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Abstract. Key-tree based private authentication has been proposed by
Molnar and Wagner as a neat way to efficiently solve the problem of pri-
vacy preserving authentication based on symmetric key cryptography.
However, in the key-tree based approach, the level of privacy provided
by the system to its members may decrease considerably if some mem-
bers are compromised. In this paper, we analyze this problem, and show
that careful design of the tree can help to minimize this loss of privacy.
First, we introduce a benchmark metric for measuring the resistance of
the system to a single compromised member. This metric is based on the
well-known concept of anonymity sets. Then, we show how the parame-
ters of the key-tree should be chosen in order to maximize the system’s
resistance to single member compromise under some constraints on the
authentication delay. In the general case, when any member can be com-
promised, we give a lower bound on the level of privacy provided by
the system. We also present some simulation results that show that this
lower bound is quite sharp. The results of this paper can be directly used
by system designers to construct optimal key-trees in practice; indeed,
we consider this as the main contribution of our work.

1 Introduction

Entity authentication is the process whereby a party (the prover) corroborates
its identity to another party (the verifier). Entity authentication is often based
on authentication protocols in which the parties pass messages to each other.
These protocols are engineered in such a way that they resist various types
of impersonation and replay attacks [2]. However, less attention is paid to the
requirement of preserving the privacy of the parties (typically that of the prover)
with respect to an eavesdropping third party. Indeed, in many of the well-known
and widely used authentication protocols (e.g., [8, 10]) the identity of the prover
is sent in cleartext, and hence, it is revealed to an eavesdropper.

One approach to solve this problem is based on public key cryptography, and
it consists of encrypting the identity information of the prover with the public
key of the verifier so that no one but the verifier can learn the prover’s iden-
tity. Another approach, also based on public key techniques, is that the parties



first run an anonymous Diffie-Hellman key exchange and establish a confidential
channel, through which the prover can send its identity and authentication in-
formation to the verifier in a second step. An example for this second approach is
the main mode of the Internet Key Exchange (IKE) protocol [7]. While it is pos-
sible to hide the identity of the prover by using the above mentioned approaches,
they provide appropriate solution to the problem only if the parties can afford
public key cryptography. In many applications, such as low cost RFID tags and
contactless smart card based automated fare collection systems in mass trans-
portation, this is not the case, while at the same time, the provision of privacy
(especially location privacy) in those systems is strongly desirable.

The problem of using symmetric key encryption to hide the identity of the
prover is that the verifier does not know which symmetric key it should use to
decrypt the encrypted identity, because the appropriate key cannot be retrieved
without the identity. The verifier may try all possible keys in its key database
until one of them properly decrypts the encrypted identity1, but this would
increase the authentication delay if the number of potential provers is large.
Long authentication delays are usually not desirable, moreover, in some cases,
they may not even be acceptable. As an example, let us consider again contactless
smart card based electronic tickets in public transportation: the number of smart
cards in the system (i.e., the number of potential provers) may be very large in
big cities, while the time needed to authenticate a card should be short in order
to ensure a high throughput of passengers and avoid long queues at entry points.

Recently, Molnar and Wagner proposed an elegant approach to privacy pro-
tecting authentication [11] that is based on symmetric key cryptography while
still ensuring short authentication delays. More precisely, the complexity of the
authentication procedure in the Molnar-Wagner scheme is logarithmic in the
number of potential provers, in contrast with the linear complexity of the näıve
key search approach. The main idea of Molnar and Wagner is to use key-trees
(see Figure 1 for illustration). A key-tree is a tree where a unique key is assigned
to each edge. The leaves of the tree represent the potential provers, which we
will call members in the sequel. Each member possesses the keys assigned to
the edges of the path starting from the root and ending in the leaf that corre-
sponds to the given member. The verifier knows all keys in the tree. In order to
authenticate itself, a member uses all of its keys, one after the other, starting
from the first level of the tree and proceeding towards lower levels. The verifier
first determines which first level key has been used. For this, it needs to search
through the first level keys only. Once the first key is identified, the verifier con-
tinues by determining which second level key has been used. However, for this,
it needs to search through those second level keys only that reside below the
already identified first level key in the tree. This process is continued until all
keys are identified, which at the end, identify the authenticating member. The
key point is that the verifier can reduce the search space considerably each time

1 This of course requires redundancy in the encrypted message so that the verifier can
determine if the decryption was successful.



a key is identified, because it should consider only the subtree below the recently
identified key.

k1

k11

k111

Fig. 1. Illustration of a key-tree. There is a unique key assigned to each edge. Each
leaf represents a member of the system that possesses the keys assigned to the edges of
the path starting from the root and ending in the given leaf. For instance, the member
that belongs to the leftmost leaf in the figure possesses the keys k1, k11, and k111.

The problem of the above described tree-based approach is that upper level
keys in the tree are used by many members, and therefore, if a member is com-
promised and its keys become known to the adversary, then the adversary gains
partial knowledge of the key of other members too [1]. This obviously reduces the
privacy provided by the system to its members, since by observing the authen-
tication of an uncompromised member, the adversary can recognize the usage
of some compromised keys, and therefore its uncertainty regarding the identity
of the authenticating member is reduced (it may be able to determine which
subtree the member belongs to).

