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In this paper, we consider the problem of resilient data aggregation in sensor networks,
namely, how to aggregate sensor readings collected by the base station when some of those
sensor readings may be compromised. Note that an attacker can easily compromise the
reading of a sensor by altering the environmental parameters measured by that sensor.
We present a statistical framework that is designed to mitigate the effects of the attacker
on the output of the aggregation function. The main novelty of our approach compared to
most prior work on resilient data aggregation is that we take advantage of the naturally
existing correlation between the readings produced by different sensors. In particular,
we show how spatial correlation can be represented in the sensor network data model,
and how it can be exploited to increase the resilience of data aggregation. The algorithms
presented in this paper are flexible enough to be applied without any special assumption
on the distribution of the sensor readings or on the strategy of the attacker. The effective-
ness of the algorithms is evaluated analytically considering a typical attacker model with
various parameters, and by means of simulation considering a sophisticated attacker.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Wireless sensor networks are considered as a promising
technology that has a wide range of applications including
environmental monitoring for agricultural and ecological
purposes, wild life monitoring, remote patient monitoring
in electronic health care systems, building automation,
and reconnaissance applications for military purposes.
Sensor networks typically consist of a large number of
sensor nodes and a few base stations. The sensor nodes
measure some physical phenomena (e.g., temperature,
humidity, vibration) that are important in the given appli-
cation, and report their sensor readings to the base stations
(typically via wireless communication channels). As both
the number of the sensors and the amount of the measure-
ments that they perform can be large, in many applica-
tions, the base stations aggregate the individual sensor
. All rights reserved.
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readings into a compact report. Aggregation can be useful
to keep the amount of information that need to be handled
under control, and to improve the energy-efficiency of the
network. The typical aggregation functions include the
average, the minimum, and the maximum.

A potential problem is that sensor readings can be com-
promised before they reach the base station. This can be
achieved by an attacker either by modifying the content
of the data packets that carry the sensor readings, or by
altering the environmental parameters around some sen-
sors and corrupt their readings. While the former type of
attack can be detected by standard cryptographic message
authentication and integrity protection techniques, the lat-
ter type of attack cannot be detected, nor prevented, by
cryptographic means. In addition, the latter type of attack
is relatively easy to carry out: Firstly, an attacker can easily
approach a sensor node, as sensor networks typically
assumed to operate in an unattended manner. Secondly,
corrupting the measurement of a nearby sensor does not
require sophisticated mechanisms, but in most of the
cases, everyday tools can be used effectively (e.g., a lighter,
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a pocket lamp, or a glass of water can be used to corrupt
temperature, light, and humidity measurements, respec-
tively). Unfortunately, many useful aggregation functions
(including those mentioned above) are sensitive to even
a single compromised sensor reading, meaning that their
output can be arbitrarily modified by appropriately modi-
fying a single sensor reading. Depending on the nature of
the application, this may have fatal consequences.

The goal of resilient data aggregation is to alleviate the
problem described above. More specifically, resilient data
aggregation schemes try to minimize the effect of an envi-
ronment altering attacker on the output of the aggregation
function. However, the related solutions often make the
simplifying assumption that the sensor nodes produce
independent and identically distributed measurements. In
reality, however, the measurements made by the sensors
always have some kind of relationship among them. This
relationship can be either temporal correlation (i.e., when
the nodes’ sensing results show regularity in time), or spa-
tial correlation (i.e., when the nodes’ physical proximity is
the basis of the relationship).

Contrary to several prior work on resilient data aggrega-
tion in sensor networks, in this paper, we assume that the
sensor readings are correlated. In particular, we will focus
on spatially correlated measurements. The rationale is
that, in most of the sensor network applications, one needs
to have a densely deployed network in order to satisfy the
sensing coverage and radio connectivity requirements.
Consequently, sensors in proximity will measure spatially
correlated values of the same phenomenon where the de-
gree of correlation increases as the internode distance
decreases.

Spatial correlation can be exploited to cross-check the
sensor readings, testing whether there is an (environment
altering) attack or not. This naturally existing characteristic
of the sample produced by the sensor network helps in
improving the attack detection algorithms proposed so
far in this context. Furthermore, considering correlation
is a significant step towards having a more realistic data
model of sensor networks in general.

Hereinafter, we introduce our sensor network model
that is able to handle spatial correlation, and we also intro-
duce a novel resilient data aggregation scheme developed
for sensor networks that exploits the spatial correlation of
the sensor readings. Moreover, we study our proposed
data aggregation scheme analytically and by means of
simulation, and show how the effectiveness of attack
detection can be improved by considering correlation. Our
previously published short conference paper [20] deals
with the same problem. This paper should be viewed as a
follow-up and substantially extended version of that short
paper.

The rest of this paper is organized as follows: In Section
2, we summarize the papers considering correlation in sen-
sor networks and the papers related to resilient aggrega-
tion. In Section 3, we present our sensor network model.
In Section 4, we introduce our novel correlation-based
resilient data aggregation approach, and we evaluate its
efficiency. Then, in Section 5, we answer some emerging
questions, and finally, in Section 6, we conclude our work
and propose some interesting future research topics.
2. Related work

Even though the naturally existing phenomenon of cor-
relation is sometimes neglected in research papers consid-
ering sensor measurement data, it can be exploited in
many ways. In the following, we present the related papers
in the field of data aggregation, deviation detection and at-
tack detection considering correlation.

A research paper that aims at data aggregation consid-
ering correlation is [30], the authors of which propose an
aggregator node election mechanism that aims at load bal-
ancing too. According to this mechanism, the network is
partitioned into equally sized sectors, wherein the aggre-
gator nodes – that are selected considering the correlation
– collect the data from their children in case an event oc-
curs. In [29], correlation is exploited in in-network aggre-
gation. The highly correlated nodes are assumed to have
similar measurement results, therefore, only one of them
is sufficient to fulfill the sensing task. Relying on this
assumption, the proposed solution reduces the number of
transmissions and provides approximate results to aggre-
gate queries by utilizing the spatial correlation of sensor
data.

There are papers that aim at detecting anomalies (out-
liers, deviations) in the system usually by exploiting the
phenomenon of correlation, but not in the context of sen-
sor networks. In [14], the authors propose a method to de-
tect anomalous network conditions with the help of PCA
(principal component analysis), while in [17], one can read
about an outlier detection scheme that uses approximate
computations in order to accelerate the operation, and de-
tects outliers with the help of the so called ‘multi-granular-
ity deviation factor’. While these papers are not designed
for sensor networks, there is a related solution for sensor
networks as well [16], in which the authors deal with the
problem of identification of deviating values in streaming
data. Regrettably, this latter paper assumes a special net-
work topology with a powerful backbone, and applies ker-
nel density estimators, thus restricting itself to i.i.d.
samples.

These papers do not consider attacks, only anomalies
(or outliers, deviations). The main difference between the
two concepts is that anomalies are random events, while
attacks are controlled events that aim at disturbing some
functionalities of the sensor network. The problem of
defending such attacks in sensor networks is obviously
important, hence, there are more and more papers discuss-
ing countermeasures.

An example of such papers is [22], in which the
authors propose a method to reduce the effect of unau-
thorized data inserted by sybil and compromised nodes.
The paper exploits correlation using a modified, sliding-
window t-test that will point out the nodes that are sus-
pected to be captured or sybil nodes, and these nodes
have to authenticate themselves in this case. If a node
fails to authenticate itself, its message will be dropped
and the malfunctioning will be reported to the base sta-
tion. Another related paper is [28], in which one can read
about an en-route filtering method against injected false
messages using multiple MACs (message authentication
codes). The main idea here is that the sensor nodes have
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disjoint sets of cryptographic keys, and the nodes that
sense the same event can attach multiple MACs calcu-
lated by each of them to the message. Thus, if an attacker
wants to forge a message, it has to forge several MACs as
well, but this forged message will be detected during its
route to the base station as the forwarding nodes can
check the validity of the MACs with some probability.
Regrettably, neither [22] nor [28] propose resilient solu-
tions: these solutions are not applicable against an out-
sider attacker who alters the measured parameters of
the environment in order to have the sensors perform fal-
sified measurements. This kind of attack results in mes-
sages that are cryptographically sound but false in
content. This is a serious security threat in the sensor net-
works, as already mentioned in Section 1.

