent the reception
of data from the entire cluster served by the disabled
node. Even if the aggregator role is changed periodically
by some election process, some security issues remain,
in particular in the case when the base station is off-
line and the aggregator nodes must store the aggregated
data temporarily until the base station goes on-line and
retrieves them. More specifically, in this case, the attacker
can locate and attack the node that was aggregator in
a specific time epoch before the base station fetches its
stored data, leading to permanent loss of data from the
given cluster in the given epoch.
In order to mitigate this problem, we introduced the

concept of private aggregator node election, and we pro-
posed the first private aggregator node election protocol
in our earlier work [1]. Briefly, our earlier protocol en-
sures that the identity of the elected aggregator remains
hidden from an attacker who observes the execution
of the election process. However, our earlier protocol
ensures only protection against an external eavesdropper
that cannot compromise sensor nodes, and it does not
address the problem of identifying the aggregator nodes
by means of traffic pattern analysis after the election
phase.
In our second paper [2], we addressed the short-

comings of our earlier scheme: We proposed a new
private aggregator node election protocol that is resistant
even to internal attacks originating from compromised
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nodes, and we also proposed a new private data ag-
gregation protocol and a new private query protocol
which preserved the anonymity of the aggregator nodes
during the data aggregation process and when they
provide responses to queries of the base station. In
our second private aggregator node election protocol,
each node decides locally in a probabilistic manner to
become an aggregator or not, and then the nodes execute
an anonymous veto protocol to verify if at least one
node became aggregator. The anonymous veto protocol
ensures that non-aggregator nodes learn only that there
exists at least one aggregator in the cluster, but they do
not learn any information on its identity. Hence, even if
such a non-aggregator node is compromised, the attacker
learns no useful information regarding the identity of the
aggregator.
However, our second protocol used a special broadcast

communication scheme, which assumed the existence of
a Hamilton cycle in the cluster. Creating a Hamilton
cycle in a wireless sensor network is a difficult and
energy consuming problem, therefore in this paper, we
relax this assumption and we use spanning trees, which
are easy to construct.
Another important improvement in this paper is that

we address the problem of misbehaving nodes that try
to obfuscate the values received by the operator. We
analyze how a malicious node can mislead the operator,
and propose an algorithm which can detect the presence
of misbehaving nodes.
Our protocols can be used to protect sensor network

applications that rely on data aggregation in clusters,
and where locating and then disabling the designated
aggregator nodes is highly undesirable. Such appli-
cations include high-confidence cyber-physical systems
where sensors and actuators monitor and control the
operation of some critical physical infrastructure, such as
an energy distribution network, a drinking water supply
system, or a chemical pipeline. A common feature of
these systems is that they have a large geographical span,
and therefore, the sensor network must be organized
into clusters and use in-network data aggregation in
order to ensure scalability and energy efficient operation.
Moreover, due to the mission critical nature of these
applications, it is desirable to prevent the identification
of the aggregator nodes in order to limit the impact
of a successful attack against the sensor network. Our
first protocol that resist only an external eavesdropper is
less complex than our second protocol that works in a
stronger attacker model. Hence, the first protocol can be
used in case of strong resource constraints or when the
risk of compromising sensor nodes is limited (e.g., it may
be difficult to obtain physical access to the nodes). Our
second protocol is needed when the risk of compromised
and misbehaving nodes cannot be eliminated by other
means.
The remainder of the paper is organized as follows:

In Section 2, we introduce our system and attacker
models. In Section 3, we present our basic aggregator

election protocol which can withstand external attacks,
while in Section 4, we introduce our advanced protocols,
which can withstand internal aggregator identification
and scamming attackers as well. In Section 5, we give
an overview of some related work, and in Section 6,
we conclude the paper and sketch some future research
directions.

2 SYSTEM AND ATTACKER MODELS

A sensor network consists of sensor nodes that commu-
nicate with each other via wireless channels. Every node
can generate sensor readings, and store it or forward it to
another node. Each node can directly communicate with
the nodes within its radio range; those nodes are called
the (one-hop) neighbors of the node. In order to com-
municate with distant nodes (outside the radio range),
the nodes use multi-hop communications. The sensor
network has an operator as well, who can communicate
with some of the nodes through a special node called
base station, or can communicate directly with the nodes
if the operator moves close to the network.
Throughout the paper, a data driven sensor network is

envisioned, where every sensor node sends its measure-
ment to a data aggregator regularly. Such data driven
networks are used for regular inspection of monitored
processes notably in critical infrastructures. Event driven
networks can be used for reporting special usually dan-
gerous but infrequent events like fire in a building. There
is no need of clustering and data aggregation in event
based systems, thus private cluster aggregator election
and data aggregation is not applicable there. The third
kind of network is the query driven network, where
the operator sends a query to the network, and the
network sends a response. This kind of functionality
can be used with data driven networks, and can have
privacy consequences, like the identity of the answering
node should remain hidden.
In the following, we will assume, that the time is slot-

ted, and one measurement is sent to the data aggregator
in each time slot. The time synchronization between the
nodes is not discussed here, but a comprehensive survey
can be found in [3].
It is assumed that every node shares some crypto-

graphic credentials with the operator. These credentials
are unique for every node, and the operator can store
them in a lookup table, or can be generated from a mas-
ter key and the node’s identifier on demand. The exact
definition of the credentials can be found in Section 3.1
and in Section 4.1.
The nodes may be aware of their geographical loca-

tions, and they may already be partitioned into well
defined geographical regions. In this case, these regions
are the clusters, and the objective of the aggregator
election protocol is to elect an aggregator within each ge-
ographical region. We call this approach location based
clustering; an example would be the PANEL protocol [4].
A kind of generalization of the position based election

is the preset case, where the nodes know the cluster ID
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they belong to before any communication. Here the goal
of the election is to elect one node in every preset cluster.
This approach is used in [2].
Alternatively, the nodes may be unaware of their

locations or cluster IDs, and know only their neighbors.
In this case, the clusters are not pre-determined, but they
are dynamically constructed parallel to the election of the
aggregators. Basically, any node may announce itself as
an aggregator, and the nodes within a certain number
of hops on the topology graph may join that node as
cluster members. We call this approach topology based
clustering; an example would be the LEACH protocol
[5].
The location based and the topology based approaches

are illustrated in Figure 1.
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Fig. 1. Result of a location based (left), and topology
based (right) one-hop aggregator election protocol. Solid
dots represent the aggregators, and empty circles repre-
sent cluster members.

Both approaches may use controlled flooding of
broadcast messages. In case of location based or preset
clustering, the scope of a flood is restricted to a given
geographic region or preset cluster. Nodes within that
region re-broadcast the message to be flooded when
they receive it for the first time. Nodes outside of the
region or having different preset cluster IDs simply drop
the message. In case of topology based clustering, we
assume that the broadcast messages has a Time-to-Live
field that controls the scope of the flooding. Any node
that receives a broadcast message with a positive TTL
value for the first time will automatically decrement the
TTL value and re-broadcast the message. Duplicates and
messages with TTL smaller than or equal to zero are
silently discarded. When we say that a node broadcasts
a message, we mean such a controlled flooding (either
location based, preset or topology based, depending
on the context). In Section 4, we will use connected
dominating sets (CDS) to implement efficient broadcast
messaging. The concept of CDS will be introduced there.
We call the set of nodes which are (in the location

based and the preset case) or can potentially be (in the
topology based case) in the same cluster as a node S the
cluster peers of S. Hence, in the location based case, the
cluster peers of S are the nodes that reside within the
same geographic region as node S. In the preset case,

