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ABSTRACT
A delay-tolerant network is a mobile ad hoc network where
the message dissemination is based on the store-carry-and-
forward principle. This principle raises new aspects of the
privacy problem. In particular, an attacker can build a
user profile and trace the nodes based on this profile even
if the message exchange protocol provides anonymity. In
this paper, an attacker model is presented and some pro-
posed attackers are implemented. We analyze the efficiency
of both the attacks and the proposed defense mechanism,
called Hide-and-Lie Strategy. We show that without any
defense mechanism, the nodes are traceable, but with the
Hide-and-Lie Strategy, the success probability of an attacker
can be made equal to the success probability of the simple
guessing. Furthermore, in some scenarios, the Hide-and-Lie
Strategy increases the message delivery ratio. The number
of downloaded messages and the maximal memory size re-
quired to apply the proposed privacy defense mechanism is
also investigated.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks; K.4.1
[Computers and Society]: Public Policy Issues—Privacy

General Terms
Security, Performance

Keywords
Opportunistic networks, Privacy in data forwarding

1. INTRODUCTION
A delay-tolerant network (DTN) is a mobile ad hoc net-

work. In DTNs, the messages are disseminated according
to the store-carry-and-forward principle. In particular, the
messages are stored and carried by the mobile devices and
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forwarded to intermediate devices when they have connec-
tion (i.e., when they are in vicinity of each other). DTNs
can be used to deliver information either in a target centric
manner, or in a data centric manner. In the target centric
manner, the recipient of the data is known, and the task is
to deliver the data to that user. In the data centric manner,
only the data is known, and the recipient can be anyone,
who is interested in that particular data. The task here
is to deliver the information to as many interested users as
possible. In this paper, we consider the application of DTNs
to inter-personal wireless communication. In these applica-
tions, local information needs to be distributed to a set of
nearby destinations based on their interest in the informa-
tion (data centric application).

As a motivating example, let us consider a small advertise-
ment application. Using this application, a diligent student
participating in each lecture can earn some money. He types
an advertisement about helping other students. There is a
group of students who participate in some lectures meeting
the diligent student. Their handheld devices can download
the advertisement, because they are interested in any mes-
sages related to the university. They go back to the dor-
mitory and meet students who do not visit the lectures at
all. Lazy student’s handheld device downloads the adver-
tisement and before the exam they can contact the diligent
student.

Without privacy protection, no new technology should
spread widely. The privacy of the users must be ensured
in DTNs as well. Some of the problems can be mitigated by
traditional technologies, but some new problems are intro-
duced by the store-carry-and-forward manner of the DTNs.

The privacy problem can be clarified through the above
described example. Let us consider a lecturer who wants to
make a list of the students attending the lectures without the
consent of the students. This list can be easily constructed
if the ownership between the students and their handheld
devices are disclosed once, and their handheld devices are
traceable.

The privacy of a system and the anonymity of the users
can be a problem on different levels of the communication
stack. Using a rough partitioning, the problem can be re-
lated to the physical layer of the network, the network and
transport layers, and the application layer. In the physical
layer, the physical characteristics of the transceiver, in the
application layer, the application data, and in any layers, es-
pecially in the network and transport layers, the identifiers
must be hidden or anonymized.

The physical layer privacy problems are also referred to



remote device fingerprinting or remote device identification.
In [9], the authors can fingerprint a device remotely with-
out any modification on the target machine, from any dis-
tance, measuring only the clock skew of the target machine.
This technique can be very accurate, but needs very long
interaction time. In [1, 13], very accurate hardware finger-
print based device identification methods are given which
can identify the devices very precisely, but utilizes special
expensive hardware equipments.
In the network and transport layer, the anonym emailing

and anonym web browsing are well studied problems (for a
comprehensive survey, see [3]). A more similar problem to
the DTN’s arises in Vehicular Ad-hoc Networks (VANET).
In various aspects, the VANETs are similar to DTNs. They
are mobile, the transaction times are short, and the devices
belong to a well defined person. However, in VANETs, some
infrastructure elements can be assumed in contrast to DTNs.
Nevertheless, the solutions proposed for privacy issues can
be a good inspiration for solving the privacy problems in
DTNs. Many authors addressed the privacy problem in
VANETs, (e.g., in [4, 12]). In VANETs, the messages con-
tain state dependent information (e.g. speed, location, time)
and contain no personal information. Thus, the most bene-
ficial attack is the tracing of identities.
The problem of privacy in opportunistic networks is con-