Some researchers already considered the problem of
such messages that cannot be filtered out using crypto-
graphic checks, however, usually under the assumption
that the measurements of the sensors are independent.
One of the first research papers on this topic was [26].
The author investigates the resilience of the commonly
known aggregation functions like, for example, the aver-
age, the min/max, and the median. Not surprisingly,
most of these function are not resilient even against
one compromised sample element (which can originate
from only one compromised node), and only the median
is declared to be resilient. A question naturally arises:
what can we do if we do not want to calculate the
median of the sample, but something else in a secure
way? In [9] the authors address the same problem
of compromised sensor readings. However, this paper
shows a method only for attack detection. In the model
of [9], the attacker does not only want to cause a distor-
tion in the output of the aggregation function, but he
also wants to remain undetected. This trade-off helps
in upper bounding the strength of the attacker notably.
Another paper of the same authors [8] gives a complex
answer to this question by introducing the RANBAR algo-
rithm. This algorithm is able to do statistical sample
filtering, thus, it helps to obtain a cleaned sample which
can be a basis for secure calculation of any kind of
aggregates, even those that were declared to be not resil-
ient in [26].

In the most related paper [10], one can read about a
security solution that already assumes compromised nodes
and the defense against them with the help of correlation.
The authors employ PCA (principal component analysis)
in order to detect the misbehaviour of the nodes and filter
out their measurements. According to the simulation
results, the proposed methodology overperforms conven-
tional anomaly detection approaches. However, the paper
assumes a special network topology with more powerful
primary nodes that, at the same time, cannot be compro-
mised. Moreover, the a priori assumption in PCA is that
the most important components (i.e., sensors) are those
that have a high variance in their values, which is not
true in general in our case.

After having presented the related literature, in the fol-
lowing sections we introduce our solution for resilient data
aggregation in sensor networks. Our approach, described
in detail in Sections 3 and 4, exploits correlation to ensure
the resilience of data aggregation even in case of an attack-
er’s activity.
3. General assumptions

In the next subsection, we present the set of assump-
tions we made on the attacker, which together is called at-
tacker model in the security literature. After that, we
present the data model that we employ for the calculations
throughout the paper.

3.1. Assumptions on the adversary

The adversary we consider is able to produce some kind
of ‘‘offsets” which are added to the measurements of the
sensors. These offsets are under the control of the adver-
sary, but are considered to be independent and identically
distributed. Moreover, those are considered to be of the
same kind as the sensor readings, e.g., temperature in case
of thermometer sensors or light in case of photometer sen-
sors. This attack can totally distort the aggregate consider-
ing the commonly used aggregation functions like the
average or the min/max.

We do not restrict the adversary in the number of sam-
ple elements he is able to compromise, but we assume that
the adversary’s knowledge do not extend to the distribu-
tion of the sample produced by the sensor network, neither
to the size of the sample gathered by the base station in a
given query (some of these assumptions will be relaxed la-
ter in Section 4.2.3). Finally, we do not consider any partic-
ular distribution for the attacker’s offset.

An example of such an attack is the following. Let us
assume that we have a sensor network on the vineyard
that measures some microclimate characteristics by calcu-
lating the min/max (or the average, etc.) of the measure-
ments of the individual nodes [2,7,6,23]. The owner of
the vineyard is assisted by the aggregated reports in the
decision making about what task is needed to be done
on the vineyard, which ensures the maximum quality of
the grapes. Obviously, a malicious outsider can easily mis-
lead the aggregate by approaching only one sensor node
and compromising its measurement for example by a
lighter, or by using chemicals, according to the measured
characteristics. The misleaded aggregate can encourage
the owner to perform inappropriate operations (e.g., grape
harvesting in wrong time, inappropriate usage of chemi-
cals, etc).

Another example can be considered in the case of
bridge monitoring sensor networks that are deployed to
permanently monitor the structural and seismic conditions
of the bridge [15,4]. Even one compromised measurement
in the aggregate of these measurements can cause false
alarms for the bridge maintainers, and what is more, sup-
pressed alarms can lead to disasters because of the missing
maintenance.

We emphasize that the mentioned attacker does not
have to tamper with the nodes or reverse-engineer the
crypthographic keys, neither needs he to destroy the com-
munication protocols used in the network – he only needs
physical proximity!
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3.2. The data model

In our envisioned application, the base station collects a
sample of measurements from the sensors and tries to
aggregate them in a secure way. Each sensor contributes
to this sample with its measurement by replying to the base
station’s query in an encrypted message. (We note that
assuming even public key encryption in sensor networks
is not far-fetched according to [18]. Moreover, we note that
our scheme supports distributed in-network aggregation as
well, see Section 5 for the related discussion.) Upon recep-
tion of the messages the base station decrypts the messages
and aggregates their information content. The aggregation
is done in two steps: At first, the sample is analyzed and a
decision is made whether it is compromised or not. After
that, an aggregation step is performed depending on the
previous decision. The aggregation step is different for the
two outputs of the decision function, namely when an at-
tack is detected or when no attack is detected. If there is
no attack detected then usual aggregation is performed,
otherwise the final output is calculated by extrapolation
based on the previous outputs (see Fig. 1). This separation
of cases helps us to obtain a significantly smaller distortion
at the output of the aggregation function than having done
the aggregation without attack detection.

We assume that the sensor network data is normally
distributed. The choice of the normal distribution is a com-
mon assumption in practice when measurement data is
considered. However, we note that the algorithms we pro-
pose in the following sections are applicable to any kind of
sampling distributions; the assumption on the normal dis-
tribution is used only in the derivation of the analytical and
simulation results in this paper.

In order to be able to measure the gain of our approach,
we model the sensor network to produce measurements
that can be represented by identically distributed random
variables, but instead of assuming the independence of
these random variables we exploit the correlation among
them (in other words, we consider dependent random
variables). Therefore, our sensor network data model con-
sists of the following elements:

– n: number of sensor readings in the sample.
– t: number of readings compromised by the attacker.
– Xi: normally distributed random variable denoting

the ith uncompromised reading (Xi �Nðl;rÞ,
0 < i 6 n).

– rXi ;Xj
¼ r: correlation coefficient between Xi and Xj,

8i; j, i–j.
Det()Attack

Enhanced Data Ag

Sample

Fig. 1. Resilient aggregation scenario including
– Gi: arbitrarily distributed random variable denoting
the additive offset produced by the attacker (Gi is
independent of Xi, 8i).

– Zi ¼ Xi þ Gi: random variable denoting the compro-
mised sample elements (0 < i 6 t).

As this model handles the dependence of the sensor
measurements, it can help us to quantify the power of cor-
relation in attack detection. In the next section, we will
show how this quantification can be performed.
4. Exploiting correlation in resilient data aggregation

Correlation among sample elements is a naturally exist-
ing phenomenon. In this section, we show how this corre-
lation can be exploited. We start with a simplified scenario
of two nodes in Section 4.1 in order to get a first insight
into the problem and to prepare the ground for the general
case. After that, we generalize our model in Section 4.2 for
arbitrary number of nodes and attack strengths.

4.1. The two-nodes scenario

As a first step, we investigate the case when there are
only two sample elements (i.e., n ¼ 2), and there is at most
one element that is attacked (i.e., t 6 1). Our primary aim
now is to pursue attack detection on this 2-element sample
with a small error probability (both false negative and false
positive). Then, based on this decision, we are able to per-
form data aggregation of the same 2-element sample with
a remarkably lowered distortion, where the distortion is
defined as the expected value of the squared absolute dif-
ference between the aggregate of the sample and the
aggregate in case there is no attack. Our secondary aim is
to show how correlation influences our results calculated
for the distortion.

Algorithm 1.

