
Protection Against DDoS Attacks Based On Traffic Level Measurements

Boldizsár Bencsáth István Vajda
Laboratory of Cryptography and Systems Security (CrySyS)

Department of Telecommunications
Budapest University of Technology and Economics, Hungary

{bencsath, vajda}@crysys.hu

Keywords DDoS attacks, traffic analysis, network protection
Abstract— A method for protecting an Internet server

against a bandwidth-consuming DDoS attack is proposed and
analyzed. Incoming traffic is monitored continuously and “dan-
gerous” traffic intensity rises are detected. Such an event
activates a traffic filtering rule which pushes down the incoming
aggregate traffic to an acceptable level by discarding excess
packets according to the measured relative traffic levels of
active sources. Compared to other studies, our method has
a structurally stronger base: legitimate traffic to the server is
not necessarily hindered because of the attack or the traffic
suppression. The method is supported by an analysis and a
simulation as well.

1. INTRODUCTION

During a Distributed Denial of Service (DDoS) attack the target
is an Internet server and the attacker’s aim is to exhaust the server’s
resources in order to prevent authorized access to services or
degrade the quality of service. The attacker utilizes more attacking
clients and acts organized to multiply the impact of the attack and
to avoid being discovered and filtered. (see [1] for a comprehensive
description of DDoS attacks).

It is a fairly easy task to deploy a DDoS attack. Various pre-
written tools are available on the Internet.

Protection against DDoS attacks highly depends on the model
of the network and the type of attack. Although several solutions
and methods have been proposed, most of them have weaknesses
and fail under certain circumstances.

Protocol reordering and protocol enhancement are workable
methods to make security protocols more robust and less vulnerable
to resource consumption attacks (a few examples are listed in [2]
and [3]). This approach tries to make a protocol less vulnerable
against a single source of attack, but it is not so effective against
a distributed attack.

Stateless protocols eliminate problems that follow from memory
overload. However it is achieved at the cost of transforming the
memory overload problem into a network load problem and at the
same time the chance for message-replay attacks is also increased.
So, stateless protocols can be useful in specific cases, but do not
provide a general solution. (A study on the use of stateless protocols
against DoS can be found in [4]).

A good starting point against any type of attack could be the of
the initiator identification. There are tools for tracing the source of
an attack, for example IP Traceback (see [5] and [6]). Unfortunately
this approach in a sense contradicts one of the values of the
Internet: anonymity. For example a network using onion routing
technology provides complete anonymity. Traceback algorithms to
identify attackers might turn out to be completely useless on such
a network. The goal is to catch the ‘real’ initiator, not the attacking
computer, but this tracing technique can only identify the latter.
During a DDoS attack the number of attacking sources can be very
high; Identifying and disarming all of them is not a simple task.

Several methods, like ingress filtering[7], rate control, dis-
tributed rate control mechanisms and pushback[8] make the at-
tacker’s work more difficult, but at the same time these tools open
up new areas for attacks. If for example MULTOPS (a router
technique, see [9]) were widely deployed, we would not have
enough capacity on the network elements to rely on. On the other
hand, if it is not widely deployed, its functioning is very restricted.

Client side puzzle and other pricing algorithms (see [10], [11],
[12], [13]) are effective tools to make protocols less vulnerable to
depletion attacks of processing power, but in case of distributed
attacks their effectiveness is an open question.

We provide a simple and robust protection algorithm based on
easily accessible information at the server. This is done in such a
way that the server host cannot be disabled by an attacker and as
soon as the overload disappears, the normal service quality resumes
automatically (e.g. without restarting the server). Simultaneously
we wanted to minimize the number of legitimate sources blocked
by the server as it is typically needed in a real-life scenario. This
criterion is not met by many of the current commercial solutions.
(see [14] for a review of some commercial solutions) Our approach
does not need to modify network elements outside the victim server.