the cluster peers are the nodes sharing the same cluster
ID. In the topology based case, the set of cluster peers of
S usually consists in its n-hop neighborhood, for some
parameter n. The nodes may not explicitly know all their
cluster peers.
The main functional requirement of any clustering

algorithm is that either node S or at least one of the
cluster peers of S will be elected as aggregator.
The leader of each cluster is called cluster aggre-

gator, or simply aggregator. In the following we will
use aggregator, cluster aggregator and data aggregator
interchangeably.
As mentioned in Section 1, an attacker can gain much

more information by attacking an aggregator node than
attacking a normal node. To attack a data aggregator
node either physically or logically, first the attacker
must identify that node. In this paper we assume that
the attacker’s goal is to identify the aggregator (which
means that simply preventing, jamming or confusing the
aggregation is not the goal of the attacker). In Section 4.5
we go a little further, and analyze what happens if a com-
promised node does not follow the proposed protocols
in order to mislead the operator.
An attacker who wants to discover the identity of the

aggregators can eavesdrop the communication between
any nodes, can actively participate in the communication
(by deleting modifying and inserting messages) and can
physically compromise some of the nodes. A compro-
mised node is under the full control of the attacker, the
attacker can fully review the inner state of that node,
and can control the messages sent by that node.
Compromising a node is a much harder challenge for

an attacker then simply eavesdropping the communica-
tion. It requires physical contact with the node and some
advanced knowledge, however it is far from impossible
for an attacker with good electrical and laboratory back-
ground [6]. So we propose two solutions. The first basic
protocol can fully withstand a passive eavesdropper,
but a compromising attacker can gain some knowledge
about the identities of the cluster aggregators. The sec-
ond advanced protocol can withstand a compromising
attacker as well, with only leaking information about the
compromised nodes.
In case of a passive adversary, a rather simple solu-

tion could be based on a commonly shared global key.
Using that shared global key as a seed of a pseudo
random number generator, every node can construct
locally (without any communications) the same pseudo
randomly ordered list of all nodes. These lists will be
identical for every node because all nodes use the same
seed and the same pseudo random number generator.
Then, the first A nodes of the list are elected aggregators
such that every node can communicate with a cluster
aggregator and no subset of A covers the whole system.
An illustration of the result of this algorithm can be seen
on Figure 1 for location based and topology based cluster
aggregator election.
The problem with this solution is that it is not robust:
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compromising a single node would leak the common
key, and the adversary could compute the identifier of
all cluster aggregators. While we do not want to fully
address the problem of compromised nodes in the first
protocol, we still aim at a more robust solution than the
one described above. In particular, the system should not
collapse by compromising just a single or a few nodes.
The second protocol can withstand the compromise

of some nodes without the degradation of the privacy
of the cluster aggregators. This protocol meets the fol-
lowing goals and has the following limitations:

• The identity of the non-compromised cluster aggre-
gators remains secret even in the presence of passive
and active attackers or compromised nodes.

• The attacker can learn whether the compromised
node is an aggregator.

• An attacker can force a compromised node to be
aggregator, but does not know anything about the
existence or identity of the other aggregators.

• The attacker cannot achieve that no aggregator is
elected in the cluster, however all the elected aggre-
gator(s) may be compromised nodes.

The main difference between the first and second pro-
tocol is the following. The first protocol is very simple,
but not perfect as a compromised node can reveal the
identity of the aggregators. The second protocol requires
more complex computations, but offers anonymity in
case of node compromise as well. In some cases such
complex computations are outside the capabilities of the
nodes (or the probability of compromise is low), but
anonymity is still required by the system. In these cases
we suggest to use the first protocol. If the probability of
node compromise is not negligible, then the use of the
second protocol is recommended.

3 BASIC PROTOCOL

In this section, we describe the basic protocol that we
propose for private aggregator node election. An impor-
tant component of this basic protocol will be presented
in Section 3.2, where we also describe how to set the
parameters of the protocol. We first give a brief overview
of the basic principles of our protocol, and present the
details later.

3.1 Protocol description

We assume that the nodes are synchronized (see [3] for
a survey on time synchronization mechanism for sensor
networks), and each node starts executing the protocol
roughly at the same time. The protocol terminates after
a predefined fix amount of time. During the execution
of the protocol, any node that has not received any
aggregator announcement yet may decide to become an
aggregator, in which case, it broadcasts an aggregator
announcement message announcing itself as a cluster
aggregator. This message is broadcast among the cluster

peers of the node sending the announcement (see Sec-
tion 2). Upon reception of a cluster aggregator announce-
ment, any node that has neither announced itself as a
cluster aggregator nor received any such announcement
yet will consider the sender of the announcement as
its cluster aggregator. In order to prevent an external
observer to learn the identity of the cluster aggregators,
all messages sent in the protocol are encrypted such
that only the nodes to whom they are intended can
decrypt them. For this, we assume that each node shares
a common key with all of its cluster peers (an overview
of available key establishment mechanisms for sensor
networks can be found in [7]). In addition, in order to
avoid that message originators are identified as cluster
aggregators, the nodes that will be cluster members
are required to send dummy messages that cannot be
distinguished from the announcements by the external
observer (i.e., they are encrypted and disseminated in
the same way as the announcements).
Note that the proposed basic protocol considers only

either pairwise keys between the neighboring nodes or
group keys shared between sets of neighboring nodes,
so no global key is assumed. Such pairwise or group
keys can be established by the techniques proposed in
[7]. The key establishment can be based on randomly
selected key sets. In such a protocol, the probability that
neighboring nodes share a common key is high, and the
unused keys are deleted [8]. The key establishment can
be also based on a common key which is deleted after
some short time when the neighbors are discovered [9].
Any node that owns the common key can generate a
pairwise key with a node which owns or previously
owned the common key. The basic method for exchang-
ing a group/cluster key with the neighboring nodes is to
send the same random key to each neighbor encrypted
with the previously exchanged pairwise keys.
The pseudo-code of the protocol is given in Algo-

rithm 1, and a more detailed explanation of the proto-
col’s operation is presented below. The protocol consists
of two rounds, where the length of each round is τ .
The nodes are synchronized, they all know when the
first round begins, and what the value of τ is. At the
beginning, each node starts two random timers, T1 and
T2, where T1 expires in the first round (uniformly at
random) and T2 expires in the second round (uniformly
at random). Each node also initializes at random a binary
variable, called announFirst, that determines in which
round the node would like to send a cluster aggregator
announcement. The probability that announFirst is set
to the first round is γ, which is a system parameter. The
setting of γ is elaborated in Section 3.2.
In the first round, every node S waits for its first timer

T1 to expire. If S receives an announcement before T1
expires, then the sender of the announcement will be the
cluster aggregator of S. When T1 expires, S broadcasts
a message as follows: If announFirst is set to the first
round and S has not received any announcement yet,
then S sends an announcement, in which it announces
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Algorithm 1 Basic private cluster aggregator election
algorithm

start T1, expires in rand(0,τ ) //timer, expires in round
1
start T2, expires in rand(τ ,2τ ) //timer, expires in
round 2
announFirst = (rand(0,1) ≤ γ)
CAID = -1 // ID of the cluster aggregator of the node
while T1 NOT expired do
if receive ENC(announcement) AND (CAID = -1)
then
CAID = ID of sender of announcement

end if
end while
// T1 expired
if announFirst AND (CAID = -1) then
broadcast ENC(announcement);
CAID = ID of node itself;

else
broadcast ENC(dummy);

end if
while T2 NOT expired do
if receive ENC(announcement) AND (CAID = -1)
then
CAID = ID of sender of announcement

end if
end while
// T2 expired
if (NOT announFirst) AND (CAID = -1) then
broadcast ENC(announcement);
CAID = ID of node itself;

else
broadcast ENC(dummy);

end if

itself as a cluster aggregator. Otherwise, S sends a
dummy message. In both cases, the message is encrypted
(denoted by ENC() in the algorithm) such that only the
cluster peers of S can decrypt it.

