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Abstract

In opportunistic networks, selfish nodes can exploit the services provided by other nodes by downloading messages that interest
them, but refusing to store and distribute messages for the benefit of other nodes. We propose a mechanism to discourage selfish
behavior based on the principles of barter. We develop a game-theoretic model in which we show that the proposed approach
indeed stimulates cooperation of the nodes. The results show that, in practical scenarios, the message delivery rate considerably
increases, if the mobile nodes follow the Nash Equilibrium strategy in the proposed mechanism compared to the data dissemination
protocol when no encouraging mechanism is present.
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1. Introduction

An opportunistic network is a mobile ad hoc network
where the transfer of messages from their source to their
destination is performed by the intermediate mobile nodes
in a store-carry-and-forward manner. This means that the
intermediate nodes carry the messages and pass them on
to other intermediate nodes when they have a connection
(e.g., when they are in vicinity).

Such networks can complement traditional personal
wireless communications systems, such as cellular net-
works, in applications where local information needs to be
distributed to a set of nearby destinations based on their
interest in the information.

As a motivating example, let us consider a touristic city,
such as Rome or Paris, where it would be beneficial for
the tourists to be able to share information concerning the
various touristic sights. A possible solution would be to
set up an on-line bulletin board where tourists can post
messages of potential interest for other tourists. However,
this solution needs a service provider that runs the bulletin
board service, and each tourist must have wireless Internet
access for posting and downloading messages. The business

∗ Corresponding author.
Email addresses: buttyan@crysys.hu (Levente Buttyán),

dora@crysys.hu (László Dóra), felegyha@eecs.berkeley.edu
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model behind this solution would likely require the tourists
to pay for both the service usage and the network access.

An alternative solution could benefit from the prolifera-
tion of Bluetooth capable personal devices such as mobile
phones, PDAs, and MP3 players. These devices can com-
municate with each other when they are in vicinity even
without any user intervention. Touristic information can
then be distributed in a store-carry-and-forward manner
by using these devices and by exploiting the mobility of
the tourists themselves. This would result in a city-wide
opportunistic network.

A potential problem in opportunistic and in delay-
tolerant personal wireless networks is that the quality of
the service provided by the system heavily depends on the
users’ willingness to cooperate. In particular, the users
may act selfishly meaning that they download messages
from other users that are interesting for them, but they
deny storing and distributing messages for the benefit of
other users. As shown in [1], if the majority of the users
behave selfishly, then the message delivery rate decreases
considerably and the quality of service provided by the
network decreases accordingly.

The problems identified in [1] are the motivation for
proposing a mechanism that encourages the users to carry
other users’ messages even if they are not directly inter-
ested in those messages. Our proposed mechanism is based
on the principles of barter : the users trade in messages and
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a user can download a message from another user if he/she
can give a message in return. We expect that it is worth
for the users collecting messages even if they are not in-
terested in them to exchange them later for messages that
they are interested in. Thus, the messages are expected to
disseminate faster in the network.

We analyze our proposed solution using game-theoretic
techniques. We show that it is worth for the users collecting
and disseminating messages even if they are not interested
in them, which means that our approach indeed discourages
selfishness. The results show that, in practical scenarios, the
message delivery rate considerably increases, if the mobile
nodes follow the Nash Equilibrium strategy in the proposed
mechanism compared to the data dissemination protocol
when no encouraging mechanism is present.

This paper is a considerably extended version of our pre-
vious work [2]. The differences between the two papers are
manyfold. We have rebuilt the system and the game model
to be more realistic, and we extended the simulation sets,
too. In this paper, we present new contributions and a more
detailed analysis of the results.

The remainder of the paper is organized as follows. In
Section 2, we analyze the system without any incentives
and determine the scenarios where stimulating mechanism
should be introduced. In the same section, we introduce
the system model that is used to analyze the system with
and without encouragement. We describe our barter based
approach, and we also extend the system model with the
barter mechanism in Section 3. For the analysis of the ef-
fects of selfish behavior on the system augmented with the
barter mechanism, we introduce a game-theoretic model in
Section 4. In Section 5, we show and interpret the results
of the barter game. We summarize the related work in Sec-
tion 6. Finally, we conclude this paper in Section 7.

2. System analysis

In this section, we introduce our system model, which is
general enough to represent different applications, and it is
particularly well adapted for the example touristic scenario
described above. Because of the complexity of the model,
we use simulations instead of analytical tools. We show
that there are scenarios where the message delivery has
large latency because the mobile nodes are selfish in a sense
that they only store and forward messages that they are
directly interested in. The aim of the analysis is twofold:
1) to prove that an incentive is required in the network to
increase the message delivery rate and decrease the message
delivery latency, and 2) to give a reference with which we
can compare our subsequent solution.

2.1. System model

In our model, the users are placed in an arbitrary field.
They own devices that have capabilities to communicate
with other devices within their radio range. We consider

the case when the devices communicate via wireless links,
however, or analysis can be extended to wired communica-
tion too. The used wireless technology can be Bluetooth,
Wi-fi or any suitable wireless techniques. The messages are
generated and disseminated among the devices/users in the
considered system, but each user is interested only in a
small subset of the messages. The dissemination process is
based on the store-carry-and-forward principle. A user and
her device together is the mobile node, and we assume that
the message destination has no impact on the user’s move-
ment.

Each message has a type for each mobile node. For sim-
plicity, we distinguish only two types: primary messages
and secondary messages. A message is a primary message
for a given mobile node, if the mobile node is interested
in the content of the message and secondary if the mobile
node is not. Note that a message may have different types
for different mobile nodes, as different mobile nodes are in-
terested in different contents.

