
1.  Introduction

Hardware Security Modules (HSM) are indispensable in
many applications, such as ATM (Automatic Teller Ma-
chine) networks, public key infrastructures, electronic
ticketing in public transportation, electronic payment sys-
tems, and electronic commerce, in general. A HSM is a
hardware device (including the firmware and software
components) which has some tamper resistance prop-
erties, and it is used to store cryptographic keys and to
perform various security-critical cryptographic operations
(e.g., generation of digital signatures and PIN codes).

HSMs appeared in civilian applications starting from
the late 1960s. At that time, driven by the explosion of
the number of banking card forgery attacks, IBM (the
main supplier of the computer systems of the banks)
developed a system where the customer’s PIN was com-
puted from the account number placed on the card by
encrypting it using a key called the PIN derivation key. 

Therefore, the protection of the PIN derivation key
against both the bank employees and outside attack-
ers became an importnat requirement. This led to the
development of the IBM 3848 co-processor, which rep-
resents the first generation of HSMs that were widely
used in ATM networks later. Today, the application of
HSMs is expanded, and besides the banking sector,
they became widely used also in Public Key Infrastruc-
tures, in Automated Fare Collection systems, and gen-
erally in electronic commerce.        

The primary goal of attacking a HSM is to extract the
secret data stored in it. The long list of potential attacks
[2] starts with invasive attacks where the attacker phys-
ically penetrates the HSM and gains access to its inter-
nal parts, and it continues with non-invasive side chan-
nel attacks where the operational environment of the
HSM (e.g., its timing and power consumption) is obser-
ved or manipulated. These attacks can be very effec-
tive, but at the same time, they often require expensive
equipments. Finally, HSMs can also be attacked through
their APIs by exploiting some design weaknesses in

the API’s logic. Being fully software based, this kind of
attacks is much less expensive than physical and side-
channel attacks, and depending on the weaknesses
that are exploited, it may have devastating effects. This
means that attacking HSMs through their APIs has a
potentially high risk. Many API attacks have been found
against several widely-used, commercially available
HSMs, which otherwise provide very strong physical pro-
tection [3-7,10,11]. Thus, discovering and patching se-
curity holes in APIs are required, ideally, still before the
large-scale deployment of the HSMs. At the same time,
APIs used in practice are complex, containing hundreds
of functions, which renders their analysis difficult.     

One promising approach of API analysis is to apply
some formal verification method used in software engi-
neering [8,9,11,12,14,16]. In this paper, we follow this
approach, and propose an API verification method
based on process algebra that seems to be extremely
well-suited for the formal modelling of security APIs, the
precise definition of the security requirements, and the
rigorous analysis of the provided security properties. In
particular, the  method introduced here is based on the
spi-calculus [1], which was originally designed for ana-
lysing key exchange protocols. To the best of our know-
ledge, we are the first who use the spi-calculus for ana-
lysing security APIs. 

In the rest of the paper, we first introduce API at-
tacks against the Visa Security Modul in Section 2 for
illustration and motivation purposes. Similar attacks al-
so work against other HSMs. The subtlety of these
attacks motivate the formal API analysis method intro-
duced in Section 4. Our method is based on the spi-
calculus, which is briefly reviewed in Section 3. 

2.  An API attack 
against the VISA Security Module

The primary function of the VISA Security Module (VSM)
is to protect PINs transmitted over the ATM networks.
VISA’s goal in promoting this technology was to per-
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suade member banks to connect their ATMs to VISA’s
network, so that a customer of one member bank could
get cash from an ATM operated by another member
bank. VISA wanted to minimize the loss that could be
caused by dishonest or negligent employees at mem-
ber banks. The goal was to ensure that no single emp-
loyee of any bank in the network can learn the clear
value of any customer’s PIN. This means that PIN num-
bers should not simply be managed in the software
running on the mainframes of the bank. Instead, PIN
numbers are managed in a physically protected, tam-
per-resistant environment implemented by the VSM. 