The structure of the paper is the following:

Section 2 gives the description of the proposed algorithms
together with the models for the attack and the traffic. Section 3
contains simulation results with emphasis on the sensitivity of the
parameters of the algorithm. A prototype application is described in
Section 4. Summary is given in Section 5, finally the mathematical
analysis on the error rate of the attack detection, the problem of
false identification is described in the Appendix.

2. DDOS FRONT-END MODULE

2.1. Traffic Model And Attack Model

In our traffic model “packets” from the network mean small
stand-alone queries to the server (e.g. a small HTTP query or
an NTP question-answer). For simplicity we assume that every
query causes the same workload on the server: by using the ap-
propriate enhancements (protocol enhancements, crypto hardware,
caching. . .) on the server the workload of the different queries can
be very similar. Every query causes some workload (memory and
processor consumption) and thus after a certain level, the server
cannot handle the incoming traffic.

The attacker uses number A hosts during the attack. When A=1
the attack originates from a single source, while the case of A > 1
corresponds to a distributed attack (DDoS) (see [1]). There are
one or more human attackers behind the attacking sources. These
attacking sources are machines on the net controlled (taken over)
by the attacker for the purpose of the attack. We assume that
the attacking machines use real addresses, consequently they can
establish normal two way communication with the server, like a
host of any legal client. The human attacker hides well behind the
attacking machines in the network, which means that after carrying
out the attack and after removal of all compromising traces of attack
on the occupied machines, there is no way to find a trace leading
to him.

Two types of sources are distinguished: legal sources and
attacking sources. There are N(t) legal sources and A(t) attacking
sources in time slot t. In our model the attacker can reach his aim
only if the level of attacking traffic is high enough compared to
the level under normal operation. It is assumed, that the attacker
can control the extra traffic by changing the number of attacking
machines and the traffic generated by these machines. In this respect
we assume a powerful attacker; he can distribute the total attacking
traffic among attacking machines at his choice. We assume that
the reason for using several attacking machines is to make it more
difficult for the server to identify and foil them all. Note, however,
when more attacking machines are used by the attacker it becomes
more difficult for him to hide.

Therefore, we assume that the attacker limits the number of
attacking hosts (A(t) is low).

In fact, a trade-off can be identified between the ability to hide
and the efficiency of the attack.

2.2. The Module

A DDoS front-end module is attached to the server from the
network side. (The front-end can be a software component of the
server, a special hardware in the server or an autonomous hardware
equipment attached to the server)

The front-end and the server together constitute a virtual server.
The incoming traffic enters a FIFO buffer1. Discrete time model is
assumed, i.e. the time is slotted. Traffic is modelled and processed
per time slot. The server empties µ storage units per time slot from
the buffer. Because the buffer is fed by random traffic, there is
a positive probability of the event that overflow occurs. When a
DDoS attack begins, the incoming traffic quickly increases and the

1In practice the buffer can be a set of httpd child processes dealing with
incoming queries.

buffer becomes full. Most of the incoming units will be dropped, so
the attacker achieves his aim of significantly degrading the service
quality, essentially cutting the connection to the server. However,
the server host will not be disabled and remains intact. The goal
of the front-end module is to try to suppress the traffic from the
attacking sources effectively. (Similar method is used in [15] against
SYN attacks)

Assume that there are two states of the incoming channel:
normal state when there is no DDoS attack and attack state when
the server is under attack. The attack begins at time t∗ (time is
measured in time slots). When at time t∗ + δ the front-end buffer
becomes full, the transport protocols run by legal and attacking
hosts sense that no (or very rare) acknowledgements arrive from
the server and they get effectively stuck in repeated transmissions.
The first task is to detect the beginning of an attack, and estimate
time t∗ as close as possible.