These messages are generated by special nodes which
we call message nodes. In our system model the time is
slotted, and the message nodes generate new messages with
a fixed average rate: % messages per time step. The message
nodes are static and each one stores only the most recently
generated message, which can be downloaded at the cost
of communication by any mobile node that passes by the
message node.

A message has two main properties: the first one is the
popularity attribute and the second one is the discount-
ing characteristic. The popularity attribute 0 < ζ ≤ 1
describes the probability that a randomly taken mobile
node is interested in the message. We assume that message
nodes do not generate irrelevant messages, hence we con-
sider ζ > 0.

Each message has some value for each mobile node. The
value of a message is determined by its age. For simplicity,
we assume that primary messages of the same age have the
same value for the mobile nodes. Without loss of generality,
we assume that the value of a primary message at the time
of its generation is one unit, and this is discounted in time,
because messages lose their value over time. This is usually
the case in the applications that opportunistic networks are
envisioned for. The discounting characteristic is described
with a function: δ(t). The discounting function determines
the value of the messages over time. Obviously, it is difficult
or impossible to find a discounting function which suits
to each application. Therefore, we defined three different
monotonely decreasing discounting functions. We express
these function in Eqs. (1)–(3) and we plot them in Figure 1.
In the first case, the message value decreases linearly, in
the second case, the messages devaluate exponentially, and
in the last case, the messages lose their value suddenly,
similarly to a step function.
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δ0(t) =
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(1)
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Fig. 1. Devaluation of primary messages over time

When two mobile nodes get in the vicinity of each other,
they interact in the following way:

(i) The mobile nodes exchange the list of the messages
that they carry. The exchanged lists contain only the
short descriptions of the messages (including their
time of generation) rather than the messages them-
selves.

(ii) Each mobile node u removes from the list L
(0)
v re-

ceived from v the messages that are not primary for
node u, and the ones that u already stores in memory
getting the list L

(1)
v .

(iii) Each mobile node u determines the value of the mes-
sages listed in L

(1)
v based on their ages. Then, each

mobile node orders the messages contained in L
(1)
v

by their value in descending order. The resulting or-
dered list L

(2)
v is the list of messages that u wishes to

download from v.
(iv) Mobile nodes u and v download messages from each

other following the lists L
(2)
v and L

(2)
u , respectively,

until they move out from each other’s radio range.
Connections can be interrupted because the mobile nodes

are mobile and they leave the radio range of the other party.
Therefore, in our model, the mobile nodes are not able to
exchange as many messages as they want but at maximum
one message per time step. Hereby, we assume that a mes-
sage exchange is either completed in the time step or not
started at all. This limited exchange capability is called the
implicit cost of the exchange, because there is no guaran-
tee that the nodes can download all the messages that they
want from the other party.

In our system model, there is no other costs. In a scenario
that we imagine the communication cost is negligible as

the battery of the personal devices can be recharged easily
day by day. The storage cost has two aspects: 1) The mes-
sages need storage space and storage constraint may limit
the number of stored messages. This limitation is not sig-
nificant as the storage space required for storing the data
downloaded by using wireless technology is less than the
memories offer, nowadays. 2) The time needed to deter-
mine which messages and in what order the nodes want to
download increases polynomially with the number of mes-
sage stored by the other party. To control this, the mobile
nodes delete the valueless messages, thus, they delete the
messages from the memory whose value goes below a cer-
tain threshold D, 0 < D < 1.

To measure the message delivery rate and delivery la-
tency, we define a formula for the goodput (see Eqs. (4)
and (5)). The notation is the following considering mobile
node i:
– mt

i is the message that mobile node i downloaded in time
step t;

– Tm is the time step when message m was generated;
– δ is the discounting function described above;
– vi(t) is the gain that mobile node i gets in time step t,

and it is defined as follows:

vi(t) = δ(t− Tmt
i
) (4)

Let MP
i (t) denote set of messages that were generated

until time t and are primary for node i. The cardinality
of MP

i (t) describes the maximum value that node i can
obtain until time t as the value of each message is 1 at the
moment of the generation. As shown in (5), the goodput
(0 ≤ Gi(t) ≤ 1) for mobile node i is the sum of the gains in
each time step normalized with the value that node i could
obtain in an ideal case.

Gi(t) =
∑t

τ=0 vi(τ)
|MP

i (t)| (5)

Note that the goodput is time and mobile node specific.
However, the distribution of Gi is same for each mobile
node i if all the mobile nodes behave in the same way.
The goodput may vary over time, however we will show in
Appendix A that the value of the goodput converges to a
steady-state value. Therefore, we will consider the goodput,
denoted by Gi, of each mobile node i in the steady-state
conditions.

Gi = lim
t→∞

Gi(t) (6)

2.2. Simulations

In our simulations, the fixed-number of mobile nodes
move in discrete time steps according to one of the two
mobility models: the Restricted Random Waypoint (RRW)
and Simulation of Urban MObility (SUMO, [3]) model.

In the restricted random waypoint model, 300 mobile
nodes move on a field of size 20 × 20 unit initially placed
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uniformly at random. On the field, there are some special
points chosen at random; these are called meeting points.
Each mobile node selects a meeting point randomly, and
moves towards this meeting point along a straight line with
a fixed speed. When the meeting point is reached, the mo-
bile node stops and stays for randomly chosen time (10
time steps on average). Then, it chooses another meeting
point and begins to move again. The nodes that happen
to be at the same meeting point in the same time step are
paired randomly and these pairs are able to download one
message from each other in the above described way.