The second round is similar to the first round.
When T2 expires S broadcasts a message as follows:
If announFirst is set to the second round and S has
not received any announcement yet, then S sends an
announcement, otherwise, S sends a dummy message.
In both cases, the message is encrypted.

It is easy to see that at the end of the second round
each node is either a cluster aggregator or it is associated
with a cluster aggregator whose ID is stored in variable
CAID. Without the second round, a node can remain
unassociated, if it sends and receives only dummy mes-
sages in the first round. In addition, a passive observer
only sees that every node sends two encrypted messages,
one in each round. This makes it difficult for the adver-
sary to identify who the cluster aggregators are (see also
more discussion on this in the next section). In addition,
if a node is compromised, the adversary learns only the

TABLE 1
Estimated time of the building blocks on a MICAz

Algorithm Generation [ms] Verification [ms]
SHA-1 [10] 1.4 –

RSA 1024 bit [11] 12040 470
RC4 [10] 0.1 0.1
RC5 [10] 0.4 0.4

identity of the cluster aggregators whose announcements
have been received by the compromised node.

In WSNs, it must be analyzed what happens if some
messages are delayed or lost in the noisy unreliable
channel. Two cases must be analyzed, dummy messages
and announcements. If a dummy message is delayed or
not delivered successfully to all recipients, then the result
of the protocol is not modified as dummy messages serve
for only covering the announcements. If an announce-
ment is delayed or not delivered to a node, then the
recipient will not select the sender as cluster aggregator.
It will select a node who sent the announcement later
or the node elects itself and sends an announcement.
The message loss may modify the resulting set of cluster
aggregators, but neither harm the anonymity of the
elected aggregators, nor harm the original goal of cluster
aggregator election (a node must be either a cluster
aggregator or a cluster aggregator must be elected from
the nodes cluster peers).

Note that two neighboring nodes can send an an-
nouncement at the same time with some small proba-
bility. Actually, it is not a problem in the protocol. The
only result is that both nodes will be cluster aggregators
independently. As it is not conflicting with the original
goal of cluster aggregator election, this infrequent situa-
tion does not need any special attention.

The overhead introduced by the basic protocol is
sending two encrypted messages for each election round.
Other protocols [4], [5] uses one (or zero) unencrypted
messages to elect an aggregator. So the number of
messages sent in the election phase is slightly larger
compared to other solutions. The symetric encryption
also causes some extra overhead (for details, see Table 1,
rows with RC4 and RC5).

3.2 Protocol analysis

In this section the previously suggested basic protocol
is analyzed. As defined in Section 2, the main goal
of the attacker is to reveal the identity of the cluster
aggregators. To do so, the attacker can eavesdrop modify
and delete messages, and can capture some nodes.

First the logical attacks are analyzed where the at-
tacker does not capture any nodes, then the results of
a node capture.

The attackers main goal is to reveal the identity of
the cluster aggregators. As all the inter node communi-
cation is encrypted and authenticated, it cannot get any
information from the messages themselves, but it can get
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some side information from simple traffic and topology
analysis.

3.2.1 Density based attack
Thanks to the dummy messages and the encryption in
the basic protocol, an external observer cannot trivially
identify the cluster aggregators; however, it can still use
side information and suspect some nodes to be cluster
aggregators with higher probability than some other
nodes. Such a side information is the number of the
cluster peers of the nodes. This number correlates with
the local density of the nodes, that is why this attack
is called density based attack. Indeed, the probability of
becoming a cluster aggregator depends on the number of
the cluster peers of the node. For instance, if a node does
not have any cluster peers, it will be a cluster aggregator
with probability one. On the other hand, if the node has
a larger number of cluster peers, then the probability of
receiving an announcement from a cluster peer is large,
and hence, the probability that the node itself becomes
cluster aggregator is small. Note also that the number of
cluster peers can be deduced from the topology of the
network, which may be known to the adversary.
The probability of becoming a cluster aggregator is

approximately inversely proportional to the number of
cluster peers:

Pr(CA(S)) ∼=
1

D(S)
(1)

where CA(S) is the event of S being elected cluster
aggregator, and D(S) is the number of cluster peers of
node S. Figure 2 illustrates this proportionality where
the curve belongs to Equation 1 and the plotted dots
correspond to simulation results (100 nodes, random
deployment, one hop communication, topology based
clustering).
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Fig. 2. Probability of being cluster aggregator as a
function of the number of cluster peers.

Two approaches can be used to mitigate this problem.
One is to take the number of cluster peers of the nodes

into account when generating the random timers for the
protocol. The second is to balance the logical network
topology in such a way that every node has the same
number of cluster peers. In the following a possible
solution for both approaches is introduced.
The first approach can be the fine tuning of the

distributions. It is not analyzed here deeply. It can
only slightly modify the probabilities of being cluster
aggregator, so it has no large effects. An example can be
seen on Figure 3, where the 10th power of D(S) is used
as a normalizing factor, when γ (probability of sending
an announcement in the first round) is computed. The
coefficients of the polynomial are set as resulting curve
is the closest to uniform distribution. It can be seen, that
modifying γ on a per node basis does not eventually
reaches its goal, the normalized distribution is far from
uniform. Actually by modifying γ, the other attack dis-
cussed in the next section can be mitigated, so here we
propose a solution which does not set the γ parameter.
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Fig. 3. Probability of being cluster aggregator as a
function of number of cluster peers. The analytical values
comes from Equation 1, while the simulation values come
from simulation, where the γ probabilities are normalized
with the number of cluster peers of the nodes.

The second approach modifies the number of cluster
peers of a node to reach a common value. Let us denote
this value by α.
An efficient approach to mitigate this problem is to

modify the number of cluster peers such that it becomes
a common value α for all of them. In theory, this common
value can be anything between 1 and the total number
N of the nodes in the network. In practice, it should
be around the average number of cluster peers, which
can be estimated locally by the nodes. For example,
assuming one-hop communications (meaning that the
cluster peers are the radio neighbors), the following
formula can be used:

α = (N − 1)
R2π

A
+ 1 ≃ E(D(S)) (2)
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where R is the radio range, and A is the size of the
total area of the network. The formula is based on the
fact that the number of cluster peers is proportional to
the ratio between radio coverage and total area. Similar
formulae can be derived for the general case of multi-
hop communication.
If a node S has more than α cluster peers it can simply

discard the messages from D(S) − α randomly chosen
cluster peers. If S has less than α cluster peers it must get
new cluster peers by the help of its actual cluster peers
(if S has not got any cluster peers originally, then it will
always become a cluster aggregator). The new cluster
peers can be selected from the set of cluster peers of
the original cluster peers. To explore the potential new
cluster peers, every node can broadcast its list of cluster
peers within its few hop neighborhood before running
the basic protocol. From the lists of the received cluster
peers, every node can select its α − D(S) new cluster
peers uniformly at random. Then, the basic aggregator
election protocol can be executed using the balanced set
of cluster peers. An example for this balancing is shown
in Figure 4 (70 nodes, random deployment, one hop
communication, topology based clustering).
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Fig. 4. Result of balancing. The 70 nodes are represented
on the x axis. The number of cluster peers before (left),
and after (right) the balancing are represented on the y
axis.

After running the balancing protocol, every node can
approach the envisioned α value. The advantage of the
balancing protocol is that however an attacker can gather
the information about the number of cluster peers, this
number is efficiently balanced after the protocol. The
drawback of this solution is that it requires the original
cluster peers to relay messages between distant nodes.
One can imagine this solution as selectively increas-
ing the TTL of protocol messages creating much larger
neighborhoods.