sidered in some papers. In [10], the authors raise the prob-
lem of data privacy when a node sends sensitive information
to another node and it does not want it to be available for in-
termediate nodes. The author of [6] proposes a pseudonym
generating technique using public keys for supporting the
anonymous communication. In [8], an anonymous commu-
nication solution is presented and a new anonymous authen-
tication protocol is introduced for DTNs. The solution is
based on identity-based cryptography and solves the prob-
lem of anonymous communication on the network level, but
the application level problems are not handled.
A relevant, but somewhat different application level pri-

vacy problem can be found in [11], where a re-identification
algorithm is given targeting anonymized social network graphs.
The de-anonymization algorithm is based purely on the net-
work topology. This mechanism can be hardly adapt into
DTNs, because this algorithm only relies on the static social
connections of the nodes.
Privacy preserving data mining is also a relevant topic. In

[14] the categorization of different privacy preserving tech-
niques is given. The problem of deriving private information
from randomized data is analyzed in [7]. The problem is sim-
ilar to ours, but in that paper, the attackers goal is to reveal
the hidden data itself, while in our paper, the owner of the
data is the hidden information. Another related problem in
[5] is how to randomize some data, while keeping the statis-
tics close to the original. The main difference is the same as
the previous paper.
It is essential that the communication is anonymous. Ano-

nymity (or at least pseudonymity) can be easily achieved by
the usage of pseudonyms (i.e., temporal identifiers). A more
serious and DTN specific application level privacy problem is
that the nodes can be identified by their stored messages. If
an attacker is able to build a user profile using the exchanged
application data, the user becomes traceable even if the com-
munication is completely anonymous. Therefore, new mech-
anism or adaptation of proposed mechanism is required in
DTNs to ensure untraceability of the nodes, namely, to avoid

building traceable user profiles.
The main contributions of our paper are the following:

We are the first who raise the problem of application level
privacy in Delay Tolerant Networks. We characterize and
simulate efficient software based attackers that can link dif-
ferent appearances of the same node with high probability
using only regular handheld devices. We suggest and evalu-
ate an efficient defense strategy, too, which is useful against
this attacker without jeopardizing the node’s main goal, the
message collection.

After reviewing the state-of-the-art and focusing on the
problem of the application level privacy in DTNs, the re-
mainder of the paper is organized as follows. In Section 2,
we describe the system model. The attacker model is pre-
sented and four different attackers are defined in Section 3.
In Section 4, we describe our proposed privacy enhancing
technique, called Hide-and-Lie Strategy. The simulation en-
vironment is defined in Section 5. The efficiency of different
attackers and the privacy enhancing technique is exhaus-
tively analyzed by means of simulations in Section 6. Fi-
nally, we conclude our paper in Section 7.

2. SYSTEM MODEL
In our model, the users are placed on a field of arbitrary

shape. They own devices which can communicate with each
other within their radio range. The used wireless technology
can be Bluetooth, Wi-fi, or any suitable wireless technique.
The messages are generated and disseminated among the
devices/users but each user is only interested in a subset of
messages. The dissemination process is based on the store-
carry-and-forward principle. A node includes a user (the
owner of the device) and a device. We assume that the data
dissemination has no impact on the user’s movement.

The communication between the nodes is assumed to be
anonymous. Hence, an attacker is not able to trace a node
by e.g. simply tracing a network identifier.

The messages are generated by special nodes, called mes-
sage generator nodes. In our system model, the time is slot-
ted, and each message generator node generates a new mes-
sage with a fixed average rate: ϱ messages per time step.
Each of the message generator nodes stores only the most
recently generated message. This message can be down-
loaded by any node that passes by the message generator
node.

We assume that a mechanism can filter out the fake mes-
sages from the network. This assumption is necessary, oth-
erwise, an attacker is able to create a special decoy message
and trace a node by following it. The analysis of the effec-
tiveness of this kind of attacks and countermeasures is out
of the scope of this paper, but considered as future work.

For the sake of simplicity, it is assumed that there are
C categories, and each message belongs to a single cate-
gory. When a message generator node generates a message,
it specifies which category the new message belongs to. Each
message is classified into a category uniformly at random.
Therefore, a new message belongs to a specific category with
probability 1

C
.