Detðx1; x2Þ Attack Detection Algorithm
1: Randomly select one element from the sample
fx1; x2g and let the selected element be denoted
by x0, the remaining one by x00

2: Calculate the ð1� aÞ% confidence interval for x00

conditioned on x0 according to the p.d.f. pX1 jX2
ð�jx0Þ

3: if x00 is inside this confidence interval then
4: D ¼ 0 (* no attack detected *)
5: else
6: D ¼ 1 (* attack detected *)
7: end if
D = 0

D = 1

yAggregation

Extrapolation

gregation Algorithm

y
extr

the attacker and the data processing part.
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The solution we propose to fulfill our primary aim is the
Attack Detection Algorithm Detðx ; x Þ (Algorithm 1). This
1 2

algorithm randomly chooses one of the two elements from
the sample and computes the ð1� aÞ% confidence interval
for the remaining one conditioned on the chosen one, where
a is the false positive probability. If the remaining one is in-
side this confidence interval, then the output of the algo-
rithm is that there is probably no attack (D ¼ 0), otherwise
the algorithm signals that an attack is detected (D ¼ 1).

This straightforward approach already exploits correla-
tion by using the conditional probability density function
pX1 jX2

ð�j�Þ which is assumed to be known. In most of the
cases this can be a realistic assumption as the base station
can perform data gathering and can establish an estima-
tion of pX1 jX2

ð�j�Þ just after the deployment of the sensor
network when the probability of being already attacked
is small. We note, however, that the knowledge of
pX1 jX2

ð�j�Þ does not imply the a priori knowledge of the
p.d.f. of the measurement data at individual sensors. For
example, a given conditional p.d.f. pX1 jX2

ð�j�Þ gives a differ-
ent joint p.d.f. for different distributions of X2, which then
results in different marginal distributions for X1. Conse-
quently, we do not assume any a priori knowledge about
the expected value of the measurement data.

The output of the Attack Detection Algorithm can be ap-
plied in selecting the adequate way of data aggregation. If
no attack is indicated then the sample can be handled in
the usual way, e.g., its average can be calculated without
the fear of obtaining a highly distorted aggregate. Other-
wise, equipped with the knowledge that the sample is
compromised with high probability, one can mitigate the
effects of an attacker by handling the sample in a special
way. Usually, dropping the compromised sample is the
easiest method to apply, while extrapolating the current
aggregate from the previous (unattacked) results can guar-
antee a small distortion without relying on other informa-
tion. The type of the extrapolation can be suitably chosen
to the characteristics of the data one is going to measure.

This approach is formalized in the Enhanced Data
Aggregation Algorithm (Algorithm 2), where output y is
the aggregate of the input, while the output denoted by
yextr is the minimum distortion output when we do not
use outlier filtering. yextr is usually calculated as an extrap-
olation based on the output of the previous uncompro-
mised outputs. For example, yextr can be the output of the
last run of the data aggregation algorithm when the attack
detection algorithm detected no attack; this possesses the
smallest distortion for ordinary samples.

Algorithm 2.

Enhanced Data Aggregation Algorithm

L. Buttyán et al. / Ad Hoc
1: Take both of the readings and apply the attack
detection algorithm Detðx1; x2Þ

2: if Detðx1; x2Þ indicates an attack
3: Output ¼ yextr
4: else
5: Output ¼ y
6: end if
The output of the Enhanced Data Aggregation Algo-
rithm is interpreted as the aggregate value of the current
round. Using the Attack Detection Algorithm and the En-
hanced Data Aggregation Algorithm one can notably re-
duce the distortion of the aggregate compared to the case
when aggregation is performed without prior analysis.
4.1.1. Why not using standard statistical decisions instead of
Detð�; �Þ?

Decision theory is a well-elaborated part of statistics. It
is concerned with the topic of how to behave optimally un-
der uncertainty. The basic guideline in decision theory is
minimizing the expected loss encountered after the deci-
sion. Generally speaking, we have the same objective in
this paper: we want to minimize the distortion of the
aggregation function. Thus, the distortion can be consid-
ered as the loss in our case, while the decision we have
to make is about signalling an attack or not. Why not using
then well-known statistical decisions instead of inventing
a new one? To answer this question we have to take a dee-
per look at the modus operandi of the decision algorithms
proposed so far. The two most prevalent statistical deci-
sions we investigate are the Bayesian decision and the
Maximum Likelihood decision.

Informally, the Bayesian decision is concerned with
making a decision about the state of nature based on
how probable that state is. Therefore, Bayesian decision
theory plays a role when there is some a priori information
about the states we are trying to classify. As we want to de-
cide whether there is an attack occurred or not, the a priori
information would be in our case the probability of facing
an attack. However, our attacker model presented in Sec-
tion 3.1 does not contain any kind of information about
this probability. In other words, we do not rely on assump-
tions about the attacker’s attacking frequency or distribu-
tion in time. Therefore, the Bayesian decision that
requires information about the attacking probability can-
not be applied in our case.

The Maximum Likelihood decision seems to be more
attractive in the scenario proposed in this paper. Generally,
the Maximum Likelihood approach decides to that state of
nature for which it holds that the value of the p.d.f. for the
input conditioned on that state is the maximum value
among all the values of p.d.f’s conditioned on other states
for the same input. The sample received from the sensor
nodes can be considered as the mentioned input, while
the states of nature are ‘attack’ or ‘no attack’. The problem
with this approach is that without assuming a concrete
distribution of the attacker’s additive offset we cannot fig-
ure out the p.d.f. of a vector of sample elements condi-
tioned on the class ‘attack’. Therefore, regrettably, the
Maximum Likelihood decision needs too much information
that is not available in our model and thus, it is not appli-
cable either in our case.
4.1.2. Evaluation of the enhanced data aggregation algorithm
under a gaussian data model

To quantify the gain in the distortion of the output of
the Enhanced Data Aggregation Algorithm, we first have
to evaluate the error probabilities of the Attack Detection
Algorithm. These probabilities are the false positive (a)
and the false negative (b) probabilities. a is the probability
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of signalling an attack in the unattacked case, while b is the
probability of not signalling the attack in the attacked case.
In order to be able to define b, we fix a to 0:1 (i.e., we tol-
erate 10% of false alarms). Moreover, for the evaluation we
assume that the distribution of Gi is the Gaussian distribu-
tion with parameters ~l and ~r (i.e., Gi �Nð~l; ~rÞ). (We note
that this assumption is only needed for the calculations be-
low, Algorithms 1 and 2 do not rely on it. We also note that
a more general attacker will be considered later and ana-
lyzed by means of simulation in Section 4.2.3.) Here, the
choice of the Gaussian distribution simplifies the analysis
and its two parameters allow us to consider attacks of sig-
nificantly different styles. Without loss of generality, we
further assume that the first sample element is compro-
mised, i.e., Z1 ¼ X1 þ G1. As t ¼ 1, we can set aside the low-
er indices of the symbols corresponding to the attacker,
thus Z ¼ X1 þ G. Based on these, the b error probability
can be determined by averaging the two particular false
negative error probabilities corresponding to the two cases
when (i) we select the compromised element as the condi-
tion (i.e., x0 ¼ z) or (ii) we select the uncompromised read-
ing for the same role (i.e., x0 ¼ x2). The averaging is justified
by the fact that both of these events have a probability of
0.5 to occur because of the randomness of the selection.
Formally,

b ¼ 1
2
ðbð1Þ þ bð2ÞÞ; ð1Þ

where

bð1Þ ¼
Z 1

�1

Z b2ðzÞ

b1ðzÞ
pX2 jZðujvÞdu

" #
pZðvÞdv ð2Þ

¼
Z 1

�1

Z b2ðzÞ

b1ðzÞ
pX2 ;Zðu; vÞdudv ð3Þ

bð2Þ ¼
Z 1

�1

Z b2ðx2Þ

b1ðx2Þ
pZjX2
ðujvÞdu

" #
pX2
ðvÞdv ð4Þ

¼
Z 1

�1

Z b2ðx2Þ

b1ðx2Þ
pZ;X2
ðu; vÞdudv: ð5Þ

The b1ðzÞ, b2ðzÞ, b1ðx2Þ and b2ðx2Þ integration bounds are
defined with the help of the previously fixed false positive
probability asZ b1ðzÞ

�1
pX1 jX2

ðujzÞdu ¼ a
2

ð6ÞZ 1

b2ðzÞ
pX1 jX2

ðujzÞdu ¼ a
2

ð7ÞZ b1ðx2Þ

�1
pX1 jX2

ðujx2Þdu ¼ a
2

ð8ÞZ 1

b2ðx2Þ
pX1 jX2

ðujx2Þdu ¼ a
2
; ð9Þ

respectively. Additionally, the correlation coefficient in
pX2 ;Zð�; �Þ is calculated as

rX2 ;Z ¼
E½ðX2 � lÞðX1 þ G� l� ~lÞ�

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~r2
p ð10Þ

¼rX1 ;X2

rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ~r2
p ; ð11Þ
and the correlation coefficient in pZ;X2
ð�; �Þ is rZ;X2 ¼ rX2 ;Z .

