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Abstract 

We need a lot of data for various purposes. We want to test new algorithms or make a cyber exercise, but 

sometimes we do not have enough original publicly available data. In this case we must generate 

synthetic data. A special case of data generation is where we need a time series. This paper discovers 

different methods of time series generation and test a method called TimeGAN for generating synthetic 

radiation detection system data. Similar approach can be used for temperature, pressure, or other synthetic 

time series relevant for the nuclear industry. 

1. Introduction 

Time series are timestamped data sequences of measured values. In industrial environments, time series 

are stored by historians for incident response, reporting or for later analysis. In the nuclear field, sources 

of time series can be e.g., radiation detection, temperature, or pressure sensors. 

In some cases, we do not have enough real-life time series data, or it cannot be published. In this case, we 

must generate synthetic time series. These synthetic time series can be used for cyber exercises by 

simulating a real-world sensor, or for training and testing an anomaly detection algorithm before 

deployment. Machine learning based anomaly detection algorithms need a lot of data to learn the 

characteristics of normal and anomalous behavior. Generally, we have a lot of normal data but in many 

cases, we do not have enough attacks. Synthetic data generation can help us getting malicious events 

which can be learnt by different anomaly detectors making them more accurate. In this way synthetic data 

generation makes the anomaly detectors more reliable and the system using the anomaly detectors a more 

secure system. 

As said, synthetic data generation is a hot topic in machine learning as it can be used to enrich small 

datasets. There are different methods for generating synthetic data, some are better in preserving the 

distribution of the original data, some are better at preserving the short or long trends. In this paper we 

start with an overview of some lately published methods for time series generation in Section 2. After that 

we introduce our main contribution, the implementation for generating synthetic radiation detection 

sensor data in Section 3. We shortly evaluate our results in Section 4, while we conclude our paper in 

Section 5. 

2. Time-series generation 
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Time-series generation is a task, where a data sequence must be generated with some given properties. If 

the statistical distribution of the sequence is given and the values are independent, then a pseudo-random 

generator can generate the time-series from uniform distribution based on the inversion method [1]. 

Unfortunately, in most of the cases the exact distribution is unknown and the values following each other 

are dependent. This makes the realistic synthetic data generation a challenge. Most of the proposed 

sophisticated methods are using machine learning, where the properties of the time-series are learnt by a 

system and then reproduced on demand. 

Generative Adversarial Networks (GAN) [2], [3] are based on deep learning methods. A generative model 

can explore the properties of an original dataset without supervision and generate new samples like the 

original data. The problem is reshaped as a supervised learning problem with two models. One model is 

the generator which tries to generate new examples of the original dataset and the other is the 

discriminator, who tries to classify the samples as original or generated. The two models are competing 

against each other and trained at the same time. The generator tries to make samples like the original, and 

the discriminator tries to decide if they are generated or original. The generator is successful if the 

discriminator has only 50% chance of correct decision. That means that the generator creates plausible 

examples. 

 

1. Figure Structure of the competing models [2]  

Several GANs are proposed in the literature, which can be used to generate synthetic data e.g., pictures. 

They can be used to generate time series as well, but most of them are not optimized to preserve the 

temporal dynamics and connections of the original data. This weakness is overcome in [4] where a 

Wasserstein GAN is used for this purpose. An enhanced version of this approach is introduced in [5], 

where a method called TimeGAN is developed. The result of the generator is a realistic time-series data 

with good similarity properties. The authors also published an open-source implementation of their work 

(https://github.com/ydataai/ydata-synthetic and https://github.com/jsyoon0823/TimeGAN), which was 

used also in this paper. The usage of the library is well described in [6], where energy consumption 

related time-series are generated. 

https://github.com/ydataai/ydata-synthetic
https://github.com/jsyoon0823/TimeGAN
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There are several other approaches for time series generation. One lightweight and efficient method called 

ExtraMAE involves autoencoders [7]. The method is self-supervised which means it masks some parts of 

the time-series and tries to predict it. This method helps understand and capture the temporal dynamics of 

the original time series. ExtraMAE outperforms TimeGAN on some datasets. In the future we want to 

compare their performance considering the scenario used in this paper. 

Markov models and chains are also used for synthetic time-series generation in the financial sector or in 

weather prediction [8], [9]. A Markov model consist of states and state transition probabilities. A 

stochastic system possesses the Markov property if the next state of the system only depends on the 

current state of the system (the system has no memory). This is a very simple but powerful model for 

different application areas. More complex systems can be modeled with a multi-step model (e.g., first the 

direction of the change is modeled and after that the size of the change). In the future we want to analyze 

and compare the results obtained in this paper to a Markov-model based solution as well. 

The strength of Markov models (explicit transitions) and advantages of GANs (multi-step distributions) 

are mixed in [10]. It has similar results of other GANs on traditional benchmark time-series but has a 

huge potential in the future. 