An interest profile (IP ) of a node, which is a part of the
user profile, is a binary vector representing a list of cate-
gories the node is interested in. A message belonging to
category k is called primary for a node if IP [k] = 1, the
message is secondary otherwise. A node is interested in any
given category (i.e. all the messages belonging to that cat-



egory are primary for the node) with probability ε. As the
participating nodes are interested in at least one category,
the case when ε = 0 can be excluded, therefore, the cases
when 0 < ε ≤ 1 are considered. For the sake of simplicity, ε
is equal for each node in each considered scenarios.
Each message is assumed to have a unique identifier and

a node can decide based on this identifier if a message M is
stored in its memory before downloading from another node.
According to our assumptions, a message M has the fol-

lowing formula:

M = [ID|CAT |data] (1)

where the ID is the unique identifier of the message, CAT
is the identifier of the category which the message belongs
to, and data is the content of the message. The length of
the data may be some magnitude higher than the length of
the ID and the CAT .
When two nodes get in the vicinity of each other, they

start to exchange messages. Each node u wants to download
those messages from the other participant that u does not
store and fit to its interest profile.
The whole message exchange may be not completed be-

cause the nodes are mobile and they may leave the radio
range of the other participant before exchanging all the re-
quired messages. Therefore, according to the system model,
the nodes are not able to obtain as many messages as they
want but at maximum one for each participant per time
step. It is assumed that a message is downloaded without
interruption in a time step.
In our imagined scenario, the batteries of the handheld

devices can be easily recharged day by day, hence, the cost
related to the battery consumption due to communications
is negligible. However, the average number of downloaded
messages per node is investigated in the simulations to get
an insight of the message exchange rate.
The storage cost has two aspects: 1) The messages need

storage space and storage constraints may limit the num-
ber of stored messages. No explicit limitation for the stor-
age space is defined, however, the maximum quantity of
the stored messages in the devices is investigated. 2) The
time needed to determine which messages the nodes want to
download increases polynomially with the number of mes-
sages stored by the other participant. Therefore, the in-
creasing number of messages is controlled by deleting the
messages of the system. Each message is deleted D time
steps after its generation. D should be sufficiently large, as
the network itself is delay tolerant.
In order to investigate the effect of the defense mechanism

on the message delivery ratio, a formula is defined for the
gain of the nodes. Until time step t, a node u obtains Ou(t)
number of primary messages while in the system, there have
been Au(t) number of messages generated which is primary
for u. The gain (Gu(t)) of node u is the ratio of these val-

ues: Gu(t) =
Ou(t)
Au(t)

. The fact that the gain reaches its steady

state value is proven in [2]. Therefore, in what follows, we
approximate the steady state value of the gain by consider-
ing the gain after sufficiently large simulation time and we
denote it by Gu.
From the privacy point of view, an extreme approach con-

sists in denying the participation in the network. We as-
sume that the nodes want to obtain messages while they
want to preserve their privacy, too. A beneficial and in the
same time selfish behavior would be to download any kind

of messages but not forwarding them. To prevent this kind
of selfish behavior, we assume that a mechanism encourages
the message dissemination among the nodes [2]. Therefore,
the nodes themselves want to increase the number of offered
messages.

3. ATTACKER MODEL
The attacker wants to track the target node to breach its

privacy. To do so, it tries to link the profiles acquired in dif-
ferent times together. If the profiles can be linked correctly,
the attack against the privacy is successful.

In this section, we describe what information an attacker
can get from the nodes, how he can obtain this information
and how he can link the nodes.

3.1 Leaking information
The communication between the nodes can leak some in-

formation about the interests of the participants. In this
paper, attacks based on these leaked information are con-
sidered. We assume that the attacker can estimate the fol-
lowing user profile (UP ) from a node u at time t:

UPu(t) = (EIPu(t), CHMu(t), IDLu(t)) (2)

The UP consists of the following triple: Estimated Inter-
est Profile (EIP ) is a binary vector. The value of the vector
at the kth position equals to 1 if category k seems to be
interesting for node u. Category Histogram of offered Mes-
sages (CHM) shows, for each category, how many messages
in the ID list belong to that category. IDL is the ID list of
offered messages.

In this paper, we abstract away what message exchange
protocol is used, we only assume that an attacker can obtain
the UPu(t) triplets for each node u in time step t.

3.2 Attacker behavior
The attacker, in our model, behaves according to the fol-

lowing attacker model:
1) The attacker identifies its target node (uT ) from N

nodes.
2) The attacker reads the current user profile of the target:

UPuT (t0). The time step when this happens is considered
as a reference time, i.e. t0.

3) τ time later (t1 = t0+τ), the attacker reads UPui(t1), i ∈
[1..N ] of each node and calculates a metric how similar is ui

to uT is. τ is also referred as the attacker delay. To mislead
the attacker, the nodes can slightly modify their UP s. The
UP perturbation is defined in Section 4.

4) The attacker chooses the node most similar to the tar-
get node. If more than one have the maximal similarity
value, it chooses randomly between them. If the chosen
node is uT , the attacker is successful.