3.2.2 Order based attack
Another important side information an attacker can use
is the order in which the nodes send messages in the first
round of the protocol. Indeed, the sender of the i-th mes-
sage will be cluster aggregator if none of the previous
i−1 messages are announcements (but dummies) and the
i-th message is an announcement. Thus, the probability
Pi that the sender of the i-th message becomes cluster
aggregator depends on i and parameter γ:

Pi = (1 − γ)i−1γ, 1 ≤ i ≤ n

The (n + 1)-th element of the distribution is the prob-
ability that no announcement is sent in the first round:

Pn+1 = (1 − γ)n

in which case the sender of the first message of the
second round must be a cluster aggregator.
The entropy of this distribution characterizes the un-

certainty of the attacker who wants to identify the cluster
aggregator using the order information. Assuming that
the number of cluster peers has been already balanced,
this entropy can be calculated as follows:

H = −
n+1
∑

i=1

Pi log Pi = (3)

−
n
∑

i=1

(

(1 − γ)i−1
γ log

(

(1 − γ)i−1
γ
))

−

− (1 − γ)n log (1 − γ)n

where γ is the probability of sending an announcement
in the first round and n is the balanced number of cluster
peers.
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Fig. 5. Entropy of the attacker as a function of sending
announcement in the first round (γ). Number of nodes in
one cluster: 10.

In Figure 5, we plotted formula (3). If γ is large, then
the uncertainty of the attacker is low, because one of
the first few senders will become the cluster aggregator
with very high probability. If γ is very small, then the
uncertainty of the attacker is small again, because no
cluster aggregator will be elected in the first round with
high probability, and therefore, the first sender of the
second round will be the cluster aggregator. The ideal
γ value corresponds to the maximum entropy, which
can be easily computed by the nodes locally from for-
mula (3). For instance, Table 2 shows some ideal γ values
for different number of nodes in one cluster. The fifth
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TABLE 2
Optimal γ values (γ̂) for different number of nodes in one

cluster. Achieved entropy (H(γ̂)) and maximal entropy
(Hmax = log2 n)

n 10 25 50 100
γ̂ 0.167 0.082 0.049 0.027
nγ̂ 1.67 2.05 2.45 2.7

H(γ̂) 3.281 4.410 5.312 6.218
Hmax 3.322 4.644 5.644 6.644

row (Hmax) shows the maximal entropy (uncertainty)
that any kind of election protocol can achieve with the
given number of nodes. This is achieved if every node is
equiprobably elected from the viewpoint of the attacker.
This value is closely approached by H(γ̂), where γ̂ is
very close to the optimal solution (the difference between
the found value and the optimal value can be arbitrarily
small, and depends on the number of iterations the
estimation algorithm uses). Using the found γ̂ value, the
order of the messages has no meaning for the attacker.

3.2.3 Node capture attacks

If an attacker can compromise a node, it can reveal
some sensitive information, even when the system uses
the local key based protocol. If the compromised node
is a cluster aggregator, then all the previously stored
messages can be revealed. The attacker can decide to
demolish the node, modify the stored values, simply use
the captured data, or modify the aggregation functions.
If the compromised node is not a cluster aggregator,

then the attacker can reveal the cluster aggregator of that
node, which can result in the same situation described
in the previous paragraph.

3.3 Data forwarding and querying

The problem of forwarding the measured data to the
aggregators without revealing the identity of the aggre-
gators is a well known problem in the literature, called
anonymous routing [12], [13], [14].
Anonymous routing let us route packets in the net-

work without revealing the destination of the packet. A
short overview of anonymous routing can be found in
Section 5.
With anonymous routing any node can send the

measurements to the aggregators without revealing the
identity of it. An operator can query the aggregator with
the help of an ordinary node which uses anonymous
routing towards the aggregator.
Anonymous routing introduces significant overhead

in the traffic. However this can be partially mitigated
by synchronizing the data transmissions. Instead of sug-
gesting such an approach, in this paper we elaborate
a more challenging situation where the identity of the
aggregators is unknown to the cluster members as well
in Section 4.3. The clear advantage is that even if a node
is compromised, it’s aggregator cannot be identified.

TABLE 3
Summary of complexity of the advanced protocol. N is

the number of nodes in the cluster

Election Aggregation Query
Message complexity O(N2) O(N) O(N)
Modular exponentiations 4N 1 0 0
Hash computations 0 0 1

4 ADVANCED PROTOCOL

The advanced private data aggregation protocol is de-
signed to withstand the compromise of some nodes
without revealing the identities of the aggregator. The
protocol consists of four main parts. The first part is
the initialization, which provides the required commu-
nication channel. The second part is needed for the data
aggregator election. This subprotocol must ensure that
the cluster does not remain without a cluster aggregator.
This must be done without revealing the identity of the
elected aggregator. The third part is needed for the data
aggregation. This subprotocol must be able to forward
the measured data to the aggregator without knowing its
identifier. The last part must support the queries, where
an operator queries some stored aggregated data.
In the following, the description of each subprotocol

follows the same pattern. First the goal and the re-
quirements of the subprotocol are discussed, then the
subprotocol itself is presented. After the presentation of
the subprotocol, we analyze how it achieves its goal even
in the presence of an attacker, and what data and services
it provides for the next subprotocol.
At the end of this section, misbehavior is analyzed. We

discuss, what an attacker can achieve, if its goal is not
to identify the aggregators of the cluster, but to confuse
the operation of the protocols.
In the following, it is assumed that every node knows

which cluster it belongs to. The protocol descriptions are
considering only one cluster, and separate instances of
the protocol are run in different clusters independently.
The complexity of each subprotocol is summarized in

Table 3.

4.1 Initialization

The initialization phase is responsible for providing the
medium for authenticated broadcast communication. In
the following, we shortly review the approaches of
broadcast authentication in wireless sensor networks,
and give some efficient methods for broadcast commu-
nication.
The initialization relies on some data stored on each

node before deployment. Each node has some unique
cryptographic credentials to enable authentication, and
is aware of the cluster identifier it belongs to. In the
following, without further mentioning, we will assume,

1. 4 exponentiations for generating the two messages with knowl-
edge proofs and 4N-4 exponentiations for checking the received knowl-
edge proofs



9

that each message contains the cluster identifier. Every
message addressed to a cluster different from the one
a node belongs to is discarded by the node. First, we
briefly review the state of the art in broadcast authen-
tication, then we propose a connected dominating set
based broadcast communication method, which fits well
to the following aggregation and query phases.