One interesting observation is that the näıve, linear key search approach can
be viewed as a special case of the key-tree based approach, where the key-tree has
a single level and each member has a single key. Regarding the above described
problem of compromised members, the näıve approach is in fact optimal, because
compromising a member does not reveal any key information of other members.
At the same time, as we saw above, the authentication delay is the worst in
this case. On the other hand, in case of a binary key-tree, we can observe that
the compromise of a single member strongly2 affects the privacy of the other
members, while at the same time, the binary tree is very advantageous in terms
of authentication delay. Thus, there seems to be a trade-off between the level of
privacy provided by the system and the authentication delay, which depends on
the parameters of the key-tree, but it is far from obvious to see how the optimal
key-tree should look like. In this paper, we address this problem, and we show
how to find optimal key-trees. More precisely, our main contributions are the
following:

2 The precise quantification of this effect is the topic of this paper and will be presented
later.



– We propose a benchmark metric for measuring the resistance of the system
to a single compromised member based on the concept of anonymity sets. To
the best of our knowledge, anonymity sets have not been used in the context
of key-tree based private authentication yet.

– We introduce the idea of using different branching factors at different levels of
the key-tree; the advantage is that the system’s resistance to single member
compromise can be increased while still keeping the authentication delay
short. To the best of our knowledge, key-trees with variable branching factors
have not been proposed yet for private authentication.

– We present an algorithm for determining the optimal parameters of the key-
tree, where optimal means that resistance to single member compromise is
maximized, while the authentication delay is kept below a predefined thresh-
old.

– In the general case, when any member can be compromised, we give a lower
bound on the level of privacy provided by the system, and present some
simulation results that show that this lower bound is quite sharp. This allows
us to compare different systems based on their lower bounds.

– In summary, we propose practically usable techniques for designers of key-
tree based authentication systems.

The outline of the paper is the following: In Section 2, we introduce our
benchmark metric to measure the level of privacy provided by key-tree based
authentication systems, and we illustrate, through an example, how this metric
can be used to compare systems with different parameters. By the same token,
we also show that key-trees with variable branching factors can be better than
key-trees with a constant branching factor at every level. In Section 3, we for-
mulate the problem of finding the best key-tree with respect to our benchmark
metric as an optimization problem, and we present an algorithm that solves
that optimization problem. In Section 4, we consider the general case, when any
number of members can be compromised, and we derive a useful lower bound
on the level of privacy provided by the system. Finally, in Section 5, we report
on some related work, and in Section 6, we conclude the paper.

2 Resistance to single member compromise

There are different ways to measure the level of anonymity provided by a system
[5, 14]. Here we will use the concept of anonymity sets [4]. The anonymity set
of a member v is the set of members that are indistinguishable from v from the
adversary’s point of view. The size of the anonymity set is a good measure of the
level of privacy provided for v, because it is related to the level of uncertainty
of the adversary. Clearly, the larger the anonymity set is, the higher the level
of privacy is. The minimum size of the anonymity set is 1, and its maximum
size is equal to the number of all members in the system. In order to make
the privacy measure independent of the number of members, one can divide the
anonymity set size by the total number of members, and obtain a normalized



privacy measure between 0 and 1. Such normalization makes the comparison of
different systems easier.

Now, let us consider a key-tree with ℓ levels and branching factors b1, b2, . . . , bℓ

at the levels, and let us assume that exactly one member is compromised (see
Figure 2 for illustration). Knowledge of the compromised keys allows the adver-
sary to partition the members into partitions P0, P1, P2, . . ., where

– P0 contains the compromised member only,
– P1 contains the members the parent of which is the same as that of the

compromised member, and that are not in P0,
– P2 contains the members the grandparent of which is the same as that of

the compromised member, and that are not in P0 ∪ P1,
– etc.

Members of a given partition are indistinguishable for the adversary, while it
can distinguish between members that belong to different partitions. Hence,
each partition is the anonymity set of its members.

k1

k11

k111

P0 P1 P2 P3

Fig. 2. Illustration of what happens when a single member is compromised. Without
loss of generality, we assume that the member corresponding to the leftmost leaf in
the figure is compromised. This means that the keys k1, k11, and k111 become known
to the adversary. This knowledge of the adversary partitions the set of members into
anonymity sets P0, P1, . . . of different sizes. Members that belong to the same partition
are indistinguishable to the adversary, while it can distinguish between members that
belong to different partitions. For instance, the adversary can recognize a member in
partition P1 by observing the usage of k1 and k11 but not that of k111, where each of
these keys are known to the adversary. Members in P3 are recognized by not being able
to observe the usage of any of the keys known to the adversary.