We have chosen for the analysis the success probability
of the attacker as the privacy metric, because it is widely
used and tells the most about the expected outcome of the
attack. In the cryptographic literature, a widely used met-
ric is the indistinguishability of the target from a randomly
chosen node This metric differs from ours slightly as the
attacker wants to distinguish the target from every other
node. Our extended metric can be imagined as the con-
ventional metric used N times one after the other. More
precisely, if the attacker can recognize its target from two
nodes with probability p, then it can recognize it from N



nodes with probability pN−1, if the nodes are independent.
The conventional model is more sensitive for p close to 0.5.
In contrast, the extended model is more informative for p
close to 1. As the results show, p can be close to 1 when no
defense mechanism is used, so the extended model is used.
To fully define the attacker, a similarity metric must be

defined. Some possible and useful similarity functions are
defined in the next section.

3.3 Attacker functions
The attacker can define the similarity of the target and a

suspected node based on the UPu(t). Using the user profiles
of the nodes, the attacker can calculate the similarity using
an attacker function A.
More formally the input of A are N +1 user profiles, and

the output is an ID of a node:

A : (UPuT (t0), UPui(t1), i ∈ [1..N ]) → j, j ∈ [1..N ] (3)

The attack is successful if and only if j = T .
It is clear that any attacker can reach a minimal value

of the success probability 1
N

by simple guessing. Higher
values can also be achieved using more sophisticated attacker
functions. In the following, four different simple attacker
functions are defined.
Prefiltered ID Based attacker function assumes that

nodes show their real interest profiles. The attacker can filter
out every suspect who has different EIP s, considering only
the nodes whose EIPu(t1) equals to EIPuT (t0). From the
remaining set, it selects the one whose IDLu(t1) is the most
similar to IDLuT (t0). Under similarity, the cardinality of
the intersection of the target ID list and the suspect’s ID
list is meant. If the remaining set is empty, the attacker
selects the target by pure guessing. The intuition behind
this attacker is that after some time the target can get some
new messages and delete some old ones, but mainly its ID
list is unchanged. This attacker can be very efficient if the
nodes show their real IP s which means that EIP s are not
changed over time, but can be very inefficient if the EIP s
are changed.
Unfiltered ID Based attacker function is a simplified

version of the previous function, as it uses only the cardi-
nality of the intersection of IDLuT (t0) and IDLu(t1), but
it does not prefilter the nodes by their EIP . This attacker
is not so efficient in case of time invariant EIP s, but less
sensitive for changing EIP s.
Category Histogram Based attacker function se-

lects the node u whose CHMu(t1) is the most similar to
the CHMuT (t0). The similarity of two histograms is calcu-
lated using the χ2–test. The intuition behind this attacker
function is that a node can show a modified EIP but the his-
togram represents its real interest profile if the node collects
messages according to its real interests.
Significant Category Based attacker function is the

most complex function analyzed in this paper. It assumes
that the interested categories are overrepresented in the ID
list and the uninterested categories are underrepresented.
This categorization only depends on the real IP of the tar-
get, and is hard to influence without totally changing the
IP . To find the interested categories, the C categories must
be classified into two clusters: the significant categories, and
the remaining categories. This task can be easily done using
the k-means clustering algorithm on the CHMs. The result
of the clustering is a binary vector of length C with ones

at the significant categories. The similarity of two binary
vectors is defined as the Hamming distance of the vectors.

The properties and efficiency of the different attacker func-
tions are analyzed in Section 6.

4. DEFENSE MECHANISM
In order to preserve a node’s privacy, the User Profile

(UP ) should be obfuscated to distract the attacker. Against
an eavesdropping attacker, another solution is to design the
message exchange protocol in a way that it ensures that no
sensitive information can leak during the communication.
We are focusing on developing an obfuscation based mecha-
nism because that can be used if the attacker actively takes
part in the communication.

The more UPu(t1) is different from UPu(t0), the less likely
the attacker can link the two profiles. The continuously
changing profile hardens the task of the attacker, however,
it may thwart the node from collecting primary messages.
This is thoroughly analyzed in Section 6.

Two simple methods can be used to modify the UP through
modifying the Interest Profile (IP ) of the node. The first
one is to hide some interesting categories, and claim them
as uninteresting. The second one is to lie about some un-
interesting categories, and claim them as interesting. These
techniques can be used at the same time, this is what we
call Hide-and-Lie Strategy (HLS). The temporarily obfus-
cated IP is the Temporal Interest Profile or the EIP from
the attacker point of view. The EIP can be transient, which
means that a new EIP can be generated by every node in
every time step.