4.1.1 Broadcast authentication
Broadcast authentication enables a sender to broadcast
some authenticated messages efficiently to a big number
of potential receivers. In the literature, this problem is
solved with either digital signatures or hash chains.
In this section, we reviews some solutions from both
approaches.
For the sake of completeness, Message Authentication

Codes (MAC) must also be mentioned here [15]. MACs
are based on symmetric cryptographic primitives, which
enable very efficient computation. Unfortunately, the
verifier of a MAC must also possess the same crypto-
graphic credential the generator used for generating the
MAC. It means that every node must know every cre-
dential in the network, to verify every message broadcast
to the network. This full knowledge can be exploited by
an attacker who compromises a node. The attacker can
impersonate any other honest node, which means that
if only one node is compromised, message authenticity
can no longer be ensured.
One solution to the node compromise is the hop by

hop authentication of the packets. In hop by hop au-
thentication, every packets authentication information is
regenerated by every forwarder. In this case, it is enough
to only have a shared key with the direct neighbors of a
node. In case of node compromise, only the node itself
and the direct neighbors can be impersonated. Such a
neighborhood authentication is provided by Zhu et al.
in LEAP [9], where it is based on so called cluster keys.
To make the authentication scheme robust against

node compromise, one approach is the usage of asym-
metric cryptography, namely digital signatures.
Digital signatures are asymmetric cryptographic prim-

itives, where only the owner of a private key can com-
pute a digital signature over a message, but any other
node can verify that signature. Computing a digital
signature is a time consuming task for a typical sensor
node, but there exist some efficient elliptic curve based
approaches in the literature [16], [17], [18], [19].
One of the first publicly available implementations

was the TinyECC module written by Liu and Ning
[16]. A more efficient implementation is the NanoECC
module. Proposed by Szczechowiak et al. [17]. It is based
on the MIRACL cryptographic library [20] . Up to now,
to the best of our knowledge, the fastest implementations
are the TinyPBC by Oliveira et al. [18], which is based
on the RELIC toolkit [21], and the TinyPairing proposed
by Xiong et al. in [19].
Another approach is proposed for broadcast authen-

tication in wireless sensor networks by Perrig et al. in

[22]. The µTESLA scheme is based on delayed release
of hash chain values used in MAC computations. The
scheme needs secure loose time synchronization between
the nodes. The µTESLA scheme is efficient if it is used
for authenticating many messages, but inefficient if the
messages are sparse. Consequently, if only the rarely sent
election messages must be authenticated, then the time
synchronization itself can cause a heavier workload then
simple digital signatures. If the aggregation messages
must also be authenticated, then µTESLA can be an effi-
cient solution. A DoS resistant version specially adapted
for wireless sensor networks is proposed by Liu et al. in
[23]. A faster but less secure modification is proposed by
Huang et al. in [24].
In the following we will assume, that an efficient

broadcast authentication scheme is used without any
indication.

4.1.2 Broadcast communication
Broadcast communication is a method that enables send-
ing information from one source to every other partic-
ipant of the network. In wireless networks it can be
implemented in many ways, like flooding the network
or with a sequence of unicast messages.
A natural question would be, why broadcast com-

munication is so important to the advanced protocol?
The reason is that only broadcast communication can
hide the traffic patterns of the communication, thus not
revealing any information about the aggregators.
An efficient way of implementing broadcast commu-

nication in wireless sensor networks is the usage of con-
nected dominating set (CDS). The connected dominating
set S of graph G is defined as a subset of G such that
every vertex in G−S is adjacent to at least one member
of S, and S is connected. A graphical representation of a
CDS can be found in Figure 6. The minimum connected
dominating set (MDCS) is a connected dominating set
with minimum cardinality. Finding a MDCS in a graph
is an NP-Hard problem, however there are some efficient
solutions which can find a close to minimal DCS in
WSNs. For a thorough review of the state of the art of
DCS in WSNs, the interested reader is referred to [25]
and [26].
In the following, we will assume that a connected

dominating set is given in each cluster, and a minimum
spanning tree is generated between the nodes in the
CDS. Finding a minimum spanning tree in a connected
graph is a well known problem for decades. Efficient
polynomial algorithms are suggested in [27], [28]. This
kind of two layer communication architecture enables
the efficient implementation of different kind of broad-
cast like communications, which are required for the
following protocols. The spanning tree is used in the
aggregation protocol in Section 4.3.
The simple all node broadcast communication can

be implemented simply: If a node sends a packet to
the broadcast address, then every node in the CDS
forwards this message to the broadcast address. The CDS
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Fig. 6. Connected dominating set. Solid dots represents
the dominating set, and empty circles represent the re-
maining nodes. The connections between the non CDS
nodes of the network is not displayed on the figure.

members are connected and every non CDS member is
connected to at least one CDS member by definition, so
the message will be delivered to every recipient in the
network. This approach is more efficient than simple
flooding as only a subset of the nodes forwards the
message, but the properties of the CDS ensures that
every node in the cluster will eventually receive the
broadcast information. Here, the notion of CDS parent
(or simply parent) must be introduced. The CDS parent
of node A is a node, which is in communication distance
with A and is a member of the CDS.
The complexity of such a broadcast communication

is O(N), but actually it takes |S| messages to broadcast
some information, where |S| is the number of nodes
in the connected dominating set. If the CDS algorithm
is accurate, than it can be very close to the minimum
number of nodes required to broadcast communication.
In the following, we will use broadcast communication

frequently to avoid that an attacker can gain some
knowledge about the identity of the aggregators from the
traffic patterns inside the network. Obviously we will not
broadcast every message as it is in the network, because
that would shortly lead to battery depletion and inoper-
ability of the sensor network. Instead of automatically
broadcasting every message, we will try to aggregate
as much information as possible in each message to
preserve energy. In the following sections, we will use
the given CDS in different ways, and each particular
usage will be described in the corresponding section.
The used communication patterns are closely related

to and inspired by the Echo algorithm published by
Chang in [29]. The Echo algorithm is a Wave algorithm
[30], which enables the distributed computation of an
idempotent operator in trees. It can be used in arbitrary
connected graphs, and generates a spanning tree as a
side result.

4.2 Data aggregator election

The main goal of the aggregator node election protocol
is to elect a node that can store the measurements
of the whole cluster in a given epoch, but in such a
way that the identity remains hidden. The election is
successful if at least one node is elected. The protocol is
unsuccessful if no node is elected, thus no node stores
the data. In some cases, electing more than one node
can be advantageous, because the redundant storage can
withstand the failure of some nodes. In the following,
we propose an election protocol, where the expected
number of elected aggregators can be determined by the
system operator, and the protocol ensures that at least
one aggregator is always elected.
The election process relies on the initialization sub-

protocol discussed in Section 4.1. It requires an authen-
ticated broadcast channel among the cluster members,
which is exactly what the initialization part offers.
The election process consists of two main steps: (i)

Every node decides, whether it wants to be an aggre-
gator, based on some random values. This step does
not need any communication, the nodes compute the
results locally. (ii) In the second step, an anonymous veto
protocol is run, which reveals only the information that
at least one node elected itself to be aggregator node.
If no aggregator is elected, it will be clear for every
participant, and every participant can run the election
protocol again.
Step (i) can be implemented easily. Every node elects

itself aggregator with a given probability p. The result
of the election is kept secret, the participants only want
to know that the number c of aggregators is not zero,
without revealing the identity of the cluster aggregators.
This is advantageous, because in case of node compro-
mise, the attacker learns only whether the compromised
node is an aggregator, but nothing about the identity
or the number of the other aggregators. Let us denote
the random variable representing the number of elected
aggregators with C. It is easy to see that the distribution
of C is binomial (N is the total number of nodes in one
cluster):

Pr(C = c) =

(

N

c

)

pc (1 − p)
N−c

The expected number of aggregators after the first step
is: cE = Np. So if on average ĉ cluster aggregator is
needed, then p should be ĉ

N
(this formula will be slightly

modified after considering the results of the second step).
The probability that no cluster aggregator is elected is:

(1 − p)N .
To avoid the anarchical situation when no node is

elected, the nodes must run step (ii) which proves that
at least one node is elected as aggregator node, but the
identity of the aggregator remains secret. This problem
can be solved by an anonymous veto protocol. Such a
protocol is suggested by Hao and Zieliński in [31].
Hao and Zieliński’s approach has many advantageous

properties compared to other solutions [32], [33], such



11

as the property that it requires only 2 communication
rounds.
The anonym veto protocol requires knowledge proofs.