The next task is to identify the sources of the attack and to
suppress their traffic. The identification can be based on statistical
properties of the traffic flow. The front-end can identify all active
sources, can measure the traffic generated by these sources and
can classify them into specific sets. Note, that in order to get
reliable measurements for traffic level, we have to carry out these
measurements in time slots between t∗ and t∗ + δ. Consequently,
the effectiveness of such protection is strongly affected by the time
duration δ, during which the traffic flow is “undistorted” between
the server and the sources. Therefore we should try to lengthen
time duration δ to gain more time for traffic measurements. The
only way seems to be the use of a huge buffer. Assume therefore,
that the buffer length is L = L1 + L2, where:
length L1 is designed to serve the normal state, assumed to be
chosen according to the service rate µ and the accepted probability
of accepted loss (loss is an event when incoming units are dropped
because the buffer is full),
length L2 corresponds to the excess length, with purpose to gain
enough time for measurements during the start-up phase of the
attack.

For simplicity, we assume, that the system has not been attacked
for a long time, and the attack begins at time t∗, which means
that all attacking sources start emitting packets from this time: the
network is in normal state for t < t∗ and turns into attacked state
in time t∗. Let t̂ denote our estimate on t∗.

Furthermore we make the simplifying assumption, that the set
of active sources is constant during the attack.

Tn(t) denotes the aggregate traffic from the legal sources
(normal traffic) and Ta(t) denotes the aggregate of attacking traffic.
Let the corresponding mean values (per time slot) be denoted by
λn and λa, respectively, i.e.

E(Tn(t)) = λn, E(Ta(t)) = λa (1)

Similarly let the corresponding standard deviations be denoted
by σa and σn. Let Q denote the a priori unknown ratio between
averages λa and λn, i.e Q= λa/λn.

Because typically the beginning of the attack (t∗) is earlier than
the time of its detection (t̂), we waste precious time for efficient
traffic measurements. To minimize this loss, we estimate the ag-
gregate traffic level continuously using sliding window estimates.
The front-end handles two sliding time windows, a longer (with

capacity of w`) and a shorter one (with capacity of ws slots). This
way we measure both a long time average level, λ̄(t) and a short
time average level λ̂(t), of incoming aggregate traffic per slot at
time slot t.

2.3. Algorithms Of The Module

The algorithm of protection consists of the following sub-
algorithms, which are executed consecutively:

A.) detection of the attack
B.) identification of the attacking sources
C.) suppression of the attacking traffic
D.) checking of the success of the suppression

A.) Detection Of The Attack

An early detection of the attack is a vital point of the protection.
(In paper [16] wavelet methods are used for DDoS attack detection).
In our approach, we define three simple and robust algorithms for
the detection of the DDoS attacks:

Algorithm A1.

The beginning of the attack is decided to be time t̂, which is
the time, when the following event occurs:

Event 1: The buffer length exceeds L1

Algorithm A2.

The beginning of the attack is decided to be time t̂, which is
the time, the following event occurs:

Event 2:

λ̂(t̂) > (1 + r)λ̄(t̂) (2)

where r , r > 0 is a design parameter.

Algorithm A3.

The beginning of the attack is decided to be time t̂, which is
the time, when the earlier of the two events Event 1 and Event 2
occurs.

B.) Identification Of The Attacking Sources

We would like to suppress the aggregate traffic selectively
at the input (front-end) by suppressing the attacking traffic as
effectively as we can. Here arises the problem of distinguishing the
traffic coming from attacking sources. The assumed distinguishing
characteristic of the attacking sources is the higher mean of their
traffic level. It is also assumed that the front-end device can measure
the traffic characteristics of all active sources distinguishing them
by their network address.

Starting at time t̂, we measure the aggregate and the individual
traffic levels (i.e. traffic per source). If we correctly identified an
attack, i.e. t∗ < t̂ < t∗ + δ, we can make measurements over the
resting time (t∗ + δ − t̂).

Let the output of this measurement be denoted by λ̂r(t
∗+δ) and

λ̂(i)(t∗ + δ) for the aggregate level and for source i respectively.
As we cannot determine the exact traffic from the legal sources

during the attack we use λ̄(t̂−c) (c > 0) as an estimate on the mean

aggregate traffic level of legal sources in time interval [t∗, t∗ + δ]
and we gain an estimate

λ̂a = λ̂r(t
∗ + δ) − λ̄(t̂ − c) (3)

on the mean aggregate traffic level of attacking sources. The set Z
of active sources is decomposed into

Z = Zn ∪ Za (Zn ∩ Za = ∅) (4)
where Zn and Za are the sets of legal sources and attacking sources
respectively. The identification algorithm outputs a subset Z∗

a of Z.
This set should correspond to Za as closely as possible.