Fig. 2. Simplified map of Budapest used in SUMO mobility
model

SUMO is an open source, realistic road traffic simula-
tor. 300 vehicles (mobile nodes) start their movement from
a randomly chosen place at a randomly chosen time and
they follow the traffic rules moving towards their destina-
tion also chosen at random in a predefined map. We imple-
mented a simplified map of Budapest, Hungary with 60 in-
tersections (including the dead ends) in SUMO as shown in
Figure 2 and the vehicles move on this map. In each edge,
there is a speed limit specified calculated automatically by
the SUMO (in most cases 35 m/time step and sometimes
40 m/time step). The vehicles accelerate, move constantly
at the highest speed, slow down and stop depending on
the traffic. The nodes can communicate with each other
when they stop in the intersections similarly to the meeting
points in the restricted random waypoint model. The vehi-
cles leave the meeting point as soon as the traffic admits.

In Figure 3, we compare the two considered mobility
model with respect to the duration of getting from a meet-
ing point to another neighboring one. Two meeting points
(A and B) are neighbors if a mobile node can go from A
to B and back without stopping at any other intermediate
meeting points. Note that in the case of restricted random
waypoint model any two meeting points are neighbors, but
in the case of SUMO, only those meeting points that are
linked in Figure 2. In Figure 3(a) and 3(b), the histogram
of the time steps needed to reach a meeting point is shown.
In the case of the SUMO, the duration was specified con-
sidering the maximum speed of the cars. As a comparison
we can state that in the restricted random waypoint mobil-
ity model the mobile nodes communicate with each other
more frequently than in the case of SUMO.

Recall that in our system model, the messages are in-
jected into the network by message nodes that are static. In
the restricted random waypoint model, the message nodes
reside in the meeting points, whereas in SUMO the mes-
sage nodes are placed in each intersection.

As we have already described each message has a popu-
larity value ζ. When a message node generates a new mes-
sage in the simulation, it determines which mobile node is
interested in it according to the popularity value. Thus, the
message node sets the message to primary with probabil-
ity ζ for each mobile node. All the message nodes together
generate one new message per time step on average both
in case of SUMO and restricted random waypoint model.

In each simulations, all the messages have the same dis-
counting characteristic, one of the function described in
Subsection 2.1 (see Eqs. (1)–(3)).

We determined the length (number of time steps) of the
simulation in an empirical way by taking into account that
the goodput have to reach the steady-state goodput. When
we run the simulations for 3000 time steps, the average
goodput have not changed considerably for 1000 time steps
in the analyzed simulations. Therefore we run all simula-
tions for 3000 time steps.

We summarize the simulation parameters in Table 1.
Table 1
Parameter values of the simulations

Parameter RRW SUMO

Simulation length (time steps) 3000

Number of mobile nodes 300

Number of meeting/cross points 100 60

Number of message nodes 100 60

Message generation rate % 0.01 0.0166

Simulation area 20× 20 unit see Fig. 2

Velocity (unit/time step) 1 induced by

Probability of leaving a meeting point 0.1 SUMO

Threshold for message erase D 0.05

We varied some of the parameters to study their effect on
the results. As described above during simulation runs we
used different functions for message devaluation. Besides
this, for the sake of simplicity, we assumed that during a
simulation the messages are generated with one predefined
popularity attribute ζ, but we executed more simulations
with different ζ values. Recall that 0 < ζ ≤ 1. To reduce the
complexity of our simulations, we use the following values
of ζ: ζ = 0.05, 0.2, 0.4, 0.6, 0.8, 1.

The main objective of these initial simulations is to prove
that an incentive is required to increase the message de-
livery rate and to decrease the message delivery latency.
Therefore, we run two kinds of simulations for every sce-
nario: 1) one to get the goodput when the nodes behave
selfishly, and 2) another one to get an upperbound for the
goodput. In the former case, the mobile nodes strictly fol-
low the protocol introduced in Section 2.1. This protocol
corresponds to selfish behavior, because the mobile nodes
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Fig. 3. Histogram of the duration of getting from a meeting point to another neighboring one

download only those messages in which they are interested.
To get an upperbound for goodput, the mobile nodes down-
load all the new messages that they find in the memory of
the connected node in one time step, both the primary and
secondary ones. Clearly, this upperbound is different from
the theoretical maximum of 1, because the value of a mes-
sage decreases before reaching an interested mobile node,
if reaches it at all.

As we have already stated, the distribution of the good-
put achieved by the mobile nodes is the same. Therefore,
we determine the goodput of the network by getting the
average goodput of all the nodes.

2.3. Motivation

Results in the case of the restricted random waypoint
model and SUMO can be seen in the Figures 4(a) and 4(b),
respectively. In these figures, we show simulations where
the discounting function is linear (δ0), because the results
show minor changes with other message devaluations.

In these figures, the goodput of the network is plotted
against the popularity attribute value of the messages. To
remind the reader, in the simulations in each parameter set,
the messages have the same popularity value. The solid line
shows an upperbound for the goodput and the line with
dashes and dots shows the goodput of the network in the
selfish case, when the mobile nodes do not download sec-
ondary messages. We present the 95% confidence intervals
at each simulation points.