The level of privacy provided by the system can be characterized by the level
of privacy provided to a randomly selected member, or in other words, by the
expected size of the anonymity set of a randomly selected member. By definition,
the expected anonymity set size is:

S̄ =
ℓ∑

i=0

|Pi|
N

|Pi| =
ℓ∑

i=0

|Pi|2
N

(1)



where N is the total number of members, and |Pi|/N is the probability of se-
lecting a member from partition Pi. We define the resistance to single member
compromise, denoted by R, as the normalized expected anonymity set size, which
can be computed as follows:

R =
S̄

N
=

ℓ∑

i=0

|Pi|2
N2

=
1

N2

(
1 + (bℓ − 1)2 + ((bℓ−1 − 1)bℓ)

2 + . . . + ((b1 − 1)b2b3 . . . bℓ)
2
)

=
1

N2



1 + (bℓ − 1)2 +

ℓ−1∑

i=1

(bi − 1)2
ℓ∏

j=i+1

b2
j



 (2)

where we used that

|P0| = 1

|P1| = bℓ − 1

|P2| = (bℓ−1 − 1)bℓ

|P3| = (bℓ−2 − 1)bℓ−1bℓ

. . . . . .

|Pℓ| = (b1 − 1)b2b3 . . . bℓ

As its name indicates, R characterizes the loss of privacy due to the com-
promise of a single member of the system. If R is close to 1, then the expected
anonymity set size is close to the total number of members, and hence, the loss
of privacy is small. On the other hand, if R is close to 0, then the loss of privacy
is high, as the expected anonymity set size is small. We use R as a benchmark
metric based on which different systems can be compared.

Obviously, a system with greater R is better, and therefore, we would like
to maximize R. However, there are some constraints. We define the maximum
authentication delay, denoted by D, as the number of basic operations needed
to authenticate any member in the worst case. The maximum authentication
delay in case of key-tree based authentication can be computed as D =

∑ℓ

i=1
bi.

In most practical cases, there is an upper bound Dmax on the maximum au-
thentication delay allowed in the system. For instance, in the specification for
electronic ticketing systems for public transport applications in Hungary [6], it
is required that a ticket validation transaction should be completed in 250 ms.
Taking into account the details of the ticket validation protocol, one can derive
Dmax for electronic tickets from such specifications. Therefore, in practice, the
designer’s task is to maximize R under the constraint that D ≤ Dmax. We will
address this problem in Section 3.

In the remainder of this section, we illustrate how the benchmark metric
R can be used to compare different systems. This exercise will also lead to an
important revelation: key-trees with varying branching factors at different levels



could provide higher level of privacy than key-trees with a constant branching
factor, while having the same or even a shorter authentication delay.
Example: Let us assume that the total number N of members is 27000 and the
upper bound Dmax on the maximum authentication delay is 90. Let us consider
a key-tree with a constant branching factor vector B = (30, 30, 30), and another
key-tree with branching factor vector B′ = (60, 10, 9, 5). Both key-trees can serve
the given population of members, since 303 = 60 · 10 · 9 · 5 = 27000. In addition,
both key-trees ensure that the maximum authentication delay is not longer than
Dmax: for the first key-tree, we have D = 3 ·30 = 90, whereas for the second one,
we get D = 60+10+9+5 = 84. Using (2), we can compute the resistance to single
member compromise for both key-trees. For the first tree, we get R ≈ 0.9355,
while for the second tree we obtain R ≈ 0.9672. Thus, we arrive to the conclusion
that the second key-tree with variable branching factors is better, as it provides
a higher level of privacy, while ensuring a smaller authentication delay.

At this point, several questions arise naturally: Is there an even better branch-
ing factor vector than B′ for N = 27000 and Dmax = 90? What is the best
branching factor vector for this case? How can we find the best branching factor
vector in general? We give the answers to these questions in the next section.

3 Optimal trees in case of single member compromise

The problem of finding the best branching factor vector can be described as an
optimization problem as follows: Given the total number N of members and the
upper bound Dmax on the maximum authentication delay, find a branching factor
vector B = (b1, b2, . . . bℓ) such that R(B) is maximal subject to the following
constraints:

ℓ∏

i=1

bi = N (3)

ℓ∑

i=1

bi ≤ Dmax (4)

We analyze this optimization problem through a series of lemmas that will
lead to an algorithm that solves the problem. Our first lemma states that we can
always improve a branching factor vector by ordering its elements in decreasing
order, and hence, in the sequel we will consider only ordered vectors:

Lemma 1. Let N and Dmax be the total number of members and the upper
bound on the maximum authentication delay, respectively. Moreover, let B be
a branching factor vector and let B∗ be the vector that consists of the sorted
permutation of the elements of B in decreasing order. If B satisfies the con-
straints of the optimization problem defined above, then B∗ also satisfies them,
and R(B∗) ≥ R(B).

Proof. The proof can be found in the Appendix.



The following lemma provides a lower bound and an upper bound for the
resistance to single member compromise:

Lemma 2. Let B = (b1, b2, . . . bℓ) be a sorted branching factor vector (i.e., b1 ≥
b2 ≥ . . . ≥ bℓ). We can give the following lower and upper bounds on R(B):

(

1 − 1

b1

)2

≤ R(B) ≤
(

1 − 1

b1

)2

+
4

3b2
1

(5)

Proof. The proof can be found in the Appendix.

Let us consider the bounds in Lemma 2. Note that the branching factor vector
is ordered, therefore, b1 is not smaller than any other bi. We can observe that
if we increase b1, then the difference between the upper and the lower bounds
decreases, and R(B) gets closer to 1. Intuitively, this implies that in order to find
the solution to the optimization problem, b1 should be maximized. The following
lemma underpins this intuition formally:

Lemma 3. Let N and Dmax be the total number of members and the upper
bound on the maximum authentication delay, respectively. Moreover, let B =
(b1, b2, . . . , bℓ) and B′ = (b′1, b

′
2, . . . , b

′
ℓ′) be two sorted branching factor vectors

that satisfy the constraints of the optimization problem defined above. Then,
b1 > b′1 implies R(B) ≥ R(B′).