Obviously, the required and offered messages during the
message exchange must be synchronized with the EIP : 1) mes-
sages relating to hidden categories must be hidden as well,
and 2) when a node lies about being interested in a given
category, it collects and offers messages belonging to that
uninteresting category.

Many different HLSs can be envisioned. Different strate-
gies can hide or lie about different categories in different
situations. In the following, a simple but rather general so-
lution is given: every node generates its EIP from its IP by
inverting every category in the IP with a given probability
λ. Inverting means indicating an uninteresting category as
interesting or vice versa. This parameter λ is the Hide-and-
Lie strategy value.

As λ is a probability, it is between 0 and 1. The nodes
which do not use any obfuscation techniques can be modeled
as nodes using HLS with λ = 0 as the node never modifies
its EIP .

The other interesting value of λ is 0.5. It totally ran-
domizes the IP , making the EIP a uniformly distributed
random binary vector. It is the best strategy for the privacy
sensitive users. For demonstrating this, let us assume two
nodes, u1 and u2 at time τ of the attack. They show tem-
poral interests in every category with probability 0.5, thus,
their interest profiles are independent from their real interest
profiles. If τ is greater than the D message expiration time,
then none of them has any messages from the reference time
of the attack (t0). On average, every user shows interest in a
given category in every second round (as λ = 0.5), so every
message is collected by every node with the same probability.
The CHMs of the nodes are close to the uniform distribu-
tion considering those categories where the EIP shows that
the node is interested in (other categories are represented by



0 messages). The reason is that every message is generated
and collected with the same probability. Therefore, u1 and
u2 show user profiles, which are independent from the user
and statistically the same.
The used HLS transformation of the users’ profiles gener-

ates every possible UP with the same probability, thus, no
statistical test can distinguish between u1’s and u2’s UP .
Values of λ greater than 0.5 are useless for the nodes,

as they make the EIP as traceable as the inverse EIP with
λ′ = 1−λ, but the nodes collect more uninteresting messages
than interesting ones. Consequently, in the following, only
0 ≤ λ ≤ 0.5 are considered.

5. SIMULATION
In the simulations implemented in C++, the fixed-number

of mobile nodes move in discrete time steps according to
one of the two mobility models: the random walk (RW) and
restricted random waypoint (RRW) model.
In the RW model, 300 nodes move on a grid of size 15×15.

In each time step, a node can move to one of the four neigh-
boring grid points (in what follows, these are called meeting
points), or stay at the current place. The probability of
each of these actions is 0.2. In each time step, the nodes
that happen to be at the same meeting point are paired
randomly and each pair executes the message exchange pro-
tocol. These pairs are able to download one message from
each other as described in Section 2.
In the RRW model, 300 nodes (initially placed uniformly

at random) move on a field of size 20×20 unit. On the field,
there are some special points chosen at random; these are
called meeting points. Each node selects a meeting point
randomly, and moves towards this meeting point along a
straight line with a fixed speed. When the meeting point
is reached, the mobile node stops and stays there for ran-
domly chosen time (10 time steps on average). Then, it
chooses another meeting point and begins to move again.
The nodes that happen to be at the same meeting point in
the same time step are paired randomly and these pairs are
able to download one message from each other as described
in Section 2.
In the case of RW, 30 message generator nodes are placed

on the subset of all meeting points uniformly at random. In
the case of RRW, one message generator node is placed on
each meeting point, and the number of meeting points is 30.
All the 30 message generator nodes together generate one
new message per time step on average both in case of RW
and RRW mobility model.
The parameters of the mobility models were determined

such that the number of message exchanges are equal on
average.
The length (number of time steps) of the simulation was

determined in an empirical way by taking into account that
the gain has to reach its steady-state value. In the begin-
ning of the simulation, the nodes do not store any messages.
Therefore, their gains are volatile in the first time steps.
When the simulations were run for 3000 time steps, the av-
erage gain has not changed considerably for upcoming 1000
time steps in the analyzed simulations. Therefore, the at-
tacker started its attack after 3000 time step long bootstrap
(t0 = 3000) and the simulator was run for additional 1000
upcoming time steps to investigate the effectiveness of the
attacker for different τ values.
Some of the parameters that describe our envisioned sys-

tem were fixed in order to reduce the number of simulation
scenarios and other ones which have the highest effect on
the success probability of the attacker were varied. The
fixed simulation parameters are summarized including the
mobility model specific ones in Table 1.