The identification of attacking sources is made by the following
algorithm:

Algorithm B1.

Find the maximum-sized subset Z∗
a={i1, i2, ..., iv} of Z, which

corresponds to sources with the highest measured traffic levels, such
that

v
∑

j=1

λ̂(ij)(t∗ + δ) ≤ λ̂a (5)

The base of this method in our model is the predicate described
in the beginning of this section: The attacker tries to hide himself
and therefore limits the number of attacking sources (A(t)) which
is in trade-off with the volume of the attack. As a result of this
trade-off the traffic volume from the attacking sources is higher
than the traffic from the legitimate clients.

Algorithm B2.

Omit those sources from set Z which have been active at time
(t̂ − c), c > 0, and use Algorithm B1.

C.) Suppression Of The Attacking Traffic

Once we have successfully identified the attacking sources, the
traffic suppression algorithm is straightforward:

Algorithm C.

Discard all incoming units with sources from the set Z∗
a .

First, we apply filter rules to discard any incoming packets from
the identified sources (needs memory), and then, we have to delete
any previously stored packets in the front-end buffer.

D.) Checking Of The Success Of Suppression

Algorithm D.

In case of successful intervention, by running Algorithm C the
buffer length has to retire below length L1 within a timeout t out.
If it does not occur we should discard packets from further active
sources beginning with the one with the highest measured traffic
level, followed by a new checking of success. These steps are
repeated until the wanted decrease in the queue length is reached.

A conservative estimate on timeout t out can be the following:

t out = d ·
L2

µ − λ̄(t̂ − c)
(6)

where d is a small positive integer (e.g. d=3).

The quality of protection is determined by the
1.) reliability of attack detection,
2.) probability of false identification of attacking and legal

sources,
3.) time duration of the unavailability of the service caused by

buffer overflow.
A detailed analysis can be found in the Appendix.

3. SIMULATION RESULTS

The simulation consisted of the following elements shown in
Figure 3.

DatabaseDatabase
Packet

generator

Packet

generator

Front-end

simulator

Front-end

simulator

Server

simulator

Server

simulator

Fig. 1. The block scheme of the simulation

In addition to scheduling and buffering arrived packets, the
front-end simulator collects statistical data based on the traffic, de-
tected attacks, identified attacking sources and suppressed attacking
sources.

The simulation was written in C and carried out on a PC
running Linux. A MySQL database was used for storing all the
data, thus our tests are fully reproducible. The packets arrived in
discrete time intervals, the time resolution was set to 10−6 seconds.
Statistics (e.g. intensity of the traffic) were gathered every second.
The simulation starts at 0 second, most of the calculations are
carried out only once a second. The simulation begins with 100
seconds of normal traffic to initialize the DoS front end. The attack
begins after the 100-th second and lasts until the 200-th second, the
simulation ends with another 100 seconds of normal traffic to gain
data about the recovery of the system.

3.1. Parameter Setting
The arrivals of the various packets at the DDoS front-end are

modelled by a Poisson process. These packets are stored in a
buffer, and every packet is served by one virtual processor. The
queue is type M/M/1, the inter-arrival times and the service times
are assumed to have exponential distributions. The number of the
sources in this simulation is constant in time.

The Poisson model might be judged as oversimplified for the
typical Internet traffic. In this regard the aim of this first simulation
effort was to see the algorithms in work and to get feedback
on their basic strength and weaknesses, and the sensitivity of the
parameters. At the same time, we believe that such a model might
be suited to some internet protocols if the parameters are correctly
set. ICMP/Ping, NTP (Network Time Protocol) and DNS clients
send many small uniform-sized packets with uniformly distributed
inter-send times, which makes them more similar to our simulation
than other protocols (e.g. HTTP or FTP).