Proof. The proof can be found in the Appendix.

Lemma 3 states that given two branching factor vectors, the one with the
larger first element is always at least as good as the other. The next lemma
generalizes this result by stating that given two branching factor vectors the
first j elements of which are equal, the vector with the larger (j + 1)-st element
is always at least as good as the other.

Lemma 4. Let N and Dmax be the total number of members and the upper
bound on the maximum authentication delay, respectively. Moreover, let B =
(b1, b2, . . . , bℓ) and B′ = (b′1, b

′
2, . . . , b

′
ℓ′) be two sorted branching factor vectors

such that bi = b′i for all 1 ≤ i ≤ j for some j < min(ℓ, ℓ′), and both B and B′

satisfy the constraints of the optimization problem defined above. Then, bj+1 >
b′j+1 implies R(B) ≥ R(B′).

Proof. The proof can be found in the Appendix.

We will now present an algorithm that finds the solution to the optimiza-
tion problem. However, before doing that, we need to introduce some further
notations. Let B = (b1, b2, . . . , bℓ) and B′ = (b′1, b

′
2, . . . , b

′
ℓ′). Then

–
∏

(B) denotes
∏ℓ

i=1
bi;

–
∑

(B) denotes
∑ℓ

i=1
bi;

– {B} denotes the set {b1, b2, . . . , bℓ} of the elements of B;



– B′ ⊆ B means that {B′} ⊆ {B};
– if B′ ⊆ B, then B \ B′ denotes the vector that consists of the elements of

{B} \ {B′} in decreasing order;
– if b is a positive integer, then b|B denotes the vector (b, b1, b2, . . . , bℓ).

We define our algorithm as a recursive function f , which takes two input
parameters, a vector B of positive integers, and another positive integer d, and
returns a vector of positive integers. In order to compute the optimal branch-
ing factor vector for a given N and Dmax, f should be called with the vector
that contains the prime factors of N , and Dmax. For instance, if N = 27000
and Dmax = 90 (we use the same parameters as in the example in Sec 2,
to compare the näıve and algorithmical results), then f should be called with
B = (5, 5, 5, 3, 3, 3, 2, 2, 2) and d = 90. Function f will then return the optimal
branching factor vector.

Function f is defined as follows:

f(B, d)
1 if

∑
(B) > d then exit (no solution exists)

2 else find B′ ⊆ B such that
∏

(B′) +
∑

(B \ B′) ≤ d and
∏

(B′) is maximal
3 if B′ = B then return (

∏
(B′))

4 else return
∏

(B′)|f(B \ B′, d −∏(B′))

The operation of the algorithm can be described as follows: The algorithm
starts with a branching factor vector consisting of the prime factors of N . This
vector satisfies the first constraint of the optimization problem by definition. If it
does not satisfy the second constraint (i.e., it does not respect the upper bound
on the maximum authentication delay), then no solution exists. Otherwise, the
algorithm successively improves the branching factor vector by maximizing its
elements, starting with the first element, and then proceeding to the next ele-
ments, one after the other. Maximization of an element is done by joining as yet
unused prime factors until the resulting divisor of N cannot be further increased
without violating the constraints of the optimization problem.

Theorem 1. Let N and Dmax be the total number of members and the upper
bound on the maximum authentication delay, respectively. Moreover, let B be a
vector that contains the prime factors of N . Then, f(B,Dmax) is an optimal
branching factor vector for N and Dmax.

Proof. We will give a sketch of the proof. Let B∗ = f(B,Dmax), and let us
assume that there is another branching factor vector B′ 6= B∗ that also satisfies
the constraints of the optimization problem and R(B′) > R(B∗). We will show
that this leads to a contradiction, hence B∗ should be optimal.

Let B∗ = (b∗1, b
∗
2, . . . , b

∗
ℓ∗) and B′ = (b′1, b

′
2, . . . , b

′
ℓ′). Recall that B∗ is obtained

by first maximizing the first element in the vector, therefore, b∗1 ≥ b′1 must hold.
If b∗1 > b′1, then R(B∗) ≥ R(B′) by Lemma 3, and thus, B′ cannot be a better
vector than B∗. This means that b∗1 = b′1 must hold.



We know that once b∗1 is determined, our algorithm continues by maximizing
the next element of B∗. Hence, b∗2 ≥ b′2 must hold. If b∗2 > b′2, then R(B∗) ≥
R(B′) by Lemma 4, and thus, B′ cannot be a better vector than B∗. This means
that b∗2 = b′2 must hold too.

By repeating this argument, finally, we arrive to the conclusion that B∗ = B′

must hold, which is a contradiction. ⋄

Table 1 illustrates the operation of the algorithm for B = (5, 5, 5, 3, 3, 3, 2, 2, 2)
and d = 90. The rows of the table correspond to the levels of the recursion dur-
ing the execution. The column labelled with B′ contains the prime factors that
are joined at a given recursion level. The optimal branching factor vector can be
read out from the last column of the table (each row contains one element of the
vector). From this example, we can see that the optimal branching factor vector
for N = 27000 and Dmax = 90 is B∗ = (72, 5, 5, 5, 3). For the key-tree defined
by this vector, we get R ≈ 0.9725, and D = 90.

recursion level B d B′
∏

(B′)

1 (5, 5, 5, 3, 3, 3, 2, 2, 2) 90 (3, 3, 2, 2, 2) 72
2 (5, 5, 5, 3) 18 (5) 5
3 (5, 5, 3) 13 (5) 5
4 (5, 3) 8 (5) 5
5 (3) 3 (3) 3

Table 1. Illustration of the operation of the recursive function f when called with
B = (5, 5, 5, 3, 3, 3, 2, 2, 2) and d = 90. The rows of the table correspond to the levels
of the recursion during the execution.