Table 1: Fixed simulation parameters
Parameter RRW RW
Simulation length in time steps 4000
Number of nodes (N) 300
Number of message generator nodes 30
Message generation rate (ϱ) 0.0333
Simulation area (unit) 20 × 20 15 × 15
Number of meeting points 30 225
Probability of leaving a meeting point 0.1 0.8
Velocity 1 unit/time step
Lifetime of messages (D) 500

The simulation parameters that are related to the interest
profile were varied: number of message categories (C) and
probability of being interested in a category (ε) as these
parameters affect most the success probability of the attack.

Parameter C should be higher than 1, otherwise all the
nodes have the same IP . Therefore, the chosen lowest value
is 2. We think that 50 categories is high enough, because a
higher value would not affect the simulation results consid-
erably (the results for 30 and 50 are similar). The considered
values are 2, 5, 10, 30, 50.

To reduce the complexity of the simulations, we selected
some 0 < ε ≤ 1 values in a way that instead of ε = 0
we included ε = 0.05, and we also investigated a special
case, ε = 0.5. The considered values are 0.05, 0.2, 0.4,
0.5, 0.6, 0.8, 1. Note that with probability (1 − ε)C , the
simulator generates such an interest profile that the node is
not interested in any category. In that case, a new IP is
generated.

Recall that a node can choose a Hide-and-Lie strategy
value from the interval 0 ≤ λ ≤ 0.5. For the sake of simplic-
ity, only those cases are considered when each node chooses
the same λ value from the following set: {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

We also investigate how the time elapsed between t0 and
t1 (i.e., τ) affects the success probability of the attack. We
considered the following values of τ : {1, 50, 250, 500, 1000}.
In the special case when τ = 1, the ID list of stored mes-
sages does not change considerably, however, the Hide-and-
Lie Strategy affects the UP . Recall that the messages are
deleted from the system after 500 time steps. Therefore,
when τ > 500, no message will match to the target node’s
ID list in t0.

Table 2: Varied simulation parameters
Parameter Possible values
Number of categories (C) 2, 5, 10, 30, 50
Probability that a node is

0.05, 0.2, 0.4, 0.5, 0.6, 0.8, 1
interested in a category (ε)

Hide-and-Lie strategy value (λ) 0, 0.1, 0.2, 0.3, 0.4, 0.5
Attacker delay (τ) 1, 50, 250, 500, 1000

The main objectives are to investigate the success prob-
ability of the attacks and the efficiency of the HLS. The
analysis was performed in each combination of the parame-
ter values summed up in Table 2. In one parameter set, the
success probability of every attacker function was calculated
using the following method: A different simulation run for
each parameter set was executed. In each execution, the



attacker selects each node as a target node one-by-one at
time t0 and performs the attacker function with the target
node and all the nodes as the input of the function at each
t1 = t0 + τ time. The success probability is the ratio of the
successful attacks.

6. RESULTS
In this section, two representative scenarios (see Table 3)

are exhaustively analyzed. In particular, the efficiency of
different attacker functions presented in Section 3.3 and the
efficiency of the defense mechanism presented in Section 4
are investigated. Beyond the analysis of two emphasized
scenarios, we show the differences compared to the other
simulated scenarios. In the two considered scenarios, we
investigate the effect of the Hide-and-Lie Strategy on the
reached gain and the number of downloaded primary and
secondary messages and the maximum memory required to
follow the proposed Hide-and-Lie strategy.
As our experience showed that the chosen mobility model

does not affect the results considerably, we have selected the
random walk mobility model in the analyzed scenarios. Be-
cause of the space limits, we emphasize rather the effect of
the probability of being interested in a category instead of
the number of categories. Therefore, in the presented simu-
lation results, the number of categories is fixed to 30, which
can be a realistic value for a lot of applications. In the two
investigated scenarios, the probability of being interested in
a category takes the values 0.05 and 0.4. The former value
refers to those scenarios where the nodes are interested in a
small subset of messages, like in the example scenario pre-
sented in Section 1, while in the latter scenario, the nodes
are interested in a large subset of messages. In Table 3, we
summarize the parameter values of the scenarios beyond the
already fixed parameters introduced in Table 1.