Informally, a knowledge proof allows a prover to con-
vince a verifier that he knows a solution of a hard-to-
solve problem without revealing any useful information
about the knowledge. A detailed explanation of the
problem can be found in [34]
A well known example of knowledge proof is given

by Schnorr in [35]. The proposed method gives a non
interactive proof of knowledge of a logarithm without
revealing the logarithm itself. The operation can be
described briefly as follows. The proof of knowledge of
the exponent of gx

i consists of the pair {gv, r = v − xih},
where h = H(g, gv, gx

i , i) and H is a secure hash function.
This proof of knowledge can be verified by anyone
through checking whether gv and grgxih are equal.
The operation of the anonym veto protocol consists of

two consecutive rounds (G is a publicly agreed group
with order q and generator g):

1) First, every participant i selects a secret random
value: xi ∈ Zq . Then gx

i is broadcast with a knowl-
edge proof. The knowledge proof is needed to
ensure that the participant knows xi without re-
vealing the value of xi. Without knowledge proof,
the node could choose gx

i in a way to influence
the result of the protocol (it is widely believed that
for a given gx

i (mod p) it is hard to find xi(mod p),
this problem is known as the discrete logarithm
problem). Then every participant checks the knowl-
edge proofs, and computes a special product of the
received values:

gyi =

i−1
∏

j=1

gxj

/

N
∏

j=i+1

gxj

2) gyici is broadcast with a knowledge proof (the
knowledge proof is needed to ensure that the
node cannot influence the election maliciously af-
terwards). ci is set to xi for non aggregators, while
a random ri value for aggregators.

The product P =
N
∏

i=1

gciyi equals to 1 if and only

if no cluster aggregator is elected (none vetoed the
question: Is the number of cluster aggregators elected
zero?). If no aggregator is elected, then it will be clear
for all participants, and the election can be done again.
If P differs from 1, then some nodes are announced
themselves to be cluster aggregators, and this is known
by all the nodes.
If we consider the effect of the second step (new

election is run if no aggregator is elected), the expected
number of aggregators is slightly higher than in the
case of binomial distributions. The expected number of
aggregators are:

cE =
Np

1 − (1 − p)N

The anonymity of the election subprotocol depends on
the parts of the protocol. Obviously, the random number
generation does not leak any information about the
identity of the aggregator nodes, if the random number
generator is secure. A cryptographically secure random
number generator, called TinyRNG, is proposed in [36]
for wireless sensor networks. Using a secure random
number generator, it is unpredictable, who elects itself
to be aggregator node.
The anonymity analysis of the anonym veto protocol

can be found in [31]. The anonymity is based on the de-
cisional Diffie-Hellman assumption, which is considered
to be a hard problem.
The message complexity of the election is O(N2),

which is acceptable as the election is run infrequently
(N is the number of nodes in the cluster).
If this overhead with the 4 modular exponentiations

(see Table 3 for the complexities and Table 1 for the
estimated running times, note that RSA is based on
modular exponentiation) is too big for the application,
then it can use the basic protocol described in Section 3.1,
where only symmetric key encryption is used.
In wireless sensor networks, the links in general are

not reliable, packet losses occur in time to time. Reli-
ability can be introduced by the link layer or by the
application. As it is crucial to run the election protocol
without any packet loss, it is required to use a reliable
link layer protocol for this subprotocol. Such protocols
are suggested in [37], [38] for wireless sensor networks.
As a summary, after the election subprotocol every

node is equiprobably aggregator node. The election sub-
protocol ensures that at least one aggregator is elected
and this node(s) is aware of its status. An outsider
attacker does not know the identity of the aggregators or
even the actual number of the elected aggregator nodes.
An attacker, who compromised one or more nodes, can
decide whether the compromised nodes are aggregators,
but cannot be certain about the other nodes.

4.3 Data aggregation

The main goal of the WSN is to measure some data
from the environment, and store the data for later use.
This section describes how the data is forwarded to
the aggregator(s) without the explicit knowledge of the
identifier(s) of the aggregator(s).
The data aggregation and storage procedure use the

broadcast channel. If the covered area is so small or the
radio range is so large that every node can reach each
other directly, then the aggregation can be implemented
simply. Every node broadcasts their measurement to the
common channel, and the cluster aggregator(s) can ag-
gregate and store the measurements. If the covered area
is bigger (which is the more realistic case), a connected
dominating set based solution is proposed.
In each timeslot, each ordinary node (not member

of the CDS) sends its measurement to one neighboring
CDS member (to the parent) by unicast communication.
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When the epoch is elapsed and all the measurements
from the nodes are received, the CDS nodes aggregate
the measurements and use a modification of the Echo
algorithm on the given spanning tree to compute the
gross aggregated measurement in the following way:
Each CDS member waits until all but one CDS neighbor
sends its subaggregate to it, and after some random
delay it sends the aggregate to the remaining neighbor.
This means that the leaf nodes of the tree start the
communication, and then the communication wave is
propagated towards the root of the spanning tree. This
behavior is the same as the second phase of the Echo
algorithm. When one node receives the subaggregates
from all of its neighbors, thus cannot send it to anyone,
it can compute the gross aggregated value of the net-
work. Then, this value is distributed between the cluster
members by broadcasting it every CDS member.
This second phase is needed, so that every member of

the cluster can be aware of the gross aggregated value,
and the anonymous aggregators can store it, while the
others can simply discard it. The stored data includes
the timeslot in which the aggregate was computed, and
the environmental variables if more than one variable
(e.g. temperature and humidity) are recorded besides the
value itself.
The aggregation function can be any statistical func-

tion of the measured data. Some easily implementable
and widely used functions are the minimum, maximum,
sum or average. In Figure 7, the aggregation protocol is
visualized with five nodes and two aggregators using
the average as an aggregation function.
The anonymity analysis of the aggregation subproto-

col is quite simple. After the aggregation, every node
possesses the same information as an external attacker
can get. This information is the aggregated data itself,
without knowing anything about the identity of the
aggregators. If the operator wants to hide the aggregated
data, it can use some techniques discussed in Section 5.
The message complexity of the aggregation is O(N),

where N is the number of nodes in the cluster. This is
the best complexity achievable, because to store all the
measurements by a single aggregator, all nodes must
send the measurements towards the aggregator, which
leads to O(N) message complexity. In terms of latency,
the advanced protocol doubles the time the aggregated
measurement arrives to the aggregator compared to a
naive system, where the identity of the aggregators are
known to every participant. This latency is acceptable
as in most WSN applications the time between the
measurements is much longer than the time required to
aggregate the data.
As mentioned in the election subprotocol, the protocol

must be prepared to packet losses due to the nature of
wireless sensor networks. In the aggregation subprotocol
two kind of packet loss can be envisioned: a packet can
be lost before or after the final aggregate is computed.
Both cases can be detected by timers and a resend
request can be sent. If the resend is unsuccessful for

some times, the aggregation must be run without those
messages. If the lost message contains a measurement or
subaggregate, then the final aggregate will be computed
without that data leading to an inaccurate measurement.
If the lost message contained the gross aggregate, then
some nodes will not receive the gross aggregate. Here
it is very useful that the network can have multiple
aggregators, because if at least one aggregator received
the data, the data can be queried by the operator.