4 Analysis of the general case

So far, we have studied the case of a single compromised member. This already
proved to be useful, because it allowed us to compare different key-trees and to
derive a key-tree construction method. However, one may still be interested in
what level of privacy is provided by a system in the general case when any number
of members could be compromised. In this section, we address this problem.

In what follows, we will need to refer to the non-leaf vertices of the key-
tree, and for this reason, we introduce the labelling scheme that is illustrated in
Figure 3. In addition, we need to introduce some further notations. We call a
leaf compromised if it belongs to a compromised member, and we call a non-leaf
vertex compromised if it lies on a path that leads to a compromised leaf in the
tree. If vertex v is compromised, then

– Kv denotes the set of the compromised children of v, and kv = |Kv|;
– Pv denotes the set of partitions (anonymity sets) that belong to the subtree

rooted at v (see Figure 3 for illustration); and



P<11>

<->

<1> <2> <3>

<11> <12> <13> <21> <22> <23> <31> <32> <33>

P<2>

Fig. 3. Illustration of what happens when several members are compromised. Just as in
the case of a single compromised member, the members are partitioned into anonymity
sets, but now the resulting partitions depend on the number of the compromised mem-
bers, as well as on their positions in the tree. Nevertheless, the expected size of the
anonymity set of a randomly selected member is still a good metric for the level of
privacy provided by the system, although, in this general case, it is more difficult to
compute.

– S̄v denotes the average size of the partitions in Pv.

We are interested in computing S̄〈−〉. We can do that as follows:

S̄〈−〉 =
∑

P∈P〈−〉

|P |2
b1b2 . . . bℓ

=
((b1 − k〈−〉)b2 . . . bℓ)

2

b1b2 . . . bℓ

+
∑

v∈K〈−〉

∑

P∈Pv

|P |2
b1b2 . . . bℓ

=
((b1 − k〈−〉)b2 . . . bℓ)

2

b1b2 . . . bℓ

+
1

b1

∑

v∈K〈−〉

S̄v (6)

In general, for any vertex 〈i1, . . . , ij〉 such that 1 ≤ j < ℓ − 1:

S̄〈i1,...,ij〉 =
((bj+1 − k〈i1,...,ij〉)bj+2 . . . bℓ)

2

bj+1 . . . bℓ

+
1

bj+1

∑

v∈K〈i1,...,ij〉

S̄v (7)

Finally, for vertices 〈i1, . . . , iℓ−1〉 just above the leaves, we get:

S̄〈i1,...,iℓ−1〉 =
(bℓ − k〈i1,...,iℓ−1〉)

2

bℓ

+
k〈i1,...,iℓ−1〉

bℓ

(8)

Expressions (6 – 8) can be used to compute the expected anonymity set
size in the system iteratively, in case of any number of compromised members.
However, note that the computation depends not only on the number c of the



compromised members, but also their positions in the tree. This makes the com-
parison of different systems difficult, because for a comprehensive analysis, all
possible allocations of the compromised members over the leaves of the key-tree
should be considered. Therefore, we would prefer a formula that depends solely
on c, but characterizes the effect of compromised members on the level of pri-
vacy sufficiently well, so that it can serve as a basis for comparison of different
systems. In the following, we derive such a formula based on the assumption
that the compromised members are distributed uniformly at random over the
leaves of the key-tree. In some sense, this is a pessimistic assumption as the uni-
form distribution represents the worst case, which leads to the largest amount
of privacy loss due to the compromised members. Thus, the approximation that
we derive can be viewed as a lower bound on the expected anonymity set size in
the system when c members are compromised.

Let the branching factor of the key-tree be B = (b1, b2, . . . , bℓ), and let c be
the number of compromised leaves in the tree. We can estimate k〈−〉 for the root
as follows:

k〈−〉 ≈ min(c, b1) = k0 (9)

If a vertex 〈i〉 at the first level of the tree is compromised, then the number
of compromised leaves in the subtree rooted at 〈i〉 is approximately c/k0 = c1.
Then, we can estimate k〈i〉 as follows:

k〈i〉 ≈ min(c1, b2) = k1 (10)

In general, if vertex 〈i1, . . . , ij〉 at the j-th level of the tree is compromised,
then the number of compromised leaves in the subtree rooted at 〈i1, . . . , ij〉 is
approximately cj−1/kj−1 = cj , and we can use this to approximate k〈i1,...,ij〉 as
follows:

k〈i1,...,ij〉 ≈ min(cj , bj+1) = kj (11)

Using these approximations in expressions (6 – 8), we can derive an approx-
imation for S̄〈−〉, which we denote by S̄0, in the following way:

S̄ℓ−1 =
(bℓ − kℓ−1)

2

bℓ

+
kℓ−1

bℓ

(12)

. . . . . .