With the help of b, we can analyze our Enhanced Data
Aggregation Algorithm from its distortion’s point of view.
As the most interesting aggregation function is the average
because of its vulnerability (only one compromised mea-
surement can totally mislead it) and its widespread usage,
we considered it in our analysis too. To evaluate the distor-
tion of the output of Algorithm 2, we have to distinguish
two basic cases: the case when an attack happens, and an-
other one when there is no attack. We introduce the fol-
lowing notations:

– A: indicator random variable denoting whether
there is an attack or not (0 – no attack, 1 – attack)

– Y: random variable denoting the average of the
sample

– Yextr: random variable denoting the minimum dis-
tortion output in case an attack is detected

– bY : random variable denoting the average of the sam-
ple elements when there is no attack

Considering the first reading to be compromised (with-
out loss of generality), the distortion in the first case can be
expressed as

dðYjA ¼ 1Þ ¼E½jY � bY j2jA ¼ 1� ð12Þ
¼E½jY � bY j2jA ¼ 1;D ¼ 1� � ð1� bÞ ð13Þ
þE½jY � bY j2jA ¼ 1;D ¼ 0� � b ð14Þ

¼EjYextr � bY j2 � ð1� bÞ þ 1
4
ð~l2 þ ~r2Þ � b: ð15Þ

While in the second case the distortion can be formalized
as

dðYjA ¼ 0Þ ¼E½jY � bY j2jA ¼ 0� ð16Þ
¼E½jY � bY j2jA ¼ 0;D ¼ 1� � a ð17Þ
þE½jY � bY j2jA ¼ 0;D ¼ 0� � ð1� aÞ ð18Þ
¼EjYextr � bY j2 � a: ð19Þ

To show how much gain our Enhanced Data Aggregation
Algorithm induces compared to a scenario where no attack
detection is employed, we define dimp as the improvement
in the distortion in case of an attack as follows:

dimp ¼ dðYjA ¼ 1;D ¼ 0Þ � dðYjA ¼ 1Þ ð20Þ

¼ 1
4
ð~l2 þ ~r2Þ � ½EjYextr � bY j2 � ð1� bÞ þ 1

4
ð~l2 þ ~r2Þb�

ffi 1
4
ð~l2 þ ~r2Þ � ð1� bÞ; ð21Þ

where we assume that EjYextr � bY j2 is close to zero. In
Fig. 2, one can see a plot of dimp where the different curves
belong to different correlation coefficients. The horizontal
axis corresponds to the expected value of the attacker’s
distribution (i.e., ~l). For the calculations we choose
l ¼ 0, r ¼ 1, and ~r ¼ 1. We note that the choice of ~r in
the range ½0:5;1:5� does not alter the results significantly.
In the figure, the steeply ascending lines show that the
improvement in the distortion grows with a growing dif-
ference between l and ~l. The fact the curve of r ¼ 0:5 runs
near to the curve of r ¼ 0:95 clearly indicates that our
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Fig. 2. Calculated values for dimp for different values of the correlation
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approach considerably exploits even correlations of mod-
erate power.

As a second comparison, we show how much influence
the correlation has on the distortion. In Fig. 3, one can see
the distortion dðY jA ¼ 1Þ for different values of the correla-
tion coefficient r. The horizontal axis represents the ex-
pected value of the attacker’s distribution (i.e., ~l). The
corresponding values for the calculations are l ¼ 0,
r ¼ 1, and ~r ¼ 1. Here again, assuming that EjYextr � bY j2
is close to zero, we can characterize the distortion as

dðYjA ¼ 1Þ ffi 1
4
ð~l2 þ ~r2Þ � b: ð22Þ

In Fig. 3, the difference in the form of the curves for the
dependent cases (r > 0) and the independent case (r ¼ 0)
shows that considering correlation helps in maintaining a
very moderate distortion in the aggregate in case of an at-
tack. When the sample elements are independent, the dis-
tortion caused by the adversary grows steeply with ~l,
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Fig. 3. Distortion caused by the adversary for different values of the
correlation coefficient r.
while in the dependent cases the effects of an attack are
strictly upper bounded, even when the correlation is
moderate.

To understand the behaviour of Algorithm 1 more dee-
ply, we compared it to the already detailed Maximum Like-
lihood decision. As mentioned in Section 4.1.1, the
Maximum Likelihood decision is not applicable in our data
and attacker model, however, its importance in decision
theory lead us to compare its efficiency to the efficiency
of Algorithm 1 in a significantly restricted model. The
restriction is the following: we assume that the attacker’s
distribution is a priori known. We emphasize that this
assumption is required for the Maximum Likelihood deci-
sion to be able to operate, and it should not be confused
with the assumption about the normality made only in or-
der to perform the analysis of our approach; the Attack
Detection Algorithm does not need to know the attacker’s
distribution while the Maximum Likelihood decision
needs. For the sake of simplicity, we assume that the at-
tacker’s distribution is the Gaussian distribution with
known expected value and variance.

The Maximum Likelihood decision is the following. Let
us take the joint p.d.f. of the sample in case there is no at-
tack (i.e., pX1 ;X2

) and divide it with the joint p.d.f. corre-
sponding to the attacked case (i.e., pX1 ;Z or pZ;X2

). An
attack is signalled if this quotient is smaller than T. More
formally, D ¼ 1 if

pX1 ;X2
ðxÞ

1
2 pX1 ;ZðxÞ þ

1
2 pZ;X2

ðxÞ
< T; ð23Þ

where T can be obtained with the help of the false positive
probability a. Therefore, T can be determined using that

a ¼
Z
R

pX1 ;X2
ðxÞdx; ð24Þ

where R is defined as

R ¼ x : pX1 ;X2
ðxÞ < T

1
2

pX1 ;Z
ðxÞ þ 1

2
pZ;X2
ðxÞ

� �� �
; ð25Þ

After having the Maximum Likelihood decision described,
we have to evaluate its probability of missed detection.
This can be formalized as

b ¼ 1� 1
2

Z
R

pX1 ;ZðxÞ þ
1
2

Z
R

1
2

pZ;X2
ðxÞ

� �
: ð26Þ

To be able to observe the effect of the Maximum Likelihood
decision on the distortion, we have put it in the Enhanced
Data Aggregation Algorithm in place of Detð�; �Þ. Using the
new values of b, the improvement in the distortion of the
Enhanced Data Aggregation Algorithm can be calculated
using Eq. (21).

Fig. 4 shows the results of the comparison of the Attack
Detection Algorithm and the Maximum Likelihood deci-
sion, both as a building block in the Enhanced Data Aggre-
gation Algorithm. The corresponding values for the
calculations are l ¼ 0, r ¼ 1, ~r ¼ 1. As one can see from
Fig. 4, the improvement in the distortion implied by the
Maximum Likelihood decision is higher than for the Attack
Detection Algorithm in case of low correlation, however,
the difference becomes very small if the correlation is
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Fig. 4. Comparison of Maximum Likelihood decision and the Attack Detection Algorithm.
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higher. This difference is based on the fact that the Maxi-
mum Likelihood decision takes advantage of the knowl-
edge of the distribution of the attacker’s offset. Therefore,
in this comparison, where this distribution is assumed to
be known to the Maximum Likelihood decision algorithm,
this latter can perform better than the Attack Detection
Algorithm. However, if the correlation is higher, the Attack
Detection Algorithm performs as well as Maximum Likeli-
hood decision, even without relying on this extended
knowledge. Nevertheless, we emphasize again that the
Maximum Likelihood approach is only applicable if one
knows the distribution of the attacker’s offset, while the
Attack Detection Algorithm does not need this knowledge.