There are significant differences between the two mobil-
ity models. In the case of the restricted random waypoint
model (shown in Figure 4(a)) the goodput is much higher
than the one in the SUMO mobility model (shown in Fig-
ure 4(b)). This difference has two reasons:
– In SUMO mobility model, the traffic is higher at the

central meeting points than in the suburb as it is the
case in all the cities. Where the traffic is low, the mobile
nodes can quickly bypass the message nodes. For this

reason, the messages generated there may be deleted be-
fore passing to any mobile node. Recall that a message
node can store only one message. Therefore, the message
node overwrites a message if a new one is generated.

– As Figure 3 shows, in the case of SUMO mobility model,
the distances between the meeting points are longer than
in the case of restricted random waypoint model. Recall
that mobile nodes are able to exchange messages only
while they do not move. Furthermore, in the SUMO, the
mobile nodes can bypass quicker the meeting points than
in the restricted random waypoint model. All in all, the
mobile nodes have less opportunity to exchange messages
in the case of SUMO.
When the mobile nodes behave selfishly the popularity

value has a large impact on the goodput. The more mobile
nodes are interested in a message, the more nodes down-
load the message even if all the mobile nodes are selfish.
The more mobile nodes download a message, the higher is
the probability that a mobile node will meet one who has
already downloaded the message. We call this the selfish
carrier effect and it can be seen in the Figure 4(b), but
not clearly in the Figure 4(a). There, the goodput increases
with the increasing popularity until a specific value, but
then the goodput decreases.

The reason for the decrease of the goodput while the pop-
ularity increases is the following: The goodput is a ratio as
Eq. (5) shows. As one can see, the denominator (maximum
value) can increase to infinity. While the numerator (ob-
tained value) has an upperbound (even if it is difficult to
determine in a concrete parameter set), because the nodes
are able to exchange only one message in each time step.
Thus, if the number of the interested messages increases,
but the obtained value reached its upper limit, then the
goodput decreases considerably.

To conclude the motivation section, we can state that the
goodput is affected by two mainly independent, but oppo-
site effects: the selfish carrier effect and the implicit cost.
When the value of the popularity attribute is 1 the good-
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Fig. 4. Goodput without encouragement: The steady state goodput plotted against the popularity value of generated messages when
discounting function is linear (δ0) and the mobile nodes move according to restricted random waypoint and SUMO mobility model in Figure
a and b, respectively. The bars show the 95% confidenance interval.

put is affected mainly by the implicit cost, whereas when
the popularity value is near to 0 it is affected clearly by the
selfish carriers. The implicit cost comes from a property of
the system model, while the selfish carrier effect comes from
the selfishness of the mobile nodes. Therefore, we can state
that an incentive is required to compensate the selfish car-
rier effect which mainly affects the goodput of the network
when the popularity value of the generated messages is low.

3. Our approach

Our approach to stimulate the cooperation of mobile
nodes is based on the principles of barter. More specifi-
cally, as mentioned above when two nearby mobile nodes
establish a connection, they first send the description of
the messages that they currently store to each other, and
then they agree on which subset of the messages they want
to download from each other. In order to ensure fairness,
the selected subsets must have the same size, and the mes-
sages are exchanged in a message-by-message manner, in
preference order. If any party cheats, the exchange can be
disrupted, and the honest party does not suffer any major
disadvantage (i.e., the number of messages downloaded by
the honest party is at most one less than the number of
messages downloaded by the misbehaving party).

Note that it is entirely up to the mobile nodes to decide
which messages they want to download from each other.
They may behave selfishly by downloading only those mes-
sages that are of primary interest for them. However, selfish
behavior may not be beneficial in the long run. In particu-
lar, the idea is that a message that is not interesting for a
mobile node A may be interesting for another mobile node
B, and A may use it to obtain a message from B that is
indeed interesting for A. In other words, the messages that
are secondary for a mobile node still represent a barter value

for the mobile node, and hence, it may be worth download-
ing and carrying them. Thus, the messages can be viewed
as an investment to get new primary messages later.

Recall that the selfish mobile nodes ignore the secondary
messages when they selected the messages to download in
the message exchange protocol introduced in Section 2.1.
However, when the messages are exchanged according to
the principles of barter, as it is mentioned above, it is worth
downloading and carrying secondary messages too, even if
the mobile nodes are selfish (we will show that this state-
ment holds). But, the mobile nodes have to compare the
value of primary to the value of the secondary messages
when they select which messages and in what order they
want to download from the connected party.

Recall that there is no direct benefit of downloading a
secondary message. It is worth to download to exchange
later for primary ones. According to this, the value of the
secondary messages is considered only when a node sorts
the messages for downloading from another node. The value
of a secondary message at the time of its generation de-
pends on how the mobile node values secondary messages
with respect to primary messages. The secondary value is
discounted in the same way as primary messages. In other
words, if for a mobile node, secondary messages are worth
SP units for some 0 ≤ SP ≤ 1 at the time of their gener-
ation, then the value of a secondary message after t time
units is SP ·δ(t). SP is called secondary/primary ratio. We
have to emphasize that if SPu = 0 then the mobile node u
does not download any secondary messages.

Note that in general, the value of a secondary message
cannot be larger than the value of a primary message of
the same age (i.e., SP ≤ 1), because the primary message
has the same barter value as the secondary message, and
in addition, the mobile node is interested in its content.
However a specific secondary message which is more fresh
than a specific primary message may have higher value and
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it can be exchanged for primary messages later, which will
have higher gain all together.

We adapt the message exchange protocol according to
the barter based approach in the following way:

(i) The mobile nodes exchange the list of the messages
that they carry.

(ii) Each mobile node u removes from the list L
(0)
v re-

ceived from v the messages that u already stores in
memory, and thereby obtains the list L

(1)
v .