S̄j =
((bj+1 − kj)bj+2 . . . bℓ)

2

bj+1 . . . bℓ

+
kj

bj+1

S̄j+1 (13)

. . . . . .

S̄0 =
((b1 − k0)b2 . . . bℓ)

2

b1 . . . bℓ

+
k0

b1

S̄1 (14)

Note that expressions (14 – 12) do not depend on the positions of the compro-
mised leaves in the tree, but they depend only on the value of c.

In order to see how well S̄0 estimates S̄〈−〉, we run some simulations. The
simulation parameters were the following:

– total number of members N = 27000;



– upper bound on the maximum authentication delay Dmax = 90;

– we considered two branching factor vectors: (30, 30, 30) and (72, 5, 5, 5, 3);

– we varied the number c of compromised members between 1 and 270 with a
step size of one.

For each value of c, we run 100 simulations3. In each simulation run, the
c compromised members were chosen uniformly at random from the set of all
members. We computed the exact value of the normalized expected anonymity
set size S̄〈−〉/N using the expressions (6 – 8). Finally, we averaged the obtained
values over all simulation runs. Moreover, for every c, we also computed the
estimated value S̄0/N using the expressions (14 – 12).

The simulation results are shown in Figure 4. The figure does not show the
confidence interwalls, because they are very small (in the range of 10−4 for
all simulations) and thus they could be hardly visible. As we can see, S̄0/N
approximates S̄〈−〉/N quite well, and in general it provides a lower bound on
the normalized expected anonymity set size.
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Fig. 4. Simulation results for branching factor vectors (30, 30, 30) (left hand side) and
(72, 5, 5, 5, 3) (right hand side). As we can see, S̄0/N approximates S̄〈−〉/N quite well,
and in general it provides a lower bound on it.

In Figure 5, we plotted the value of S̄0/N as a function of c for different
branching factor vectors. This figure illustrates, how different systems can be
compared using our approximation S̄0/N of the normalized expected anonymity
set size. On the left hand side of the figure, we can see that the value of S̄0/N is
greater for the vector B∗ = (72, 5, 5, 5, 3) than for the vector B = (30, 30, 30) not
only for c = 1 (as we saw before), but for larger values of c too. In fact, B∗ seems
to lose its superiority only when the value of c approaches 60, but at this range,
the systems nearly provide no privacy in any case. Thus, we can conclude that
B∗ is a better branching factor vector yielding more privacy than B in general.

3 All computations have been done in Matlab, and for the purpose of repeatability,
the source code is available on-line at http://www.crysys.hu/∼holczer/PET2006
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Fig. 5. The value of S̄0/N as a function of c for different branching factor vectors. The
figure illustrates, how different systems can be compared based on the approximation
S̄0/N . On the left hand side, we can see that the value of S̄0/N is greater for the vector
(72, 5, 5, 5, 3) than for the vector (30, 30, 30) not only for c = 1 (as we saw earlier), but
for larger values of c too. On the right hand side, we can see that S̄0/N is almost the
same for the vector (60, 5, 5, 3, 3, 2) as for the vector (60, 30, 15). We can conclude that
S̄0/N is essentially determined by the value of the first element of the branching factor
vector.

We can make another interesting observation on the left hand side of Figure 5:
S̄0/N starts decreasing sharply as c starts increasing, however, when c gets close
to the value of the first element of the branching factor vector, the decrease of
S̄0/N slows down. Moreover, almost exactly when c reaches the value of the
first element (30 in case of B, and 72 in case of B∗), S̄0/N seems to turn into
constant, but at a very low value. We can conclude that, just as in the case
of a single compromised member, in the general case too, the level of privacy
provided by the system essentially depends on the value of the first element
of the branching factor vector. The plot on the right hand side of the figure
reinforces this observation: it shows S̄0/N for two branching factor vectors that
have the same first element but that differ in the other elements. As we can see,
the curves are almost perfectly overlapping.

Thus, a practical design principle for key-tree based private authentication
systems is to maximize the branching factor at the first level of the key-tree. Fur-
ther optimization by adjusting the branching factors of the lower levels may still
be possible, but the gain is not significant; what really counts is the branching
factor at the first level.

5 Related work

The problem of private authentication has been extensively studied in the lit-
erature recently, but most of the proposed solutions are based on public key
cryptography. One example is Idemix, which is a practical anonymous creden-
tial system proposed by Camenisch and Lysyanskaya in [3]. Idemix allows for
unlinkable demonstration of the possession of various credentials, and it can be



used in many applications. However, it is not applicable in resource constraint
scenarios, such as low-cost RFID systems. For such applications, solutions based
on symmetric key cryptography seem to be the only viable options.

The key-tree based approach for symmetric key private authentication has
been proposed by Molnar and Wagner in [11]. However, they use a simple b-ary
tree, which means that the tree has the same branching factor at every level.
Moreover, they do not analyze the effects of compromised members on the level
of privacy provided. They only mention that compromise of a member has a
wider effect than in the case of public key cryptography based solutions.

An entropy based analyzis of key trees can be found in [12]. Nohara et al.
prove that their K-steps ID matching scheme (whitch is very similar to [11]) is
secure against one compromised tag, if the number of nodes are large enough.
They consider only b-ary trees, no variable branching factors. The entropy based
analysis leads to a slightly different optimization problem. We leave the detailed
comparison of the entropy based and the anonimity set based approach for future
work.