4.4 Query

The ultimate goal of the sensor network is to make the
measured data available to the operator upon request.
While the aggregation subprotocol ensures that the mea-
sured data is stored by the aggregators, the goal of the
query subprotocol is to provide the requested data to
the operator and keep the aggregators’ identity hidden
at the same time.
One solution would be that the operator visits all the

nodes, and connects to them by wire. While this solution
would leak no information about the identities of the
aggregators to any eavesdropping attacker, the execu-
tion would be very time consuming and cumbersome.
Moreover, the accessibility of some nodes may be diffi-
cult or dangerous (for example in a military scenario).
Therefore, we propose a solution where it is sufficient
for the operator to get in wireless communication range
of any of the nodes. This node does not need to be an
aggregator, as actually no one, not even the operator
knows who the aggregator nodes are.
As a first step, the operator authenticates itself to the

selected node O using the key kO. After that, node O

starts the query protocol by sending out a query, obtains
the response to the query from the cluster, and makes the
response available to the operator. In the following, we
will assume that O is not a CDS node. (If it is indeed
a CDS node, then the first and last transmission of the
query protocol can be omitted.)
Node O broadcasts the query data Q with the help of

the CDS nodes in the cluster. This is done by sending
Q to the CDS parent, and then every CDS member
rebroadcasts Q as it is received. The query Q describes
what information the operator is interested in. It includes
a variable name, a time interval, and a field for collecting
the response to the query. It also includes a bit, called
“aggregated”, which will later be used in the detection of
misbehaving nodes. For the details of misbehaving node
detection, the reader is referred to Section 4.5; here we
assume that the “aggregated” bit is always set meaning
that aggregation is enabled.
The idea of the query protocol is that each node i in

the cluster contributes to the response by a number Ri,
which is computed as follows:

Ri =

{

h(Q|ki), for non-aggregators
h(Q|ki) + M , for aggregators

(4)

where M is the stored measurement (available only if the
node is an aggregator), h is a cryptographic hash func-
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Fig. 7. Aggregation example. The subfigures from left to right represents the consecutive steps of an average
computation: (i) The measured data is ready to send. It is stored in a format of actual average;number of data. Non
CDS nodes sends the average to their parents. (ii) The CDS nodes start to send the aggregated value to its parents.
(iii) A CDS node receives an aggregate from all of its neighbors, and starts to broadcast the final aggregated value.
Nodes willing to store the value can do so. (iv) Other CDS nodes receiving the final value rebroadcasts it. Nodes willing
to store the value can do so.

tion, and ki is the key shared by node i and the operator.
Thus, non-aggregators contribute with a pseudo-random
number h(Q|ki) computed from the query and the key
ki, which can later be also computed by the operator,
while aggregator nodes contribute with the sum of a
pseudo-random number and the requested measurement
data. The sum is normal fix point addition, which can
overflow if the hash is a large value.

The goal is that the querying node O receives back
the sum of all these Ri values. For this reason, when the
query Q is received by a non CDS node from its CDS
parent, it computes its Ri value and sends it back to
the CDS parent in the response field of the query token.
When a CDS parent receives back the query tokens with
the updated response field from its children, it computes
the sum of the received Ri values and its own, and
after inserting the identifiers of the nodes sends the
result back to its parent. This is repeated until the query
token reaches back to the CDS parent of node O, which
can forward the response R =

∑

Ri and the list of
responding nodes to node O, where the sum is computed
by normal fix point addition. This operation is illustrated
in Figure 8.

When receiving R from O, the operator can calculate
the stored data as follows. First of all, the operator can
regenerate each hash value h(Q|ki), because it stores
(or can compute from a master key on-the-fly) each
key ki, and it knows the original query data Q. The
operator can subtract the hash values from R (note that
the responding nodes list is present in the response),
and it gets a result R′ = cM , where c is the actual
number of aggregators in the cluster2. Unfortunately, this
number c is unknown to the operator, as it is unknown

2. Note that each aggregator contributed the measurement M to the
response, that is why at the end, the response will be c times M , where
c is the number of aggregators.

to everybody else. Nevertheless, if M is restricted to
lie in an interval [A, B] such that the intervals [iA, iB]
for i = 1, 2, . . . , N are non-overlapping, then cM can
fall only into interval [cA, cB], and hence, c can be
uniquely determined by the operator by checking which
interval R′ belongs to. Then, dividing R′ with c gives
the requested data M .
More specifically, and for practical reasons, the fol-

lowing three criteria need to be satisfied by the interval
[A, B] for our query scheme to work: (i) as we have seen
before, for unique decoding of cM , the intervals [iA, iB]
for i = 1, 2, . . . , N must be non-overlapping, (ii) in order
to fit in the messages and to avoid integer overflow3,
the highest possible value for cM , i.e., NB must be
representable with a pre-specified number L, and (iii)
it must be possible to map a pre-specified number D of
different values into [A, B].
The first criterion (i) is met, if the lower end of each

interval is larger than the higher end of the preceding
interval:

0 < iA − (i − 1)B = i(A − B) + B, i = 1, . . . , N

Note that if the above inequality holds for i = N , then it
holds for every i, because A − B is a negative constant
and B is a positive constant. So it is enough to consider
only the case of i = N :

0 < N(A − B) + B

B < N
N−1

A
(5)

The second criterion (ii) means that

BN < L

B < L
N

(6)

3. In case of overflow, the result is not unique.
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Fig. 8. Query example. The subfigures from left to right represents the consecutive steps of a query: (i) The operator
sends the Q query to node O. This node forwards it to its CDS parent. The CDS parent broadcasts the query. (ii) The
CDS nodes broadcasts the query, so every node in the network is aware of Q. (iii) Every non CDS node (except O)
sends it response to its parent. (iv) The sum of the responses is propagated back to the parent of O (including the list
of responding nodes, not on the figure), who forwards it to the operator through O.
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D

L
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Fig. 9. Graphical representation of the suitable intervals

while the third criterion (iii) can be formalized as

D < B − A

B > A + D
(7)

Figure 9 shows an example for a graphical repre-
sentation of the three criteria, where the crossed area
represents the admissible (A, B) pairs. It can also be
easily seen in this figure that a solution exists only if
the B coordinate of the intersection of inequalities (5)
and (7) meets criterion (6), or in other words

NM <
L

N

As a numerical example, let us assume, that we want
to measure at least 100 different values (D = 99), the
micro-controller is a 16 bit controller (L = 216), and we
have at most 20 nodes in each cluster (N = 20). Then a
suitable interval that satisfies all three criteria would be
[A, B] = [2000−2100]. Checking that this interval indeed
meets the requirements is left for the interested reader.
Finally, note that any real measurement interval can be
easily mapped to this interval [A, B] by simple scaling

and shifting operations, and our solution requires that
such a mapping is performed on the real values before
the execution of the query protocol.

Our proposed protocol has many advantageous prop-
erties. First, the network can respond to a query if at
least one aggregator can successfully participate in the
subprotocol. Second, the operator does not need to know
the identity of the aggregators, thus even the operator
cannot leak that information accidentally (although, after
receiving the response, the operator learns the actual
number of the aggregator nodes). Third, the protocol
does not leak any information about the identity of
the aggregators: an attacker can eavesdrop the query
information Q, and the Ri pseudo random numbers, but
cannot deduce from them the identity of the aggregators.
Finally, the message complexity of the query is O(N),
where N is the number of nodes in the cluster. This is the
best complexity achievable, when the originator of the
query does not know the identity of the aggregator(s).
The latency of the query protocol depends on the longest
path of the network rooted at node O.

As mentioned in the previous subprotocols, the proto-
col must be prepared to packet losses due to the nature
of wireless sensor networks. Due to the packet losses, the
final sum R is the sum of the responding nodes which
is a subset of all nodes. That is why the identifiers must
be included in the responses. The operator can calculate
cM independently from the actual subset of responders.
If at least one response from an aggregator gets to the
operator, it can calculate M in the previously described
way. If cM = 0, then it is clear for the operator that every
aggregators’ response is lost.