Table 3: Parameter values of investigated scenarios
Mobility model C ε

Scenario 1
RW 30

0.05
Scenario 2 0.4

The success probability of the attacker functions is plot-
ted against different Hide-and-Lie strategy values (λ) and
different attacker delay (τ) values of Scenario 1 and 2 in
Figure 1(a) and 1(b), respectively. For the sake of better
understanding, the plots are separated by different attacker
delay values.
The Prefiltered ID Based attacker function assumes that

the nodes do not apply any privacy enhancing technique.
According to this, it is the most efficient attacker function
when λ = 0, but in any other cases, the attacker function
can not distinguish the target node from the others, because
even one entry changing in the EIP misleads the attacker.
A more robust solution can be obtained by omitting the

prefiltering which results in the Unfiltered ID Based attacker
function. The success probability of this function decreases
when λ = 0 compared to the prefiltered function but con-
siderably increases in other cases. The reason is that the
number of all the combinations of the messages give enough
variety to the attacker to identify the nodes with higher
probability even if they hide a small subset of the messages
when they meet other nodes. As the nodes increase the λ
value, they collect messages from larger sets and they can
hide more messages. Hence, the nodes are able to deceive

the attacker with high probability. Therefore, the success
probability of the attacker function decreases with the in-
creasing λ value. If λ = 0.5, the attacker function is as
inefficient as a näıve attacker.

The Unfiltered ID Based attacker function is very sensitive
for the attacker delay. As τ increases the nodes delete more
and more messages making the attack less and less efficient.
Finally, the nodes delete all the messages that could match
the IDLuT (t0) after D time steps and this attack becomes
inefficient in cases where τ = 500 or τ = 1000. Recall that
D = 500 in the considered scenarios.

The Category Histogram Based attacker function is less
sensitive to the τ value, but it is less efficient when τ is lower
than the ID Based attacker function. The inefficiency of this
attacker function comes from the fact that the Hide-and-Lie
Strategy causes intolerable differences for the χ2–test when
all the messages appear or disappear belonging to a category
when EIP changes.

The attack that is least sensitive to τ is the Significant
Category Based attacker function. The advantageous char-
acteristic comes from the fact that this function tries to re-
veal the real interest profile. However, it still does not work
when the nodes hide their identity with λ = 0.5 strategy,
because there are no over- and underrepresented categories
in that case.

The Significant Category Based attacker function is the
most efficient attacker function in Scenario 2, but it is less
efficient in Scenario 1.

Taking all the considered attacker functions into consid-
eration, we can conclude that the efficiency of the attacker
functions changes according to the parameters of the model.
However, a common tendency is that if the nodes apply the
Hide-and-Lie Strategy with high value of λ, none of the at-
tackers is able to distinguish them better, independently of
the value of τ , than a näıve attacker which picks up one of
the nodes by random.

Even if an attacker can distinguish two nodes if their IP s
are different (we call this attacker ideal IP based attacker
AIP ideal), the probability that two nodes have the same
IP is not negligible. The success probability of an ideal
IP based attacker can be viewed as an upperbound for any
other IP based attacker, such as, e.g. the Significant Cate-
gory Based attacker function. This value can be determined
analytically. Through this analysis, we show how different C
and ε values affect the success probability of the attackers.

The success probability of the ideal IP based attacker is
determined by the number of equal IP s. To compute the
success probability, first the probability p of two IPs being
equal is computed as follows:

p =

∑C
w=1

(
C
w

) (
ε2
)w (

(1− ε)2
)C−w

(1− (1− ε)C)2

=

(
ε2 + (1− ε)2

)C − (1− ε)2C

(1− (1− ε)C)2

(4)

where w is the weight of the IP varying between 1 and C
(at least every node is interested in one category).

The success probability of AIP ideal is the reciprocal of the
average number of nodes with the same IP:

Pr(AIP ideal(UPuT (t0), UPu1(t1), . . . , UPuN (t1)) = uT )

≃ 1

1 + p (N − 1)
(5)
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Figure 1: Success probability of A as a function of the Hide-and-Lie strategy values (λ)
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Figure 2: Analytically determined success probabil-
ity of an ideal IP based attacker functions when 300
nodes are present in the network

The ideal values according to Eq. (5) are 0.341 and 1 for
Scenario 1 and 2, respectively. These values are valid only
for λ = 0, and confirmed by Figure 1. These values are
shown in Figure 2, too, where Eq. (5) is plotted against
different C and ε values.
The characteristic of the success probability of the at-

tacker in the case of the two emphasized scenarios are sim-
ilar to each other as Figures 1(a) and 1(b) show and these
are similar to the other scenarios which are simulated but
not presented here. However, as Figure 2 shows, the suc-
cess probability of the ideal IP based attacker depends on
the parameter value of the number of categories and the
probability of a node being interested in a category. As one
can read from the figure, when there are large number of
categories in the system, the success probability of an ideal
attacker is high. On the other hand, when the number of the
categories is low, the success probability highly depends on
the value of ε. As the value ε gets closer to 0.5, the success
probability increases. The reason is that an attacker can
distinguish nodes when the probability that the IP s of two
nodes are equal is low. All these statements are confirmed

by the simulation results that are not presented here, and
these effects can be observed even in cases when λ > 0.