Figs. 2–4 clearly show that correlation has a significant
influence on the attack detection capabilities of Algorithm
1 and therefore on the distortion that the attacker is able to
cause in the output of Algorithm 2. Compared to the inde-
pendent case (i.e., when r ¼ 0), considering the naturally
existing correlation between the sample elements results
in smaller distortion and allows the base station to make
nearly as precise decisions as for example the Maximum
Likelihood approach which needs more knowledge about
the attacker in order to be able to operate. In other words,
the attacker’s abilities are more restricted when the base
station maintains a correlation-based data model.

Using the preliminary data model consisting of only
two nodes from which one is possibly attacked we are able
to quantify the ‘‘strength” of correlation. The results justify
our suspicion: exploiting correlation can help in develop-
ing data aggregation algorithms for sensor networks that
are more powerful from the resilience point of view than
algorithms not considering correlation. Now that the
importance of correlation is clarified, we can go further
by enabling our algorithms to elaborate on data sets that
are containing more than two elements. In Section 4.2
we will show how this generalization can be performed.
4.2. Generalization using sample halving

Usually, sensor networks are imagined to contain a high
number of sensor nodes, and in our simplified case the
number of nodes is strictly related to the sample size. Thus,
in this subsection we propose a generalized approach for
attack detection and resilient aggregation in sensor net-
works that is able to handle a sample of arbitrary size. That
means that in this subsection we consider samples for
which

– n P 2
– t P 1, i.e., the attacker’s strength is also considered to be

arbitrary.

As the Attack Detection Algorithm and the Enhanced
Data Aggregation Algorithm are efficient considering a
small sample, it is a natural idea to reuse them in this
general case. In the first step, one has to shrink a sample
of n elements into a sample of two elements which can
be achieved, for example, by halving the sample into
two partitions and compressing the partitions into one
element each. The halving is done in a random way,
i.e., each element has a 50% chance to get into the first
partition and the same holds for the second partition
too. The compression can be done for the two partitions
independently from each other by e.g. averaging the
halves. In our case, the partitions do not need to have
equal size but for simplicity we require this property
now. With this sample halving approach we are able to
reduce the general problem (i.e., n P 2) to a special case
(i.e., n ¼ 2) where we can apply our previously intro-
duced Attack Detection Algorithm and Enhanced Data
Aggregation Algorithm.

A sketch of the sample halving approach can be seen in
Fig. 5, in which a sample with six elements is represented
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by circles, where the white circles correspond to ordinary
elements and the black circle corresponds to an element
that is compromised by the adversary. The sample halving
approach divides the sample into two partitions in a ran-
dom way and compresses the two partitions indepen-
dently from each other to obtain a sample of size two. As
the first partition contains a compromised element its
compressed counterpart is also considered as compro-
mised, but since the averaging blurs the effect of the adver-
sary the circle of the resultant value is grey instead of
black.

To be able to use the Attack Detection Algorithm Detð�; �Þ
and the Enhanced Data Aggregation Algorithm presented
in Section 4.1, we have to obtain the conditional p.d.f. of
the average of the first partition conditioned on the aver-
age of the second partition, as instead of pX1 jX2

ð�j�Þ we need
pX1 jX2

ð�j�Þ in Algorithm 1 to evaluate the corresponding con-
fidence interval in the general case. Again, this can be ob-
tained by performing measurements just after the
deployment of the sensor network when the probability
of being already attacked is small. We note that the knowl-
edge of pX1 jX2

ð�j�Þ does not assume anything about the
knowledge of the sampling distribution of the measured
parameter of the sensor network.

With this modified assumption we can reduce the prob-
lem of resilient data aggregation on an arbitrary-sized
sample to the already solved problem of data aggregation
on a sample of size two. Therefore, we are now able to per-
form attack detection and resilient aggregation on a sam-
ple without restriction on its size or the number of
compromised elements. In the next subsection, we for-
mally evaluate the sample halving approach.
4.2.1. Evaluation of the generalized algorithm under a
gaussian data model

The quantification of the gain introduced by the En-
hanced Data Aggregation Algorithm in the case of samples
of arbitrary size is similar to the evaluation of the case of 2-
element samples in Section 4.1.2. However, even if some of
the formulas look similar, the reason of their usage can be
very different compared to the previous case. Moreover,
the increased number of possibly compromised elements
renders the analysis a bit more difficult.
Firstly, we introduce the notations needed:

– X: normally distributed random vector denoting the ori-
ginal sample (X �Nnðl;RÞ).

– Xh: arbitrarily distributed random vector denoting the
sample in case of an attack (Xh �Nnðlh;RhÞ).

– X: normally distributed random vector produced by
averaging the halves of X in the unattacked case
(X �N2ðl;RÞ).

– Xh: random vector produced by averaging the halves of
Xh in case of an attack (Xh �N2ðlh;RhÞ).

– rX1 ;X2
: correlation coefficient between the elements of X.

The sample X in the unattacked case has a multivariate
normal distribution with mean (expected value) vector

l ¼ ðl; . . . ;lÞT; ð27Þ

and with covariance matrix

R ¼

r2 rr2 . . . rr2

rr2 r2 . . . rr2

..

. ..
. . .

. ..
.

rr2 rr2 . . . r2

0BBBB@
1CCCCA ð28Þ

In case an attack happens, the mean vector and the covari-
ance matrix of the compromised sample Xh are respec-
tively (without loss of generality)

lh ¼ lþ lD; ð29Þ

and

Rh ¼ Rþ RD; ð30Þ

where lD is a column vector the first t elements of which
are ~l’s, and RD is a n� n matrix containing only zero ele-
ments except from its first diagonal where the first t ele-
ments are ~r2.

The averaging transformation of the partitions can be
described by matrix M which is a 2� n matrix with the fol-
lowing entries:

M ¼
2
n . . . 2

n 0 . . . 0
0 . . . 0 2

n . . . 2
n

 !
: ð31Þ

In this generalized case again, the first step is to formalize
the false negative probability b as

bðt1 ;t2Þ ¼ 1
2
ðbð1Þ þ bð2ÞÞ; ð32Þ

where the ðt1; t2Þ superscript means that the first half of
the sample contains t1 compromised elements, while the
second half contains t2 compromised elements
(t ¼ t1 þ t2). bðt1 ;t2Þ is the average of two particular error
probabilities corresponding to the cases of the different
condition choice (see Algorithm 1). These particular error
probabilities can be defined as

bð1Þ ¼
Z 1

�1

Z b2ð�xh;1Þ

b1ð�xh;1Þ
pXh;2 ;Xh;1

ðu; vÞdudv ð33Þ

bð2Þ ¼
Z 1

�1

Z b2ð�xh;2Þ

b1ð�xh;2Þ
pXh;1 ;Xh;2

ðu; vÞdudv; ð34Þ
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similarly to the definitions in Section 4.1.2. The related dis-
tributions can be defined with the help of matrix multipli-
cations Mlh and the MRhMT which result respectively in

lh ¼
lþ 2

n t1 ~l
lþ 2

n t2 ~l

 !
; ð35Þ

and

Rh ¼
Rh;11 rr2

rr2 Rh;22

 !
; ð36Þ

where

Rh;11 ¼
2
n

� �2

t1 ~r2 þ 2
n
r2 þ 1� 2

n

� �
rr2: ð37Þ

Rh;22 ¼
2
n

� �2

t2 ~r2 þ 2
n
r2 þ 1� 2

n

� �
rr2: ð38Þ

Based on these, the distribution of Xh;1 is

Xh;1 � N lh;1;

ffiffiffiffiffiffiffiffiffiffi
Rh;11

q� �
; ð39Þ

and the distribution of Xh;2 is

Xh;2 � N lh;2;

ffiffiffiffiffiffiffiffiffiffi
Rh;22

q� �
: ð40Þ

Furthermore, the integration limits in Eqs. (33) and (34)
are implicitly defined asZ b1ð�xh;1Þ