Due to the limitations of its internal memory size, the
VSM only stores the most important master keys inside
the module; other keys are stored outside secured un-
der the master keys. The key storage method of the
VSM follows a hierarchical structure [3] illustrated in Fi-
gure 1., which has the advantage of efficient key shar-
ing. However, if a key at a top layer is compromised,
every key below it in the hierarchy will be also compro-
mised. The VSM uses five different master keys to en-
crypt other keys according to their relevancy and roles.
The VSM supports nine key types to distinguish roles.
As we can see, master keys are placed at the top layer
of the hierarchy, and are illustrated as circles, and the
nine key/data types are illustrated as rectangles at the
lower layers. The keys that belong to a given layer and
a given type are secured with the corresponding keys
at the upper layers, except the master keys. 

The master key ZCMK (Zone Control Master Key) is
used to encrypt ZCK (Zone Control Key) keys. ZCKs
are keys to be shared with other banking networks,
used to protect the exchange of working keys. Working
Keys (WKs) are used to protect trial PINs that cus-
tomers have entered while they travel through the net-
work on the way to the bank for verification, and are
not used for intra-bank communications. Working keys
are stored outside encrypted with
the Working Master Key (WMK).
Terminal Communications keys
(TCKs) are for protecting control
information going to and from
ATMs, compute MACs of messa-
ges exchanged between VSMs,
and are secured with the Termi-
nal Communication Master Key
(TCMK). The Terminal Master Key
(TMK) and the PIN generation
key (P) are very important keys
and are considered as keys with
the same relevancy. Thus, they
are both encrypted under mas-
ter key MK, in other words, they
are treated as the same key type.
The TMK keys are shared be-
tween ATMs and used to protect
all keys sent to an ATM. The PIN
generation key is used to gene-
rate customer PINs, as we know. 

Finally, at the lowest layer we can find user data
that are encrypted with the operational keys according
to their type, where X{ } means that the user data is
encrypted with a key of type X.  

Before putting a new ATM in operation, the bank
has to supply the ATM with every necessary key. To do
this, first, a fresh TMK key is shared with the new ATM.
All other keys are protected with this TMK during trans-
mission to the ATM. 

The generation of the key TMK is as follow: Func-
tion GenerateKeyShares of the VSM API is called by
the Host:

The VSM generates a key part TMKi, and at the
same time, it prints the key part to a secure printer to
which only authorized persons have access:

Then, it returns the key part encrypted under the
master key MK to the host. 

We assume that two key parts are required to con-
struct the TMK. The key parts TMK1 and TMK2 printed
by the secure printer are given to separate authorized
couriers, who carry it to the new ATM and load it in.
After receiving both parts of the key, the new ATM comp-
utes the TMK key with XORing the two key parts, TMK=
TMK1 ⊕ TMK2. 

The same TMK key is produced at the bank with
the CombineKeyShares command: 
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Figure 1. 
The key hierarchy of the VISA Security Module (VSM)



There exists an API attack that exploits the Terminal
Master Key generation function above. 

Namely, instead of inputting {TMK 1}MK and {TMK 2}MK,
the host (or a programmer at the host) calls Combine
KeyShares with inputting twice the same key token
{TMK 1}MK (or {TMK 2}MK). 

Thus, the programmer can achieve that the all zero
key becomes the TMK. He can then exploit this to pro-
duce customer PINs, since the PIN derivation key (P) is
protected with the TMK key during transmission to the
ATM for PIN verification. In other words, the program-
mer can now easily decrypt {P}0 with the key 0, and ob-
tains P in clear. With the key P, he can generate the
PIN of any customer.     

There is an another attack that uses the Encrypt
CommsKey function of the API, which inputs a clear TCK
key and returns the encrypted version under the mas-
ter key TCMK. This key token is stored in an external
storage.