(iii) Each mobile node u determines the value of the mes-
sages listed in L

(1)
v based on their types, their ages,

and the secondary/primary ratio SPu as described
above. The list obtained in this way is denoted by
L

(2)
v .

(iv) Each mobile node u orders the messages contained in
L

(2)
v by their value in descending order. The resulting

ordered list L
(3)
v is the list of messages that u wishes

to download from v.
(v) The nodes exchange at most ` = min(|L(2)

u |, |L(2)
v |)

messages from the beginning of their lists on a
message-by-message manner, where |L| denotes the
length of the list L. Thus, the number of exchanged
messages is determined by the length of the shorter
list or the duration of the connection.

We assume that the mobile nodes offer all their valid and
only valid messages to download. It is not worth for any
nodes to hide messages from other mobile nodes, because it
may decrease the number of messages that the mobile node
is allowed to download from other mobile nodes. In addi-
tion, we assume that a mechanism is present in the system
that prevents injecting fake messages. This is important,
because greedy nodes can increase the number of messages
that they can offer by injecting fake messages.

In order to show that the latter assumption is feasible, we
sketch the operation of two mechanisms that would prevent
the injection of fake messages:
– One prevention mechanism can be based on digital sig-

natures. The mobile nodes are allowed to exchange only
those messages that have a valid digital signature. The
digital signatures are added to the messages by an au-
thority. This authority can be represented by the message
nodes and in that case, the message nodes are responsible
not just for generating the messages but certifying them,
too. Although, this solution filters out the fake messages
it may not be applicable in some application.

– Another mechanism for preventing injections of fake mes-
sages can be based on reputation mechanism. The users
can define a threshold and they download only messages
whose reputation value is higher than the threshold and
the users can evaluate the messages or the services which
generates the messages themselves. The evaluation mes-
sages may be distributed among the mobile nodes. Note
that this reputation mechanism is not related to the mo-
bile nodes’ willingness of the message distribution, but it
refers to the quality of the message contents. This kind of
reputation mechanism can complement our barter mech-

anism.
The purpose of our analysis later in this paper is to verify

whether the barter based approach increases the goodput
or not.

4. Game model

We model our proposed mechanism as a game to analyze
the behavior of the mobile nodes using game-theory [4–
7]. Our objective is to prove that the network can reach
high goodput using barter mechanism even if selfish mobile
nodes are present.

We define a non-cooperative game G = [P, {Si}, {πi}],
called barter game. P is the set of the players, Si denotes
the strategy space of player i ∈ P , and πi represents the
payoff function of each player i. To be more precise, πi is the
simplified notation of πi(s0, s1, ..., s|P |), because the payoff
of each player depends on the strategy played by the other
players. This can also be denoted by πi(si, s−i) emphasizing
the strategy of player i, where s−i is the strategy profile of
all the players except for player i.

In the barter game, the players (P ) are the mobile nodes,
and hence in the rest of this paper, we will use the same
notation for players as for mobile nodes. The strategy of
each player is its secondary/primary ratio (SPi ∈ Si =
[0, 1]). The players do not change their strategies during
the game. The players choose their strategies in a way to
maximize their goodput. Hence, the steady-state goodput
is the payoff of the barter game for player i.

πi = Gi (7)
In order to model the behavior of the selfish mobile nodes,

we introduce the concept of best response and Nash Equi-
librium.

The best response of player i to the profile s−i is a strategy
such that:

Bi(s−i) = arg max
si∈Si

πi(si, s−i) (8)

If player i plays strategy Bi(s−i), it reaches the maximum
from the obtainable payoffs given that the other players
play s−i.

The pure-strategy profile s∗ is a Nash Equilibrium if the
following equation holds for s∗:

s∗i = Bi(s∗−i), ∀i ∈ P (9)

Namely, in Nash Equilibria none of the players can increase
their payoff by changing their strategy unilaterally.

A game G = [P, {Si}, {πi()}] is symmetric if each player
has the same strategy space (S0 = S1 = ... = S) and their
payoff functions are equal (πi(si, s−i) = πj(sj , s−j) for si =
sj and s−i = s−j , where i, j ∈ P ). A symmetric game G
can be denoted by [P, S, π()].

As one can see, the barter game is a symmetric game,
because the strategy space defined in the game is identi-
cal for all players. In our system model, the nodes are not
distinguished. Thus, they can maximize their payoff in the
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same way and they get the same payoff in the same strat-
egy profile.

In the analysis of the barter mechanism, we are looking
for the Nash Equilibria. We limited ourselves to find only
pure-strategy, symmetric Nash Equilibria. This is because,
we assumed that each mobile node is a player, which leads
to the analysis of a game with a |P |-dimensional strategy
space. The exhaustive analysis of the entire strategy space
is thus infeasible by means of simulations.

A symmetric game has symmetric pure-strategy equi-
libria [8], if the strategy space is a nonempty, convex and
compact subset of some Euclidean space while the function
of payoff is continuous in the strategy and quasiconcave.
In our case, the strategy space is the interval [0, 1], which
corresponds to the conditions of existing symmetric pure-
strategy equilibrium. Whereas, the properties of the payoff
function are not verifiable, the results of the simulations
will show that the conditions hold.

If we expand (8) and (9) according to the symmetric game
and equilibrium, {s∗} is Nash Equilibrium if the following
equation holds for any player i ∈ P :

s∗i = arg max
si∈S

π(s∗0, s
∗
1, . . . , si, . . . ),

where s∗u = s∗v∀u, v ∈ P/{i} (10)

As one can see, it is easy to verify that a specific strategy
profile {s′} is a Nash Equilibrium or not. Considering any
player i ∈ P — without loss of generality i = 0, called
player null — if it is worth for player i to deviate, {s′} is
not a Nash Equilibrium, whereas if s′ is the best response
to player i then s′ will be the best response strategy for
all the other players too, as the players have equal payoff
functions.