�1
pX1 jX2

ðuj�xh;1Þdu ¼ a
2

ð41ÞZ 1

b2ð�xh;1Þ
pX1 jX2

ðuj�xh;1Þdu ¼ a
2

ð42ÞZ b1ð�xh;2Þ

�1
pX1 jX2

ðuj�xh;2Þdu ¼ a
2

ð43ÞZ 1

b2ð�xh;2Þ
pX1 jX2

ðuj�xh;2Þdu ¼ a
2
: ð44Þ

Finally, the corresponding correlation coefficients in Eqs.
(33) and (34) are defined as

rXh;2 ;Xh;1
¼

E ðXh;2 � lh;2ÞðXh;1 � lh;1Þ
� �ffiffiffiffiffiffiffiffiffiffi

Rh;22

q ffiffiffiffiffiffiffiffiffiffi
Rh;11

q ð45Þ

¼rX1 ;X2

R11ffiffiffiffiffiffiffiffiffiffi
Rh;11

q ffiffiffiffiffiffiffiffiffiffi
Rh;22

q ; ð46Þ

and rXh;1 ;Xh;2
¼ rXh;2 ;Xh;1

.
The main difference in the evaluation of the n P 2 case

compared to the n ¼ 2 case stems from the random halving
of the sample. Along with the increased number of com-
promised elements, the halving of the sample randomizes
the number of compromised elements in the two halves.
As a matter of fact, this kind of random selection is related
to the hypergeometric distribution, which describes the
probability that in a sample of n distinctive objects j ob-
jects are compromised. Therefore, the final error probabil-
ity b can be defined based on the particular probabilities in
Eq. (32) as

b ¼
Xt

j¼0

Pðt1 ¼ jÞbðj;t�jÞ; ð47Þ
where

Pðt1 ¼ jÞ ¼

t

j

� �
n� t
n
2� j

 !
n
n
2

 ! ; ð48Þ

is the hypergeometric distribution with parameters n, t,
and n

2.
To show the gain of our Enhanced Data Aggregation

Algorithm compared to a scenario where no attack detec-
tion is employed we define dimp as the improvement in
the distortion in case of an attack just like in Section
4.1.2 as follows:

dimp ¼dðYjA ¼ 1;D ¼ 0Þ � dðYjA ¼ 1Þ ð49Þ

ffi 1
n2 ð~l

2 þ ~r2Þ � ð1� bÞ; ð50Þ

where we still assume that EjYextr � bY j2 is close to zero. In
Fig. 6, one can see a plot of values of the redefined dimp

function for different correlation coefficients represented
by the different lines. The subfigures correspond to differ-
ent attack strengths, i.e., to different number of compro-
mised nodes. The horizontal axes correspond to the
expected value ~l of the attacker’s distribution, while the
vertical axes correspond to the improvement in the distor-
tion dimp defined in Eq. (49). ~r is considered to be 1, but its
value in the range ½0:5;1:5� does not affect the results sig-
nificantly. The two sequences for even and odd number of
compromised nodes are clearly recognizable. In the odd se-
quence the correlation seems to be a dominating factor,
while in the even sequence the law of large numbers im-
proves the attack detection capabilities and thus the value
of dimp for less correlated samples.

Secondly, we show how much influence the correlation
has on the distortion. In Fig. 7, one can see the distortion
dðYjA ¼ 1Þ for different values of the correlation coefficient
r. The subfigures correspond to different attack strengths,
i.e., to different number of compromised nodes. The hori-
zontal axes correspond to the expected value ~l of the at-
tacker’s distribution. Here again, assuming that
EjYextr � bY j2 is close to zero, we can characterize the distor-
tion as

dðYjA ¼ 1Þ ffi 1
n2 ð~l

2 þ ~r2Þ � b: ð51Þ

The calculations presented in Figs. 6 and 7 are performed
with n ¼ 10 (i.e., with a 10-nodes network or with a 10-
nodes cluster). This small value of n helps in giving an
overview of the most probable cases considering the num-
ber of nodes an attacker is able to compromise. Moreover,
for a smaller sample, the effect of correlation is easier to
trace because the compression in the first step of the sam-
ple halving approach does not influence the distortion as
much as for larger samples. However, we note that the
sample halving approach is not restricted in the value of n.

The message of Figs. 6 and 7 is manifold. Firstly, the fig-
ures clearly show the effect of the compression step (i.e.,
halving and aggregating the halves). The random halving
of the sample results in different behaviour of the distor-
tion in case the attacker compromises even or odd number
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Fig. 6. The improvement in the distortion considering the sample halving approach with n ¼ 10 nodes and with different values of r.
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Fig. 7. Distortion caused by the adversary for different values of the correlation coefficient r with n ¼ 10 nodes and with ~r ¼ 1.
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of elements. The subfigures corresponding to t ¼ 1, t ¼ 3
and t ¼ 5 can be considered as one sequence, while the
remaining ones as another sequence. In both figures, the
odd sequence consists in three nearly coinciding subfig-
ures on which only the dotted line changes. This indicates
that having smaller correlation does not always mean
weak resilience in aggregation. However, not considering
correlation cannot outperform the correlated case if the
correlation coefficient is high enough. The even sequence
in the same figures emphasizes the effect of the law of
large numbers. Namely, having an uncorrelated (and thus
in the Gaussian case independent) sample can be a better
base for attack detection than a correlated sample. The
explanation for this is that an independent sample is able
to narrow very quickly by the means of its standard devi-
ation because of the averaging, while a correlated sample
has always a bigger standard deviation. Therefore, the con-
fidence interval calculated based on an independent sam-
ple can be very small which then facilitates the detection
of outlier elements. The different nature of the odd and
even sequences has combinatorial roots. Having even
number of compromised elements frequently results in
such a halving where exactly the half of the compromised
elements are in the first half and the others in the second
half. In this case, however, the attack detection capabilities
are weak, as the numerical difference between the two
sample halves is small. This then introduces a higher dis-
tortion and thus a smaller value for dimp. In case of odd
compromised elements the halving is always ‘‘unfair”,
one of the halves always possesses more compromised ele-
ments than the other, and therefore there is always a
remarkable difference between the halves, which implies
better attack detection capabilities.

4.2.2. Evaluation with non-constant correlation coefficient
Until now, we have assumed that the correlation coeffi-

cient r has the same value for all pairs of readings. In real-
ity, every pair of readings has a specific correlation value
which depends on the distance of the nodes that produced
the readings, and on some physical properties of the envi-
ronment in which the nodes are deployed. Several models
have been proposed so far for the calculation of the value



Table 1
Numerical values of the r ¼ 0:95 curve (in Fig. 6) compared with the dimp

values in case the correlation coefficient is not constant

dimp for r ¼ 0:95 dimp for rij

0.0046 0.0048
0.0115 0.0122
0.0342 0.0345
0.0700 0.0716
0.1192 0.1199
0.1823 0.1852
0.2595 0.2741
0.3508 0.3587
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of the correlation coefficient based on these parameters,
e.g., the Spherical, the Power Exponential, the Rational
Quadratic and the Matérn correlation models [3]. The most
widely used correlation model in the literature on spatial
statistics is the Power Exponential model [13,27] with sev-
eral applications [21,25,24,1,19,5], therefore we applied it
as well.

Assuming non-constant correlation coefficients the
covariance matrix in Eq. (28) will take the following form

R ¼

r2 r12r2 . . . r1nr2

r21r2 r2 . . . r2nr2

..

. ..
. . .

. ..
.

rn1r2 rn2r2 . . . r2

0BBBB@
1CCCCA; ð52Þ

where rij ¼ rji. rij can be calculated using the Power Expo-
nential correlation model as

rijðdijÞ ¼ exp � dij

h1

� �h2
 !

; ð53Þ

where dij is the Euclidean distance between nodei and
nodej, h1 controls the relation between dij and rij with usual
values of different integer powers of 10 (i.e., 10, 102,
. . .,106), and it depends on h2 whether the model is expo-
nential (h2 ¼ 1) or squared exponential (h2 ¼ 2). For the
analysis we have chosen h1 ¼ 10 and h2 ¼ 1 as in [24,1].