Finally, Avoine et al. analyze the effects of compromised members on privacy
in the key-tree based approach [1]. They study the case of a single compromised
member, as well as the general case of any compromised members. However,
their analysis is not based on the notion of anonymity sets. In their model, the
adversary is first allowed to compromise some members, then it chooses a target
member that it wants to trace, and it is allowed to interact with the chosen
member. Later, the adversary is given two members such that one of them is
the target member chosen by the adversary. The adversary can interact with the
given members, and it must decide which one is its target. The level of privacy
provided by the system is quantified by the success probability of the adversary.
This model is similar to ours in case of a single compromised member, but it is
slightly different in the general case. Moreover, Avoine et al. do not consider the
problem of how to optimize the key-tree, instead, they suggest a time-memory
trade-off to reduce the authentication delay.

6 Conclusion

Key-trees provide an efficient solution for private authentication in the symmet-
ric key setting. However, the level of privacy provided by key-tree based systems
decreases considerably if some members are compromised. The main message of
this paper is that this loss of privacy can be minimized by the careful design of
the tree. Based on our results presented in this paper, we can conclude that a
good practical design principle is to maximize the branching factor at the first
level of the tree such that the resulting tree still respects the constraint on the
maximum authentication delay in the system. Once the branching factor at the
first level is maximized, the tree can be further optimized by maximizing the
branching factors at the successive levels, but the improvement achieved in this
way is not really significant; what really counts is the branching factor at the
first level.
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A Proof of Lemma 1

B∗ has the same elements as B has, therefore, the sum and the product of the
elements of B∗ are the same as that of B, and so if B satisfies the constraints
of the optimization problem, then B∗ does so too.



Now, let us assume that B∗ is obtained from B with the bubble sort algo-
rithm. The basic step of this algorithm is to change two neighboring elements
if they are not in the right order. Let us suppose that bi < bi+1, and thus, the
algorithm changes the order of bi and bi+1. Then, using (2), we can express
∆R = R(B∗) − R(B) as follows:

∆R =
1

N2



(bi+1 − 1)2b2
i

ℓ∏

j=i+2

b2
j + (bi − 1)2

ℓ∏

j=i+2

b2
j



−

1

N2



(bi − 1)2b2
i+1

ℓ∏

j=i+2

b2
j + (bi+1 − 1)2

ℓ∏

j=i+2

b2
j





=

∏ℓ

j=i+2
b2
j

N2

(
(bi+1 − 1)2b2

i + (bi − 1)2 − (bi − 1)2b2
i+1 − (bi+1 − 1)2

)

=

∏ℓ

j=i+2
b2
j

N2

(
(bi+1 − 1)2(b2

i − 1) − (bi − 1)2(b2
i+1 − 1)

)

=
(bi − 1)(bi+1 − 1)

∏ℓ

j=i+2
b2
j

N2
((bi+1 − 1)(bi + 1) − (bi − 1)(bi+1 + 1))

Since bi ≥ 2 for all i, ∆R is non-negative if

bi + 1

bi − 1
≥ bi+1 + 1

bi+1 − 1
(15)

But (15) must hold, since the function f(x) = x+1

x−1
is a monotone decreasing

function, and by assumption, bi < bi+1. This means, that when sorting the
elements of B, we improve R(B) in every step, and thus, R(B∗) ≥ R(B) must
hold. ⋄

B Proof of Lemma 2

By definition

R =
1

N2



1 + (bℓ − 1)2 +

ℓ−1∑

i=1

(bi − 1)2
ℓ∏

j=i+1

b2
j





=

(
b1 − 1

b1

)2

+
1

N2



1 + (bℓ − 1)2 +

ℓ−1∑

i=2

(bi − 1)2
ℓ∏

j=i+1

b2
j



 (16)

where we used that N = b1b2 . . . bℓ. The lower bound in the lemma4 follows
directly from (16). In order to obtain the upper bound, we write bi instead of

4 Note that we could also derive the slightly better lower bound of
(

b1−1

b1

)2
+ 1

N2 from
(16), however, we do not need that in this paper.



(bi − 1) in the sum in (16):

R <

(
b1 − 1

b1

)2

+
1

N2



1 +

ℓ∑

i=2

ℓ∏

j=i

b2
j





=

(
b1 − 1

b1

)2

+
1

b2
1



1 +

ℓ∑

i=2

i∏

j=2

1

b2
j





Since bi ≥ 2 for all i, we can write 2 in place of bi in the sum, and we obtain:

R <

(
b1 − 1

b1

)2

+
1

b2
1



1 +
ℓ∑

i=2

i∏

j=2

1

4





=

(
b1 − 1

b1

)2

+
1

b2
1

(

1 +
ℓ∑

i=2

(
1

4

)i−1
)

<

(
b1 − 1

b1

)2

+
1

b2
1

(

1 +

∞∑

i=2

(
1

4

)i−1
)

=

(
b1 − 1

b1

)2

+
1

b2
1

1

1 − 1

4

and this is the upper bound in the lemma. ⋄

C Proof of Lemma 3

First, we prove that the statement of the lemma is true if b′1 ≥ 5. We know from
Lemma 2 that

R(B′) <

(

1 − 1

b′1

)2

+
4

3b
′2
1

and

R(B) >

(

1 − 1

b1

)2

≥
(

1 − 1

b′1 + 1

)2

where we used that b1 > b′1 by assumption. If we can prove that

(

1 − 1

b′1

)2

+
4

3b
′2
1

≤
(

1 − 1

b′1 + 1

)2

(17)

then we also proved that R(B′) ≤ R(B). Indeed, a straightforward calculation

yields that (17) is true if b′1 ≥ 2 +
√

15

2
, and since b′1 is an integer, we are done.