Therefore, to find the symmetric pure-strategy Nash
Equilibria, it is not necessary to examine the whole |P |-
dimensional strategy space, but investigation of a two-
dimensional space is enough. In order to find all the sym-
metric pure-strategy Nash Equilibria, we consider all the
symmetric pure-strategies {s′} as Nash Equilibria candi-
dates. Then, we consider the whole strategy space that
player null can play to check if a Nash Equilibrium can-
didate is indeed a Nash Equilibirium or not. The strategy
space which is required to be analyzed to find all the sym-
metric pure-strategy Nash Equilibria can be seen in Eq.
(11).

{s, s′, . . . , s′}, ∀s ∈ S, and ∀s′ ∈ S (11)

Thus, due to the symmetry of the game, the analysis is
independent of the number of players.

5. Results

We run simulations to analyze the efficiency of the barter
mechanism as we did in Section 2. The simulations were
executed with the same parameters such that we can com-
pare the barter based mechanism to the other two analyzed
cases: 1) when the messages disseminate ideally (this case

gives an upperbound for the goodput of the network), and
2) when the nodes download only primary messages.

As we have already described, the mobile nodes do not
change their strategy during a game. Therefore, in each
simulation run, the mobile nodes play a predefined strat-
egy chosen from discrete values of the strategy space. The
discrete values are the values from 0 to 1 increasing by 0.05.

We run a simulation with a concrete parameter set six
times, and we consider the average goodput of player null.
The obtained goodput of the other mobile nodes is irrele-
vant, because the game is analyzed from one, representa-
tive player’s point of view according to the description in
Section 4

Due to the above described discretization, each mobile
node’s strategy can take 21 possible values. This means that
we had to run 212 = 441 simulations for each parameter
setting in order to find the pure-strategy, symmetric Nash
Equilibria. The best response function of some parameter
settings can be seen in Figures 5(a) and 5(b).

In Figure 5, on the vertical axis, there are the strate-
gies that player null can choose, while on the horizon-
tal axis, the strategy space of the other players is placed.
The Nash Equilibrium candidates are the strategy profiles
where player null and the other players choose the same
strategy; these are denoted by solid, black points in Fig-
ure 5. Whereas, the best response strategy of player null
to a specific strategy profile of the other players is denoted
by empty circles. Figure 5(a) shows the result of a simu-
lation set where the messages devaluate according to the
function δ0 (see Eq. (1)) the popularity of the generated
messages is 0.4 and mobile nodes move according to the
restricted random waypoint model. In this parameter set,
the player null can get the highest payoff if its strategy is
0.15 independently from other player’s strategy. According
to this, the Nash Equilibrium is the strategy set where all
the nodes play with strategy 0.15. In other simulation sets
the best response strategy value in the most cases is inde-
pendent of the other players’ strategy, but the value of the
best response is different. To give an overview of the value
of player null’s best response in all simulation sets, we plot-
ted a histogram in Figure 8.

In Figures 6(a) and 6(b), the results of simulations are
plotted in an extended form. In these figures the payoff of
player null is plotted against the strategies of player null
and other players. The best response strategy of player null
is the strategy where the payoff of the player null is max-
imal given a fixed strategy of the other players. The best
response strategy is denoted by big black circles in Figure 6.

As one can see, the payoff of player null intensively falls
down if player null does not cooperate (s = 0). The nodes
are encouraged to carry messages when the barter mecha-
nism is used, because their goodput is higher if they do so
(even if they are not directly interested in those messages).
The payoff of player null intensively falls down too, if it
is too altruistic (s = 1), namely if it values the secondary
messages as high as their primary messages. It helps the
other mobile nodes, but it misses to obtain messages that
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Fig. 5. Best response: Nash Equilibrium candidates are denoted by solid, black points, while empty circles show the best response strategy
of player null. The Nash Equilibria are the strategy profiles where the best response function meets the Nash Equilibrium candidates.
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Fig. 6. Gain of player null: The gain (goodput) of player null is plotted against the strategy of player null and other players. The best
response function of player null is denoted by big black circles.

it is interested in and suffer from goodput decrease.
To understand the reasons, we created some statistics

during the simulations concerning the number and the type
of message exchanges. In Figure 7(a), we plotted the num-
ber of all message exchanges against the strategies of player
null and other players, and also classified the downloads
by the type of the downloaded message (primary or sec-
ondary), these are plotted in Figure 7(b) and 7(c), respec-
tively.

The Figure 7(a) shows that the message exchange signif-
icantly decreases when the mobile nodes do not cooperate
at all (s = 0). As the message exchange decreases, the mes-
sages disseminate slower and the mobile nodes suffer from
decreasing goodput.

However, the mobile nodes also reach lower goodput
if they are too altruistic. The reason is the following: As
one can see in Figure 7, when a player increases its sec-
ondary/primary value, the number of obtained primary
messages decreases while the number of obtained sec-
ondary message increases, whereas the number of message
exchange does not vary appreciably (not taking into ac-
count when the mobile nodes do not cooperate at all). This
shows that the mobile nodes following altruistic strategy
do not utilize the investment of downloading secondary
messages, but download more secondary ones.