To evaluate the distortion caused by an attacker in the
output of the Enhanced Data Aggregation Algorithm in
the case of non-constant correlation, one can formulate
the probability density function of the correlation coeffi-
cient rij considering uniformly randomly placed sensor
nodes as

prij
ðxÞ ¼

2ph2
1

h2x ð� lnðxÞÞ
2
h2
�1� 8h3

1
h2x ð� lnðxÞÞ

3
h2
�1

þ2h4
1

h2x ð� lnðxÞÞ
4
h2
�1 if x2 exp � 1

h1

	 
h2
� �

;1
� �

;

4h2
1

h2x ð� lnðxÞÞ
2
h2
�1 arcsin 2�h2

1ð� lnðxÞÞ
2
h2

h2
1ð� lnðxÞÞ

2
h2

 !"

þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2

1ð� lnðxÞÞ
2
h2 �1

q
�1
�
� 2h4

1
h2x ð� lnðxÞÞ

4
h2
�1

if x2 Z exp �
ffiffi
2
p

h1

	 
h2
� �

;exp � 1
h1

	 
h2
� �� �

;

0 if x R exp �
ffiffi
2
p

h1

	 
h2
� �

;1
� �

:

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:
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Taking a sample from this distribution (using uniformly
random sampling) and applying it to Eq. (52) gives a real-
istic covariance matrix for a realization of the random node
deployment. Then, calculating the conditional p.d.f.
pX1 jX2

ð�j�Þ using this updated covariance matrix and per-
forming the analysis presented in Section 4.2.1 gives the
distortion in this given realization.

The conditional p.d.f. pX1 jX2
ð�j�Þ can be easily described

with the help of l ¼Ml and R ¼MRMT (see [11]). The cor-
relation coefficient applied in pX1 jX2

ð�j�Þ can be defined as

rX1 ;X2
¼ R12ffiffiffiffiffiffiffiffi

R11

p ffiffiffiffiffiffiffiffi
R22

p ð55Þ
The joint probability density functions pXh;1 ;Xh;2
ð�; �Þ and

pXh;2 ;Xh;1
ð�; �Þ can be defined in the same way as in Section

4.2.1.
Repeating the above calculations along with the sam-

pling of prij
multiple times gives the same result as having

multiple sensor networks with different uniformly random
deployment. Calculating the average distortion of the rep-
etitions can help us in exposing the characteristic features
of this scenario when the correlation coefficient is not
constant.

The results of this analysis are very interesting. After
performing the repeated sampling and distortion calcula-
tion for t ¼ 1; . . . ;5 (20 times for each value), the resulting
curves are nearly the same as the curves on Fig. 6 and 7
when r ¼ 0:95. As it would be difficult to distinguish the
two kind of curves in a figure, we show a comparison table
consisting of numerical values for the two curves for t ¼ 2
(see Table 1). The t ¼ 2 choice is confirmed by the fact that
the differences are the largest in that case.

This small difference between the dimp values of the two
cases clearly shows, on the one hand, that one is able to
model the pairwise correlation among the sample ele-
ments with a fixed correlation coefficient in the long run.
This, on the other hand, reinforces our previous results:
even though we used a simplified scheme in which we
considered the correlation coefficient to be constant (with
two describing values of 0.95 and 0.5, and the value of 0 for
the independent case), our results are still highly relevant
when we consider the more realistic scenario of distance-
dependent correlation coefficients among the sample ele-
ments. Moreover, as the curves for r ¼ 0 and r ¼ 0:95 are
significantly different (for both the dimp and the
dðYjA ¼ 1Þ metrics), the latter results also indicate that
assuming correlation is a must in order to establish a real-
istic sensor network data model.

4.2.3. Evaluation assuming a sophisticated attacker
The attacker we considered until now was a simplified

one: he added offsets to some of the sensor readings,
where the offsets were independent and identically dis-
tributed random variables. For the performance evaluation,
we categorized the offsets as elements coming from a nor-
mal distribution the parameters (i.e., the expected value
and the standard deviation) of which are under the control
of the attacker. In this section, we investigate the case of a
more sophisticated attacker. Namely, we assume that the
attacker knows the Enhanced Data Aggregation Algorithm
in detail, including the Attack Detection Algorithm Detð�; �Þ.
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Moreover, the attacker also knows the size of the sample
that the base station gathers in a given query, and he can
arbitrarily modify the observed sample elements.

Therefore, this sophisticated attacker is able to choose
the best attack in the long run after estimating the unob-
served (unknown) elements of the sample. This can be
done as follows. At first, the attacker analyzes the observed
sample part and gives an estimation on the remaining ele-
ments (the attacker is able to do this since he knows the
size of the gathered sample). This estimation can be of
any kind, for the simulations below we used the method
to replace every unknown element with the average of
the observed elements. Then, the attacker is able to inves-
tigate all the possible halvings and calculate the distortion
for them for each possible value of the offset parameter,
which parameter is under the control of the adversary.
We note that the attacker is not restricted to compromise
all the observed measurements, but he is able to choose
the number of measurements to compromise in the range
½1; t�, where t is the number of observed elements in this
case.

After calculating the individual distortions for all cases
of the halving and all combinations of the compromised
measurements, the attacker selects those measurements
to compromise, the modification of which leads to the
highest distortion on average. As the attacker cannot influ-
ence the sample halving procedure, the highest distortion
on average is calculated by averaging the individual distor-
tions over the different halvings (all the halvings have
equal probability in Detð�; �Þ, which is 1

2t) and taking the
maximum of the resulting vector.

We simulate the sophisticated attacker assuming that
the original sample is normally distributed (with parame-
ters l ¼ 0, r ¼ 1 and n ¼ 10) and correlated. The correla-
tion of the sample is modelled with the Power
Exponential correlation model with parameters h1 ¼ 10
and h2 ¼ 1 as in [24,1]. We perform simulations for two
different attacker behaviours. The first behaviour is when
the attacker perturbs some of the sample elements with
an offset, while the second behaviour describes the case
when the attacker replaces some of the sample elements
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Fig. 8. Distortion caused by a sophisticated adversary fo
with a common maximum. As the resulting figures for
the two behaviours are quite similar, we only detail the re-
sults considering the first behaviour in Fig. 8.

Fig. 8 shows a simulation result (i.e., not an analytical
calculation like all the figures until now). The horizontal
axes correspond to the offset value chosen by the attacker,
while the vertical axes correspond to the distortion in the
aggregate. The five subfigures correspond to different
number of observed sensor measurements. As the original
samples are drawn randomly for the simulations, the
curves in the subfigures are somewhat irregular.

In the first three subfigures (i.e., up to 30% compro-
mised nodes), the highly correlated measurements imply
smaller distortion than the independent measurements
(similarly to the t ¼ 1 and t ¼ 2 subfigures in Fig. 7). The
last two subfigures, however, show that the effect of a
powerful attacker, who can compromise the measurement
of a high number of nodes, is better eliminable when the
sensor readings are independent (similarly to the t ¼ 4
subfigure in Fig. 7). All the same, low correlations (like
r ¼ 0:5) usually weaken the capabilities of the proposed
solution. In a realistic attack scenario (i.e., where the at-
tacker is only able to compromise the measurement of a
small number of sensor nodes) the distortion of the En-
hanced Data Aggregation Algorithm can grow up to 2:5r
for less correlated and independent samples, while it usu-
ally stays below 1:2r for highly correlated samples and for
a ¼ 0:1.

As one can see, the subfigures corresponding to t ¼ 2
and t ¼ 3 show similarities, and the same happens in the
case of subfigures corresponding to t ¼ 4 and t ¼ 5. In gen-
eral, the attacker cannot reach a significantly higher distor-
tion by compromising 2kþ 1 sensor readings compared to
the case when compromising only 2k sensor readings
(maybe except for k ¼ 1; r ¼ 0). The reason for this prop-
erty is, on the one hand, that the attacker is able to choose
the number of measurements he is going to compromise.
For example, it is possible for an attacker to observe three
sample elements but compromise only two of them. On the
other hand, the random halving step in Detð�; �Þ has a high
influence on the result, as even numbered compromised
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elements can be halved in a way that both halves contain
the same number of compromised elements, which weak-
ens the attack detection capabilities, while odd numbered
elements cannot be halved in such a ‘‘fair” way, which re-
sult in better attack detection capabilities.