4.5 Misbehaving nodes

In this section, we look beyond our initial goal. We
briefly analyze what happens if a compromised node
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deviates from the protocol to achieve some goals other
than just learning the identity of the aggregators.
In the election process, a compromised node may elect

itself to be aggregator in every election. This can be a
problem if this node is the only elected aggregator, be-
cause a compromised node may not store the aggregated
values. Unfortunately this situation cannot be avoided
in any election protocol, because an aggregator can be
compromised after the election, and the attacker can
erase the memory of that node. Actually our protocol is
partially resistant to this attack, because more than one
aggregator may be elected with some probability, and
the attacker cannot be sure if the compromised node is
the single aggregator node in the cluster.
During the aggregation, a misbehaving node can mod-

ify its readings, or modify the values it aggregates.
The modification of others’ values can be prevented
by some broadcast authentication schemes discussed in
Section 4.1.1. The problem of reporting false values can
be handled by statistical approaches discussed in [39],
[40], [41].
The most interesting subprotocol from the perspective

of misbehaving nodes is the query protocol. In this pro-
tocol, a compromised node can easily modify the result
of the query in the following way. A compromised node
can add an arbitrary number X to the hash in Equation
(4) instead of using 0 or M . It is easy to see, that if X is
selected from the interval [A, B], then after subtracting
the hashes, the resulting sum R′ will be an integer in
the interval [(c + 1)A, (c + 1)B] (c is the actual number
of aggregators, c + 1 nodes act like aggregators, the c

aggregator and the compromised node). A compromised
node can further increase its influence by choosing X

from the interval [iA, iB]. This means that the resulting
sum R′ will be in the interval [(c + i)A, (ci)B]. If X is
not selected from interval [jA, jB], j = 1 . . .N , then the
result can be outside of the decodable intervals. This can
be immediately detected by the operator (see Figure 10).
If the result is in a legitimate interval (∃j, R′ ∈

[jA, jB]), then the operator can further check the con-
sistency by calculating R′ mod j. If the result is zero,
then it is possible, that no misbehaving node is present
in the network. If the result is non zero, the operator
can be sure, that apart from the zeros and Ms, some
node sent a different value, thus a misbehaving node
is present in the network. It is hard for the attacker to
guess j, because it neither knows the actual number of
aggregators, nor can calculate R′ from R by subtracting
the unknown hashes.
If the modulus is zero, but the operator is still sus-

picious about the result, it can further test the cluster
for misbehaving nodes with the help of the aggregated
bit in the queries. This further testing can be done
regularly, randomly, or on receiving suspicious results. If
the aggregated bit is cleared in a query Q, then the CDS
nodes does not sum the incoming replies, but forward
them towards the agent O node as they are received. So
if the operator wants to check if a misbehaving node

is present in the network it can run a query Q with
aggregated bit set, and then run the same query with
cleared aggregated bit. If the two results are different,
then the operator can be sure, that a node wants to hide
its malicious activity from the operator. If the two sums
are equal, then the operator can further check the results
from the second round. If the values are all equal after
subtracting the hashes (not considering the zero values),
then no misbehavior is detected, otherwise some node(s)
misbehave in the cluster.
Note here, that this algorithm does not find every

misbehavior, but the misbehaviors not detected by this
algorithm does not influence the operator. For example,
two nodes can misbehave such that the first adds S to
its hash and the second adds −S. It is clear that this
misbehavior does not effect the result computed by the
operator, because S − S = 0. Other misbehavior not de-
tected by the algorithm if a compromised non aggregator
node sends M instead of 0. This is not detected by the
algorithm, but not modifies the result the operator com-
putes. The operation of misbehavior detection algorithm
is depicted on Figure 10. This algorithm only detects if
some misbehavior is occurred in the cluster, but does
not necessarily find the misbehaving node. We left the
elaboration of this problem for future work.

5 RELATED WORK

A survey on privacy protection techniques for WSNs is
provided in [42], where they are classified into two main
groups: data-oriented and context oriented protection. In
this section, we briefly review these techniques, with an
emphasis on those solutions that are closly related to our
work.
In data-oriented protection, the confidentiality of the

measured data must be preserved. It is also a research
direction how the operator can verify if the received data
is correct. The main focus is on the confidentiality in [43],
while the verification of the received data is also ensured
in [44].
According to [42] context oriented protection covers

the location privacy of the source and the base station.
The source location privacy is mainly a problem in event
driven networks, where the existence and location of
the event is the information, which must be hidden.
The location privacy of the base station is discussed in
[45]. The main difference between hiding the base station
and the in network aggregators is that a WSN regularly
contains only one base station which is a predefined
node, while at the same time there are more in network
aggregators used in one network, and the nodes used as
aggregators are periodically changed.
The problem of private cluster aggregator election in

wireless sensor networks is strongly related to anonym
routing in WSNs. The main difference between anonym
routing and anonymous aggregation is that anonym
routing supports any traffic pattern and generally han-
dles external attackers, while anonymous aggregation
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Fig. 10. Misbehavior detection algorithm for the query
protocol.

supports aggregation specific traffic patterns and can
handle compromised nodes as well. In [12] an efficient
anonymous on demand routing scheme called ARM is
proposed for mobile ad hoc networks. For the same
problem another solution is given in [13] (MASK), where
a detailed simulation is also presented for the proposed
protocol. A more efficient solution is given in [14], which
uses low cryptographic overhead, and addresses some
drawbacks of the two papers above. In [46] a privacy
preserving communication system (PPCS) is proposed.
PPCS provides a comprehensive solution to anonymize

communication endpoints, keep the location and iden-
tifier of a node unlinkable, and mask the existence of
communication flows.
The basis of this paper are two conference papers [1],

[2]. [1] describes the basic protocol discussed in Section 3,
while [2] describes the advanced protocol discussed
in Section 3. The main difference between this paper
and [2], is that here a connected dominating set based
solution is proposed, while the previous paper assumed
the existence of a Hamilton cycle inside the cluster.
The management of such a cycle can be problematic in
WSNs, while the CDS based broadcast communication
can be efficiently implemented in such a network [25].
Another contribution of this paper is the misbehavior de-
tection algorithm, which solves a problem not discussed
previously.

6 CONCLUSION

In wireless sensor networks, in-network data aggrega-
tion is often used to ensure scalability and energy effi-
cient operation. However, as we saw, this also introduces
some security issues: the designated aggregator nodes
that collect and store aggregated sensor readings and
communicate with the base station are attractive targets
of physical node destruction and jamming attacks. In
order to mitigate this problem, in this paper, we pro-
posed two private aggregator node election protocols for
wireless sensor networks that hide the elected aggregator
nodes from the attacker, who, therefore, cannot locate
and disable them. Our basic protocol provides fewer
guarantees than our advanced protocol, but it may be
sufficient in cases where the risk of physically compro-
mising nodes is low. Our advanced protocol hides the
identity of the elected aggregator nodes even from in-
sider attackers, thus it handles node compromise attacks
too.
We also proposed a private data aggregation protocol

and a corresponding private query protocol for the
advanced version, which allow the aggregator nodes
to collect sensor readings and respond to queries of
the operator, respectively, without revealing any useful
information about their identity. Our aggregation and
query protocols are resistant to both external eaves-
droppers and compromised nodes participating in the
protocol. The communication in the advanced protocol
is based on the concept of connected dominating set,
which suits well to wireless sensor networks.
In this paper we went beyond the goal of only hiding

the identity of the aggregator nodes. We also analyzed
what happens if a malicious node wants to exploit the
anonymity offered by the system, and tries to mislead
the operator by injecting false reports. We proposed an
algorithm that can detect if any of the nodes misbehaves
in the query phase. We only detect the fact of misbehav-
ior and leave the identification of the misbehaving node
itself for future work.
In general, our protocols increase the dependability of

sensor networks, and therefore, they can be applied in
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mission critical sensor network applications, including
high-confidence cyber-physical systems where sensors
and actuators monitor and control the operation of some
critical physical infrastructure.
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