To conclude the result of simulations, we can state that
in the simulated cases, the strategy which is most beneficial
individually – the Nash Equilibirium of the barter game –
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Fig. 7. Message download statistics: Number of message exchange, primary and secondary message download is plotted against different
strategy profiles
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Fig. 8. Histogram of Nash Equilibrium values

to set the secondary/primary ratio to a low value but not to
0. Therefore, it is beneficial to help the other nodes (s 6= 0)
carrying their messages when the nodes exchange messages
only in fair manner. However, if they are too altruistic,

they download primary messages with less probability, and
their goodput decreases. This can be seen is Figure 8, where
the histogram of the Nash Equilibrium strategy values is
plotted. The Nash Equilibrium values are obtained from all
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Fig. 9. Goodput with barter mechanism: The steady state goodput plotted against the popularity value of generated messages as done
in Figure 4. The goodput values of barter mechanism are obtained in the Nash Equilibrium. The bars show the 95% confidence intervals.

the simulation sets and grouped by the mobility models.
In Figures 9(a) and 9(b), the network goodput is plot-

ted against the popularity attribute of the generated mes-
sages with restricted random waypoint and SUMO mobil-
ity model, respectively. It was done also in Figure 4, but
these figures are supplemented with the goodput in Nash
Equilibrium of the barter game. As it can be seen, the
barter mechanism eliminated the selfish carrier effect, i.e.
increases the goodput in the networks where the popular-
ity value of generated messages is low. Furthermore, the
goodput is as high as the optimal goodput. Meanwhile, the
barter mechanism does not decrease the goodput when the
message popularity is high which is affected by the implicit
cost. The implicit cost is a system property, therefore it
cannot be compensated.

In Figure 10, the effect of different delete threshold val-
ues (D = 0.05, 0.2, 0.5, 0.75, 0.95) are analyzed in the re-
stricted random waypoint model. Note that mobile nodes
delete a message from their memory when its value goes be-
low D. In Figure 10(a), we show which strategies are Nash
Equilibrium strategies using different D values. One can
see that the set of Nash Equilibria increases with increas-
ing D value. The reason is the following: as the D value
increases the mobile nodes delete the messages earlier and
therefore, they store less messages in their memory on av-
erage. For this reason, the effect of the SP ratio decreases
as the variety of the messages decreases. Thus, more and
more strategies result in the same goodput value.

In Figure 10(b), the goodput value is plotted against the
D values. As it is expected, the goodput value decreases
with increasing D value, because the mobile nodes delete
the messages earlier. This has a doubled effect in the case
of the barter: 1) A mobile node may not be able to obtain
a message, and 2) A mobile node may not be able to offer
any messages, thus, it can not obtain other messages.

6. Related work

So far, the problem of selfish nodes has been addressed
mainly in the context of mobile ad hoc networks. The pro-
posed solutions to stimulate cooperation can be broadly
classified into two categories: reputation systems and vir-
tual payment based methods. Several researchers proposed
reputation systems for ad hoc networks [9,10], and in [11],
an opportunistic solution is presented. For the virtual pay-
ment based methods, some proposed solutions can found
in [12,13] in traditional ad hoc networks and there are op-
portunistic network specific solutions in [14]. Usually, these
solutions require authentication (and related key manage-
ment), and/or the presence of a trusted third party. In ad-
dition, the payment based solution also raises the problem
of determining the price of different actions (see e.g., [15]).

Researchers have also studied under what conditions co-
operation can emerge spontaneously among the nodes in
ad hoc networks (see e.g., [16,17]).

The application of delay-tolerant networks for personal
wireless communications is considered in [18]. In particu-
lar, the authors show, by analytical tools and by means of
simulations, that delay-tolerant networks can achieve a rea-
sonably high throughput such that they can support vari-
ous personal communication services.

In [1], the authors raise the problem of selfishness in de-
lay tolerant networks. The authors study the performance
of three representative routing algorithms in the presence
of some selfish nodes. They show that when the nodes be-
have selfishly, the performance decreases, in the sense that
messages are delivered with a longer delay if they are deliv-
ered at all. However, the authors do not propose any mech-
anism to stimulate cooperation. The results presented in
[1], can be viewed as a motivation for our work.

In [19], the authors considered the same subject. They
have proven by analytical tools that the most beneficial
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Fig. 10. Analysis on the effect of different delete threshold values. The bars show the 95% confidence intervals.

behavior is to follow a forwarding strategy that the mo-
bile nodes agreed on before. The forwarding strategy is de-
scribed by the probability of forwarding uninterested mes-
sages. In contrast to the above mentioned analytical model,
we investigate a more complex model.

The barter mechanism was introduced first and analyzed
by a preliminary model in [2]. As explained in the Introduc-
tion, we have rebuilt the system and the game model and
we extended the simulation sets, too. The most important
new contributions are that we pin-pointed the scenarios
where encouraging mechanism is required and we showed
that the barter based mechanism increases data delivery in
a more general and realistic model. Furthermore, we pre-
sented a more exhaustive analysis of the results.