The results for the distortion caused by a sophisticated
attacker can be summarized as these are highly related to
the analytical results in Section 4.2.1 considering the form
and the position of the related curves, however, a sophisti-
cated attacker can achieve a higher distortion than the pre-
viously considered simplified attacker. Nevertheless, we
note that the sophisticated attacker is still not an optimal
attacker, and thus, the results presented in this section
do not correspond to the worst case.

After having presented the results of our sample halving
approach, having illustrated the impact of correlation on
resilient aggregation, having verified our results consider-
ing realistic correlation coefficient distribution scenarios
and a sophisticated attacker as well, in the next section,
we present some possible extensions to the work presented.
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Fig. 9. The effects of the imprecise knowledge of the p.d.f. on the
distortion.
5. Discussion

5.1. Does this approach allow in-network processing?

The concept of performing the aggregation at the base
station allows us to get rid of some typical ‘‘networking”
problems (like e.g., routing, lost messages, etc.) and to con-
centrate on the novel statistical framework presented.
However, our scheme can support in-network aggregation
as well. There are two straightforward ways to perform in-
network aggregation in our case: Firstly, aggregator nodes
chosen among the sensor nodes can aggregate the mea-
surements of the sensors in their clusters. Algorithms 1
and 2 are both very energy-efficient as they do not require
additional communication, thus, they can run even on re-
source-constrained sensor nodes. After the aggregation,
the aggregator nodes send the result to the base station,
and the base station can average them without further
investigation, as the analysis has been already done by
the aggregator nodes. The drawback of this way of process-
ing is that the aggregator nodes have to decrypt the mes-
sages of their corresponding clusters as our algorithms
need raw data as their input.

Secondly, considering again that the algorithms run on
the base station and that the Attack Detection Algorithm
only needs two averages in order to make its decision,
the aggregator nodes only have to sort the measurements
into two groups randomly, sum up these groups, and send
only the sums to the base station. Upon reception of the
sums the base station is able to calculate the averages by,
again, sorting the received sums into two groups randomly,
summing them up, and dividing the two sums by the total
number of measurements they are based upon. Having the
final averages, the base station is now able to perform the
Enhanced Data Aggregation Algorithm. This latter ap-
proach has the advantage that the messages do not have
to be decrypted by the aggregator nodes while they per-
form the summation. The tool that allows to sum up en-
crypted data is called ‘homomorphic encryption’ (see
[12]). Moreover, both approaches fulfill the requirement
of having the minimum number of messages transmitted
(wireless transmission consumes a plenty of energy), as
aggregation invokes compression of the data too.

5.2. How to relax the knowledge about the conditional p.d.f.?

In the previous sections, we assumed that the condi-
tional p.d.f. pX1 jX2

ð�j�Þ (or pX1 jX2
ð�j�Þ) is known to the Attack

Detection Algorithm. In the following, we will show how
our algorithm behaves in case this conditional p.d.f. is
not precisely known. Let us assume that the Attack Detec-
tion Algorithm knows only p̂X1 jX2 ðxjyÞ ¼ pX1 jX2

ðxjyÞ þ DðxjyÞ,
where

R1
�1 jDðxjyÞjdx < d for any given y. Moreover, since

pX1 jX2
ð�j�Þ and p̂X1 jX2 ð�j�Þ are both probability density func-

tions,
R1
�1 DðxjyÞdx ¼ 0 for any y. The imprecise knowledge

implies a wider confidence interval in Algorithm 1 with
upper and lower bounds b̂1ð�Þ and b̂2ð�Þ (see Eqs. (6)–(9)).

As
R1
�1 DðxjyÞdx ¼ 0, D has positive and negative

domains as well. Moreover, the integral of the positive
domains is equal to the integral of the absolute value of
the negative domains. The worst case happens (i.e.,
jb̂ið�Þ � bið�Þj is the largest) when the positive domains are
smaller than b̂1ð�Þ or greater than b̂2ð�Þ, while all the nega-
tive domains are between b̂1ð�Þ and b̂2ð�Þ. Equally weaken-
ing both sides of the confidence interval means putting the
same ‘‘weight” below b̂1ð�Þ and above b̂2ð�Þ. Instead of
Eqs. (6)–(9), this would implyZ b̂1ðzÞ

�1
pX1 jX2

ðujzÞdu ¼ a
2
� d

4
ð56ÞZ 1

b̂2ðzÞ
pX1 jX2

ðujzÞdu ¼ a
2
� d

4
ð57Þ

and two similar equations with x2 instead of z. Using these
formulas one can calculate the new confidence interval
bounds b̂1ð�Þ and b̂2ð�Þ, and with those one is able to evalu-
ate the effect of the imprecise knowledge of the condi-
tional p.d.f. on the distortion just like in Section 4.1.2.
(We note, however, that Eqs. (56) and (57) implicitly upper
bound d by 2a.)
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Fig. 9 shows the results of this evaluation for d ¼ 0:1 and
n ¼ 2. As expected, the imprecise knowledge of the condi-
tional p.d.f. usually implies weaker attack detection capa-
bilities, however, these calculations belong to the worst
case (i.e., for a specially constructed D). The interesting
news of the figure is that shifting the bounds of the
confidence interval does not necessarily results in a higher
distortion for correlated measurements. Especially, for
r ¼ 0:95 the attack detection capabilities become better
for ~l P 1:5, which emphasizes again the important role of
correlation. Generally speaking, the lack of precise informa-
tion about the conditional p.d.f. does not alter our previous
results significantly when assuming a moderate d, while it
can also be beneficial for higher correlation strength.

5.3. What is the optimal attack against the proposed scheme?

An optimal attacker is defined as an attacker who can
reach the highest possible distortion at the output of the
aggregation function. We already presented two kind of
attackers: a simplified one in Section 4.1.2 in order to carry
out the analysis, and a sophisticated one in Section 4.2.3 in
order to demonstrate the capabilities of the proposed
scheme in a more general setting. However, none of these
attackers are optimal attackers, as both contain some
restrictions considering the way how they perform the at-
tack. More work needs to be done for identifying the opti-
mal attack against the algorithms presented in this paper,
and for evaluating the performance of those algorithms
when they face the optimal attacker.
6. Conclusion and future work

In this paper, we were concerned with a serious threat
against sensor networks that consists in altering the mea-
sured parameters of the environment around the sensor
nodes. We proposed a resilient data aggregation frame-
work, called CORA, that mitigates this problem. The novelty
of CORA is that it takes advantage of the naturally existing
correlation between the sensor readings reported to the
base station; in particular, correlation is exploited to in-
crease the probability of attack detection, which in turn, is
used to decrease the distortion caused by an attack at the
output of the aggregation function. We emphasize that
the operation of CORA does not depend on any particular
assumptions on the distribution of the sensor readings nor
on the distribution of the measurement offset introduced
by the attacker. We evaluated the effectiveness of CORA
both formally and by means of simulation by characterizing
its false positive and false negative probabilities along with
the final distortion in the aggregate. The results show that
CORA can significantly decrease the distortion and that
the level of improvement offered by CORA increases as the
correlation increases considering typical attacks (i.e., when
the number of compromised measurements is low).

During the development of our resilient data aggrega-
tion scheme, we identified some interesting future re-
search directions. One of them is to consider the case
when the conditional p.d.f. used for attack detection can
become outdated (e.g., the temperature changes when
heading from winter to spring, therefore different temper-
ature values has to be labelled as outlier than before). The
effect of this could probably be modelled with a similar ap-
proach to what was presented in Section 5, but with a
time-dependent uncertainty. Searching for the optimal at-
tacker is very important as well, as already mentioned in
the previous section. Furthermore, we intend to work on
improving the framework presented to be applicable in
sample filtering, i.e., instead of dropping the compromised
sample one could filter out the compromised elements. We
believe that with sample filtering we will be able to further
reduce the distortion of the aggregate considering any kind
of attacks.
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