As mentioned above, every key, including the TCK
key, must be transferred to a new ATM. The transmis-
sion of the key TCK is also protected with the master
key TMK: {TCK }TMK. The function TranslateCommsKey
toTMK ensures the generation of this key token:

The attack exploits that TMK and P are treated as
having the same type. The malicious programmer calls
EncryptCommsKey, but instead of inputting TCK, he
inputs the customer’s account number PAN: 

Next, he calls TranslateCommsKeytoTMK, but in-
stead of inputting {TCK }TCMK, he inputs the resulted key
token {PAN }TCMK of the previous step. Besides this, he
inputs {P }MK instead of {TMK }MK.

The returned value is the account number PAN en-
crypted under the PIN derivation key, which is exactly
the PIN number of the account holder.

3.  Overview of the spi-calculus

In this section, we give a brief overview of the spi-cal-
culus [1], an extension of the π-calculus [13] with cryp-
tographic primitives. Similarly to the π-calculus, the spi-
calculus can be seen as a programming language.
Hence, the spi-calculus seems to be well-suited for mo-
deling security APIs. 

3.1. Syntax of the spi-calculus
In the spi-calculus, communication channels are re-

presented with names. We assume an infinite set of
names. In addition, we assume an infinite set of vari-
ables that is important at initialization. Let x, y, and z
range over variables, and let m, n, and c range over
names. We distinguish terms and processes. Terms (mes-
sages, channel identification, keys, etc.) represent data,
while processes describe behaviour. A term can be an
atom, such as a constant or a variable, or it can be a
complex term. 

The set of terms is defined by the following grammar:

As we can see, a term can be a name, a pair of terms,
a constant zero, the successor of a given term, or a va-
riable. We emphasize the term {M1,M2,...,Mk }N, which
represents shared-key encryption, where N represents
the key, and M1,M2,...,Mk terms represent the fields of
the plaintext message. 

The set of processes is defined by the following
grammar:

The above constructions of the spi-calculus have
the following intuitive meanings:

• Output
Here, the term M represents a channel. This pro-

cess is ready to output terms N1,N2,...,Nk on channel
M. If a reaction step (see below) can occur, then terms
N1,N2,...,Nk are sent on channel M and then process P
runs.

• Input
This process is the pair of the ouput process. In a

reaction step, an output process sends terms N1,N2,
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...,Nk as a message on channel M, and an input pro-
cess inputs these terms from the same channel, and
then process P [N1/x1,N2/x2,...,Nk/xk] runs, where N/x
represents the binding of variable x to term N. More
precisely, variables are substituted with the inputted
terms in process P. 

• Composition (P|Q)
This conctruction represents the parallel execution

of processes P and Q. They can interact with each other
via channels known to both, or they can interact with
the outside world independently of each other.

• Restriction (vn)P
The process P creates a new local name n. This name

cannot appear in other processes unless it has been
sent explicitly during some communications. With this
construction, we can model the generation of a new
secret key. 

• Replication (!P) 
This construction represents an infinite number of

copies of process P running in parallel.
• Match ([M is N ]P)
This process behaves as P provided that terms N

and M are the same; otherwise it is stuck, meaning that
it does nothing. 

• Nil process (0)
The nil process does nothing.
• Pair splitting (let (x,y)=M in P)
If M=(N,L) holds, then process P [N/x][L/y] will exe-

cute, otherwise the process will stuck.
• Integer case (case M of 0:P suc (x):Q)
This process behaves as P if term M is 0, and as

Q [N/x], if M =suc(N). Otherwise, the process is stuck.
• Shared-key decryption
Process case L of {x1, x2, ..., xk}N in P attempts to

decrypt the term L with the key N. If L is a ciphertext of
the form {M1,M2, ...,Mk }N, then the process will behave as
P [M1/x1,M2/x2,...,Mk/xk]. Otherwise, the process is stuck.

As usual, there are some important assumptions
made about cryptography and messages:

– The only way to decrypt an encrypted packet is
to know the corresponding key.

– An encrypted packet does not reveal the key
that was used to encrypt it.