In Figure 3, we show the average gain of all the nodes as
a function of the Hide-and-Lie strategy in the two scenarios
and its empirical standard deviation. We have to stress that
these two figures do not represent all the appeared character-
istic of the figures, however, Figure 3(a) shows an interesting
property of the Hide-and-Lie Strategy. Namely, increasing
λ does not degrade but increases the data delivery ratio in
some scenarios.

The Hide-and-Lie Strategy has two contradictory effects:
On the one hand, when the nodes happen to hide what they
are interested in, they may miss some primary messages to
download. On the other hand, when the nodes happen to
lie being interested in some category, they store-carry-and-
forward secondary messages, which increases the data deliv-
ery ratio in general [2]. The cumulative effect depends on
the system parameters. E.g. in a case when nodes are in-
terested only in a small subset of categories and they do not
carry secondary messages, they can exchange messages only
with small probability. Therefore, the Hide-and-Lie Strat-
egy in some cases can be viewed as a motivation to store-
carry-and-forward secondary messages as it can be seen in
Figure 3(a). On the other hand, when the nodes have many
possibilities to get primary messages, the latter effect has
no considerable benefit while the former effect degrades the
gain. Surprisingly, the two effects are balanced in Scenario 2
as one can see in Figure 3(b).

Even though we did not take into consideration the energy
consumption and the memory costs of the communication
when we calculated the gain, we collected related informa-
tion during the simulation. We plotted the average number
of primary and secondary messages downloaded by one node
and maximum memory usage as a function of the Hide-and-
Lie strategy in the two considered scenarios in Figure 4.

As one can expect, the number of the downloaded sec-
ondary messages increases with increasing λ value. The
number of the downloaded primary messages changes as the
gain changes because the gain is a normalized value of the



0 0.1 0.2 0.3 0.4 0.5
0

0.3
0.4

0.48
0.55

1

Hide−and−lie strategy value

G
ai

n

(a) Scenario 1

0 0.1 0.2 0.3 0.4 0.5
0

0.57

1

Hide−and−lie strategy value

G
ai

n

(b) Scenario 2

Figure 3: Average gain with the empirical standard
deviation
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Figure 4: Costs (Average number of primary and
secondary messages downloaded by a node and the
maximum memory usage)

number of obtained primary messages.
Even though the gains are comparable in the two scenar-

ios as Figure 3 shows, there is almost one order of magnitude
difference in the number of downloaded primary messages.
The reason is that in Scenario 1, the nodes are interested
in 5% of the messages and in Scenario 2, the nodes are in-
terested in 40% of the messages while the number of the
generated messages does not change considerably in the two
scenarios. Due to the same reason, the number of the sec-
ondary messages for a node is less in Scenario 2 than in
Scenario 1. The ratio of the number of downloaded primary
and the number of secondary messages is ε(1−λ) : (1− ε)λ.
Note that even if the nodes download more and more sec-

ondary messages as λ increases, the maximal memory usage
does not increase at the same order. Thus, the nodes do not
need to maintain much larger memories when they want to
protect their privacy.

7. CONCLUSION
In this paper, the application level privacy in Delay Tol-

erant Networks has been investigated. In particular, an at-
tacker can build a user profile of a node based on what mes-
sages the node stores and what messages it wants to down-
load. After profiling, the attacker can trace the node based
on the user profile even if the node communicates with the
other nodes through anonymous links. A system and an
attacker model was built and some attacker functions were
proposed. A defense mechanism called Hide-and-Lie Strat-
egy against such attacks was proposed, too. This mecha-
nism has a free parameter with which the system can be
tuned between high privacy level and low data-forwarding
overload. In our model, we analyzed the efficiency both of
the attacks at different parameter values and the proposed

defense mechanism. We showed that without any defense
mechanism, the nodes are traceable, but with the proposed
Hide-and-Lie Strategy, the success probability of an attacker
can be decreased substantially. The message delivery ra-
tio and the costs at different Hide-and-Lie parameter values
are also investigated. We found that in some scenarios, the
Hide-and-Lie Strategy can be viewed as a motivation for
other nodes to carry messages that they are not interested
in. Therefore, as a positive side effect, the message delivery
ratio is also increased.

As a future work, the possible effects of a more realistic
mobility model can be analyzed, and the case of dependent
categories can be examined. As mentioned in Sec. 2, the
problem of decoy messages can also be investigated.
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