Some time series are incomplete or inaccurate. Traditional GAN based solutions cannot tackle with this 

problem. The authors of [11] can handle this problem with their RTGAN solution. Fortunately, this 

complex solution is not required in our case, as we have access for high quality complete and accurate 

time-series in most of the time. 

3. Generator implementation 

Before starting the implementation, first we must define the exact use-case. For this purpose, a radiation 

detection system is envisioned. A radiation detection system (RDS) can measure radiation data 

periodically and send the measured values to a database for storage and later analysis. The background 

radiation is measured in nSv/h (nanoSievert/hour); thus, a measurement record consists of three fields: 

 

Timestamp Location Measured value 

 

, where the timestamp defines the time, the record was created; the location is the place where the 

measurement was done; and the measured value stores the actual measurement in nSv/h. 

Any kind of machine learning based approach requires a large learning set to be trained on. We used data 

from the openly available Hungarian academic radiation detection network. The network consists of 

twelve higher educational institutes with thirteen sites. Each site measures the background radiation with 

a 5–10-minute interval. Some sites use radiation sources around the detectors, so higher than natural 

radiation readings are also possible. The measured data can be accessed for several years back in time on 

the public webpage (http://omosjer.reak.bme.hu/). Unfortunately, the mass download of the time series is 

not supported by the webpage (however it is not prohibited as well). So, after finding a good use-case and 

a source of training set, we must solve the automatic download of the records. 

This task was carried out by a Python script using the requests module. The script made several get 

requests to query the webpage for different time intervals and stations. The resulting html page was 

parsed, and the measurement values were stored in comma separated value (csv) files for later use. 

Collecting the data for thirteen stations for the last 6 years took a few minutes and resulted in almost one 

http://omosjer.reak.bme.hu/
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thousand files (separate files were generated for each station and each month) occupying approximately 

one hundred megabytes disk space. This amount of training set is considered enough for any machine 

learning algorithm. 

After downloading the learning set, we can start to work with the machine learning models. As stated in 

the previous section, we used TimeGAN [5] as our model. 

Two slightly different models were created to get an insight about the learning times of the TimeGAN 

algorithm. The first model was taught on a one-month long sample. The data was sampled with a sliding 

window of size 1 day (144 samples in one window assuming that we get a reading in every 10 minutes). 

This leads to 4174 different partially overlapping samples for the algorithm. The algorithm was taught in 

100 iterations. It took around a half day on a laptop with a recent i7 CPU but without any GPU support. 

Presumably this time can be largely reduced using a decent GPU. 

1 month dataset, sliding window size: 144 sample (one day), 4174 sample, 100 iteration learning 

Phase Time 

Embedding network training 00:07:01 

Supervised network training 00:03:55 

Joint networks training 12:17:23 

Synthetic data generation 00:00:10 

 

The second model was taught on a 2 week long dataset but with 500 iterations of learning. This task took 

more than two days. 

2 weeks dataset, sliding window size: 144 sample (one day), 2016 sample, 500 iteration learning 

Phase Time 

Embedding network training 1:02:11 

Supervised network training 00:22:47 

Joint networks training 50:05:26 

Synthetic data generation 00:00:11 

 

Most of the machine learning models use real numbers in the interval of zero to one to represent every 

feature. If the original feature is from a different interval, then all the values are transformed. A widely 

used scaler is the MinMax scaler. It is very important to make an inverse transformation before using the 

synthetic data. This inverse transformation was properly done in the next section where the evaluation of 

the results. is discussed 

4. Evaluation of the generator 

Before evaluating the results, we should take a look at the original data. It is visualized on Figure 2. The 

values are varied between 80 and 100 nSv/h. The measurements were made with 10 minutes intervals, but 

the consecutive measurements are displayed next to each other. 
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2. Figure Two samples of the original data 

Two synthetic dataset is displayed on Figure 3. where the first model was used. They look quite like the 

original, but obviously they are different. This is exactly what expect from a synthetic dataset. 

 

3. Figure Two samples of synthetic data generated by TimeGAN 

A simple comparison of the mean of the datasets shows, that they are quite similar. The two original 

series have mean values of 88.79 and 88.87 while the synthetic series has means of 88.83 and 87.83. 

Further comparisons could be made by comparing the standard deviation of the series. More adequate 

statistical test could also be used like the Principal Component Analysis (PCA) or t-Distributed Stochastic 

Neighbor Embedding (t-SNE), but they remained for future work. 

5. Conclusion 

This paper presented the problem of time series generation in the nuclear industry with some motivation. 

We made a short overview of possible methods and tested a promising method called TimeGAN for 

generating synthetic time series radiation detection sensor data. The method worked well; however, the 

evaluation of the method was shallow. In the future we want to make a more thorough validation which 

can help uncovering subtle problems or help defining parameters of the underlying neural networks. 

Other methods like ExtraMAE or Markov based approaches are also planned to be tested. 
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