– There is sufficient redundancy in messages so
that the decryption algorithm can detect whether
a ciphertext was encrypted with the expected key.

– The attacker cannot find out or generate any
secret data of the protocol. 

3.2. Modeling secrecy property in the spi-calculus
In the spi-calculus the attacker is an arbitrary R pro-

cess about which we assume only that at the begin-
ning it does not have any secret data. The attacker
process runs in parallel with the process that models
the system, and they can interact (communicate) via
public channels. The attacker attempts to obtain some
secret data using only the information that he gets dur-
ing the interaction.         

Secrecy, which is a basic security property in the spi-
calculus, is based on the indistinguishability of process-
es. Namely, the system P keeps data M secret, if for
arbitrary  data M’, the attacker process R cannot distin-
guish P(M) and P(M’). 

A formal definition of indistinguishability in the spi-
calculus is given by using the notion of testing equiva-
lence. To make this clear, first we introduce some addi-
tional notions:         

• Free and bound variables
Variable x is  bound in process P if process P con-

tains an input subprocess m(x) (for arbitrary m). Variable
x is  free in process P if process P does not contain an
input subprocess m(x). Let fv(P) denote the set of free
variables in P.

• Closed term/process
We say that a term or process is closed if it has no

free variables. In the spi-calculus, we assumed that the
attacker process is closed.

• Reaction step
A reaction step arises from the interaction of an in-

put process m(x).Q and an output process m 〈M〉.P. Dur-
ing the interaction the output process sends term M via
channel m, while the input process receives it on chan-
nel m, and binds variable x to the received term. Then
process Q runs with this term. Formally,

• Barb exhibiting
Exhibiting a barb means that a process uses a given

channel to send or receive messages. Barb exhibition
is denoted by ↓ . Exhibiting a barb is entirely indepen-
dent from the content of the output or input messages.
Barb exhibition is defined by the two axioms:

– Barb In: If a process immediately uses channel m
to receive data, then it exhibits the barb m,
namely, m(x).P↓m.

– Barb Out: If a process immediately uses channel m
to send data, then it exhibits the barb m , 
namely, m 〈M 〉.P↓m .. 

• Convergence
Convergence intuitively means that a process does

not definitely use a given channel immediately, but only
after some reaction steps. Convergence is denoted by
⇓ , and there are two related axioms:

– If a process exhibits a barb β, 
then it will converge to β.

– If a process P transforms to process Q,
that exhibits barb β, 
then process P will converge to barb β.

Next, after introducing the required notions, we give
a formal definition of testing equivalence:

Definition (Testing equivalence)
A test is a pair (R,β), where R is an arbitrary closed

process and β is a barb (m or m ). Testing equivalence
holds between P and Q, written as P ≈Q, if and only if
P ⊆ Q and Q ⊆ P holds, where P ⊆ Q holds if and only
if (P|R)⇓ β implies (Q|R)⇓ β for any test (R,β).
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Intuitively, P ≈Q means that the behaviors of the
processes P and Q are indistinguishable for any exter-
nal observer R. More precisely, P and Q may have dif-
ferent internal structure, but a third process R cannot
distinguish running in parallel with P from running in pa-
rallel with Q. 

4.  Modeling security APIs 
in the spi-calculus

Although the spi-calculus is designed for modelling key
exchange protocols, we argue that it is also well-suited
for modeling the interaction with a HSM via its API. This
is because the interaction can be thought of as a set
of two-party protocols, each describing an exchange of
messages between the HSM and the user. We can mo-
del the entire API as the parallel composition of the
replication of the processes that represent individual
API function calls. We show an example in this section.

For this purpose, we first define a simplified security
API. We assume that the security module has a master
key, denoted by MK, which is stored inside the module.
In addition, we distinguish two types of keys: data en-
cryption keys (denoted by Ki), and key encryption keys
(denoted by KEKj), to which we link the type indicator
constants DataKey and KEKKey, respectively. Key to-
kens that contain a data encryption key Ki will carry a
type indicator DataKey. Similarly, key tokens containing
key encryption keys KEKj will carry KEKKey as a type
indicator. 