Next, we make the observation that a branching factor vector A = (a1, . . . , ak,
2, 2) that has at least two 2s at the end can be improved by joining two 2s into
a 4 and obtaining A′ = (a1, . . . , ak, 4). It is clear that neither the sum nor the



product of the elements changes with this transformation. In addition, we can
use the definition of R to get

N2 · R(A) = ((a1 − 1) · a2 · . . . · ak · 2 · 2)2 + . . . + ((ak − 1) · 2 · 2)2 +

((2 − 1) · 2)2 + (2 − 1)2 + 1

and

N2 · R(A′) = ((a1 − 1) · a2 · . . . · ak · 4)2 + . . . + ((ak − 1) · 4)2 +

(4 − 1)2 + 1

Thus, R(A′)−R(A) = 1

N2 (9−4−1) > 0, which means that A′ is better than A.

Now, we prove that the lemma is also true for b′1 ∈ {2, 3, 4}:

– b′1 = 2: Since B′ is an ordered vector where b′1 is the largest element, it
follows that every element of B′ is 2, and thus, N is a power of 2. From
Lemma 2, R(B′) < (1− 1

2
)2 + 4

3·22 = 7

12
and R(B) > (1− 1

b1
)2. It is easy to

see that (1 − 1

b1
)2 ≥ 7

12
if b1 ≥ 1

1−
√

7

12

= 4.23. Since b1 > b′1, the remaining

cases are b1 = 3 and b1 = 4. However, b1 = 3 cannot be the case, because
N is a power of 2. If b1 = 4, then B can be obtained from B′ by joining
pairs of 2s into 4s and then ordering the elements. However, according to
our observation above and Lemma 1, both operations improve the vector. It
follows that R(B) ≥ R(B′) must hold.

– b′1 = 3: From Lemma 2, R(B′) < (1− 1

3
)2 + 4

3·32 = 16

27
and R(B) > (1− 1

b1
)2.

It is easy to see that (1− 1

b1
)2 ≥ 16

27
if b1 ≥ 9

9−4·
√

3
= 4.34. Since b1 > b′1, the

only remaining case is b1 = 4. In this case, the vectors are as follows:

B = (

i
︷ ︸︸ ︷

22, . . . , 22,

j
︷ ︸︸ ︷

3, . . . , 3,

k
︷ ︸︸ ︷

2, . . . , 2)

B′ = (

j
︷ ︸︸ ︷

3, . . . , 3,

2i+k
︷ ︸︸ ︷

2, . . . , 2)

where i, j ≥ 1 and k ≥ 0. This means that B can be obtained from B′ by
joining i pairs of 2s into 4s and then ordering the elements. However, as we
saw earlier, both joining 2s into 4s and ordering the elements improve the
vector, and thus, R(B) ≥ R(B′) must hold.

– b′1 = 4: Since B′ is an ordered vector where b′1 is the largest element, it follows
that N is not divisible by 5. From Lemma 2, R(B′) < (1− 1

4
)2+ 4

3·42 = 31

48
and

R(B) > (1− 1

b1
)2. It is easy to see that (1− 1

b1
)2 ≥ 31

48
if b1 ≥ 1

1−
√

31

48

= 5.09.

Since b1 > b′1, the remaining case is b1 = 5. However, b1 = 5 cannot be the
case, because N is not divisible by 5. ⋄



D Proof of Lemma 4

By definition

R(B) =
1

N2



1 + (bℓ − 1)2 +

ℓ−1∑

i=1

(bi − 1)2
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j=i+1

b2
j





=

(
b1 − 1

b1

)2

+
1

b2
1




1

(N/b1)2



1 + (bℓ − 1)2 +

ℓ−1∑

i=2

(bi − 1)2
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j=i+1

b2
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=

(
b1 − 1

b1

)2

+
1

b2
1

· R(B1)

where B1 = (b2, b3, . . . , bℓ). Similarly,

R(B′) =

(
b′1 − 1

b′1

)2

+
1

b
′2
1

· R(B′
1)

where B′
1 = (b′2, b

′
3, . . . , b

′
ℓ′). Since b1 = b′1, R(B) ≥ R(B′) if and only if

R(B1) ≥ R(B′
1). By repeating the same argument for B1 and B′

1, we get that
R(B) ≥ R(B′) if and only if R(B2) ≥ R(B′

2), where B2 = (b3, . . . , bℓ) and
B′

2 = (b′3, . . . , b
′
ℓ′). And so on, until we get that R(B) ≥ R(B′) if and only if

R(Bj) ≥ R(B′
j), where Bj = (bj+1, . . . , bℓ) and B′

j = (b′j+1, . . . , b
′
ℓ′). But from

Lemma 3, we know that R(Bj) ≥ R(B′
j) if bj+1 > b′j+1, and we are done. ⋄