7. Conclusion

In opportunistic networks, selfish nodes can exploit the
services provided by other nodes by downloading messages
that interest them, but refusing to store and distribute mes-
sages for the benefit of other nodes. To eliminate the harm-
ful influence of selfish behavior, we proposed a mechanism
which is based on the principles of barter. The users trade
in messages, meaning that they can download a message
from another user if they also provide a message in return.
We analyzed our proposed solution using a game-theoretic
framework, and showed that it indeed discourages selfish-
ness. More precisely, the analysis shows that it is worth for
users collecting, carrying and disseminating messages even
if they are not interested in them, which has a positive ef-
fect on quality of data dissemination. In particular, the re-
sults show that, in realistic scenarios, the message delivery
rate considerably increases if the mobile nodes follow the
Nash Equilibrium strategy in the barter mechanism com-
pared to the data dissemination protocol when no encour-
aging mechanism is present.
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Appendix A. Convergence of the goodput

In this section, we prove that the goodput of the nodes
converges to a limiting value. This can also be seen in Fig-
ure A.1 where the goodput of some randomly chosen mobile
nodes is plotted against the time. In Figure A.2, the aver-
age goodput and its dispersion of all mobile nodes is plot-
ted against the time. After this analysis, we can state that
the goodput obtained after a fixed-number of time steps in
simulation close to the steady-state goodput.

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time step

G
oo

dp
ut

Fig. A.1. The convergence of the goodput of some sample nodes
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Fig. A.2. The convergence of the average goodput and its dispersion

The state of the system described in Section 2 at time t is

s(t) = {B1(t), B2(t), . . . , BN (t),
Z1(t), Z2(t), . . . , ZN (t),
H1(t), H2(t), . . . , HN (t)}

(A.1)

where
– N is the number of nodes
– Bi(t) = [mi1 , mi2 , . . . ] is the buffer of node i, where the

messages are stored.
– Zi(t) ∈ {∗,m} is message stored in the memory of the

message node i, where ∗ denotes the case when no mes-
sage is stored at time t, otherwise m stands for the gen-
erated message, which arrives from the — in principle —
infinite space of messages.

– Hi(t) is the position of node i on the field F .
We consider a finite state Markovian model in what fol-

lows.
Note, that the state space can be described by a deter-

ministic mapping:

s(t + 1) = F [s(t),
r1(t + 1), r2(t + 1), . . . , rN (t + 1),
r′1(t + 1), r′2(t + 1), . . . , r′n(t + 1),
r′′1 (t + 1), r′′2 (t + 1), . . . , r′′M (t + 1)]

(A.2)

where
– ri(t + 1) is a random element used as an input by the

algorithm to calculate the next step of node i (1 ≤ i ≤
N) on field F at time t + 1

– r′i(t+1) is a random element used as an input of message
generation of message node i (1 ≤ i ≤ n) at time t + 1.

– r′′i (t + 1) is a random element used as an input of the
node pairing in meeting point i (1 ≤ i ≤ M).

The random numbers are generated independently of the
time.

Note, that the state transition mapping is time in-
dependent. The sequence of state random variables
S(0), S(1), . . . , S(t), . . . constitutes a discrete time ho-
mogenous Markovian chain. The transition matrix of the
Markovian process can be derived from (A.1) and (A.2).
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As one can see the state space of the Markovian model
described above is infinite, however with some feasible as-
sumptions the model can be converted to a finite state
model.
– Note that the memory of message nodes was assumed to

be unlimited in the whole paper, however an upperbound
can be defined. Recall that the mobile nodes delete the
messages if the message is older than T time step. Let the
number of message nodes be n. The greatest number of
messages is generated if all the message nodes generate a
new message in each time step. A message disappear from
the system after T time steps. Therefore, the greatest
number of messages that a node may store is L = n · T .
Hereby, Bi(t) = [mi1 , mi2 , . . . , miL

].
– In the Markovian model described above, the m messages

arrive from infinite space as there was no restriction for
it. However, it is feasible to assume that the length of the
digital contents that the nodes exchange is limited, let
us assume to be l. In that case, the size of the message
space is 2l.
A Markovian chain is ergodic, if the following limiting

value exist:
lim

n→∞
P

(n)
ik = Pk

these are independent of i and
∞∑

k=1

Pk = 1

As the classic theorem of Markovian chains claims, a fi-
nite state homogenous Markovian chain is ergodic, if it is
irreducible and aperiodic. Particularly, there is a time step
t and a state j, such that state j can be reached from ar-
bitrary initial state i with positive probability with time
step t. The convergence to limiting distribution Pj is ex-
ponential, which means the following: let P

(t)
ij denote the

probability, that the Markovian chain starting from state i
arrives at state j with t steps, furthermore let denote the
stationary probability of state j, the difference |P (t)

ij − Pj |
decreases exponentially when t tends to infinity (Theorem
of Markov). In this case, uniform exponential bound exists
for difference |P (t)

ij − Pj | independently of j.
In our model, the proof of the condition for ergodicity is

the following: Assume the system is in an arbitrary state.
We select a state k, let this state be the following, the buffer
of the first node contains a single fresh message, while all
other buffers are empty. Such a state can be produced the
following way: First we empty all the buffers: the users move
or stagnate at a fixed position such a way they escape meet-
ing message sources. As the time passes the aging messages
drop out from the buffer. Then the first node approaches a
message source where it receives a message.

As it is shown above, our system is ergodic. The distri-
bution of the stationary state is approached at exponential
rate.

The goodput of a node until time step t — as it is already
described in (5) — is:

Gi(t) =

∑t
tj=0 υi(tj)∑t

tj=0 Mp
i (tj)

(A.3)

where the υi(t) is the gain that node i received in time step
t, and Mp

i (t) is the number of primary messages of node i
generated in time step t.

As one can see, the goodput is affected by the transient
state of the system also, not just on the stationary state.
However, from the ergodicity of the Markovian chain, it
follows that the effect of the transient state become negli-
gible and fades away with exponential rate if the time goes
to infinity. By empirical observation, it is appropriate to
consider the goodput after time step 3000 and the goodput
will not change in the future considerably.
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