We also tag encrypted data with the type indicator
TData. In addition, we assume that the modul does not
store Ki and KEKj inside, instead it exports them in en-
crypted forms {DataKey,Ki }MK and {KEKKey,KEKj}MK
under the master key MK.

Our example API consist of four functions:
• Data-encryption
This function inputs some data Data and some key

token {DataKey,Ki}MK. Then, it decrypts {DataKey,Ki}MK
with the internally stored master key MK, and checks its
type. If the type is DataKey, then it uses Ki to encrypt
Data. Finally, it outputs the cipher {TData, Data}Ki

.
• Data-decryption
This function inputs some encrypted data {TData,

Data}Ki
and some key token {DataKey,Ki}MK. Then, it de-

crypts {DataKey,Ki}MK with the internally stored master
key MK, and checks its type. If the type is DataKey
then it uses Ki to decrypt the cipher {TData,Data}Ki

. Fin-
ally, it checks if the type is TData, and if so, then it out-
puts Data.

• Data-key export
This function takes two key to-

kens, {DataKey,Ki }MK and {KEKKey,
KEKj}MK as inputs. It decrypts both of
them with the master key, and checks
their types. If the types are DataKey
and KEKKey respectively, then it en-

crypts Ki with KEKj. It then outputs the key token {Data
Key,Ki}KEK j. This token will be sent to another modul that
may import key Ki.

• Data-key import
This function takes two key tokens; {DataKey,Ki}KEK j ,

{KEKKey,KEKj}MK as inputs. It first decrypts {KEKKey,
KEKj}MK with the master key MK, and checks its type.
Then it decrypts {DataKey,Ki}KEK j with KEKj, and checks
its type. Finally, if the types are correct, it encrypts Ki
with the master key, and outputs the key token {DataKey,
Ki }MK .

We can model the API defined above with the spi-
calculus as follow: 

Let MODULEENC, MODULEDEC, MODULEEXP, MODULEIMP

denote the data-encryption, data-decryption, data-key
export and data-key import processes. Each process re-
ceives data (e.g., input arguments) via channels. The
names cenc, cdec, cexp, cimp denote the communication
channels through which the processes can receive data.
Moreover, we define a channel cuser

 through which the
processes output data to the environment. 

The formal definition of these processes is the fol-
lowing:

Then, the API can be represented as the parallel
composition of the replication of the above processes
with an initial output of some key tokens. These key
tokens are stored outside of the HSM, and thus, they
are available to everyone (including the attacker). 
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It is possible to prove formally that this simplified API
never leaks out keys in clear. In the formal proof we have
to prove the following testing equivalences: 

SysAPI(Ki, KEKj) ≈
SysAPI(Ki’, KEKj) and SysAPI(Ki, KEKj) ≈
SysAPI(Ki, KEKj’) for every Ki, Ki’, KEKj, KEKj’. 

The proof of this is based on induction. We assume
that at first, the attacker process R does not has any
key, that is, the system is in safe state. Then, we prove
that if the system is in safe state, it will remain in safe
state after any reaction step between process R and
the system. This means that the attacker cannot extract
any key from the system via its API. We omit further de-
tails of the proof here due to space limitations; the inter-
ested reader, however, can find the entire proof in [15].

5.  Conclusion

API attacks on hardware secutiy modules represent a
serious risk. In this paper, we proposed a formal me-
thod for analysing security APIs. This method enables
us to prove that an external attacker cannot extract any
key from the modul via its API (given that indeed this is
the case). A failed proof does not directly gives us an
attack scenario, however, it often reveals the weak points
of the API. The proposed method is based on the spi-
calculus, which was originally designed for analysing
key exchange protocols. In this paper, we showed that it
can also be successfully used to analyise security APIs.
Our experience shows that the spi-calculus is well-suit-
ed for this kind of analysis.
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