The number of simultaneous legitimate clients can also vary in
a broad range. Some examples for different hosts can be imagined:
For a small corporate server the number of legal clients is low
(N(t)=5) the server’s capacity is high, the average load is low, and

thus the number of attacking hosts should be high: e.g. A(t)=40,
so N(t) << A(t). For a medium size server N(t)=50 and a
successful attacker can deploy it’s attack from a low number of
hosts, e.g. A(t)=50, so it is easy to hide his attack (N(t) ∼ A(t)).
For a global portal there are lots of legal clients: N(t)=10000 and
the attacker cannot easily estimate the needed number of attacking
machines, so he can use A(t)=5000 attacking hosts with a high
attacking rate (e.g. λa=λn·10) (N(t) > A(t))

In our first simulation we show that our method is workable on
a large number of hosts, so we decided to set the parameters as
described in Table 1.

Table 1 Basic parameters of the simulation
Number of legal sources Nt 10000
Number of attackers A(t) 5000
λ for legal sources (λn) 0.1
λ for attacking sources (λa) 0.4
Service rate (µ) (packets/sec) 1500

In our case, described in Table 1, it is trivial that the server’s
capacity should be more than 1000, but the attack is only successful
when the capacity µ) is below 3000 (λa · A(t) + λn · N(t)). We
consider µ = 1500.

The average number of packets in the buffer during normal state
is

E(X) =
(λn/µ)

1 − (λn/µ)
(7)

which gives E(X)=2 for data from Table 1 (see [17] for details).
We set the buffer size parameter L1=40 (packets). The other
parameter that affects the length of the buffers is the overflow
traffic. As the normal traffic is about 1000 packet/second, length
L2 = 30000 (packets) seems a safe estimate. The parameters of
the algorithm for detection of attack are set as shown in Table 2.

Table 2 Attacker detection parameters
Sliding window size (ws) 10 sec
Tolerance for traffic jump (r) 0.6
Time frame to get last correct value of λ 45 sec

The available time for traffic measurements depends on the value
of δ. This a priori unknown parameter depends on how long it takes
for the buffers to fill up.

In our simulation we set a constant limit (δ̂ ≤ δ) for traffic mea-
surements. Suppose we know that the total traffic (with attackers)
is Tn + Ta = 3000, and the service rate is µ = 1500. We can
expect the buffer (L1) to be full after 40/(3000 − 1500) ≈ 0.3
seconds, and the whole buffer (L) after 30040/(3000−1500) ≈ 20
seconds (so E(δ) = 20). It is a very safe estimation that δ = 10. In
real-world situations we have no preliminary knowledge about the
attack and so δ (which is coherent with the L2 buffer length) is the
result of some estimation or adaptation. For simplicity, we set the
short time moving average window size as ws = δ. We consider
that the normal traffic is restored if the buffer length decreased
under L1.

Algorithm B1 was used during attacker identification.

3.2. Simulation 1
In this simulation our main goal was to gain data about the

viability of our approach. Table 3 shows the most interesting results

of the simulation. After running the simulation with δ = 10 we
repeated the simulation with different window sizes. Table 3 shows
clearly that a longer window size gives more accurate identification:
the number of filtered legal clients decreased to 1 from 592 as the
windows size increased from 5 to 40 seconds.

Table 3 First simulation results
δ̂(δ̂ = ws) 5 10 20 30 40
Correctly identified attack-
ers

2963 3737 4497 4750 4875

Filtered legal clients (type
II error)

601 562 285 148 71

Dropped packets 0 0 0 14361 29326
Maximum buffer level (and
corresponding time frame)

29713
(200s)

14871
(110s)

29654
(119s)

30040
(120s)

30040
(120s)

Time to restore (after t∗) 156 111 79 77 83

On the other hand a large window size endangers the system
with the possibility of a buffer overflow. During the simulated attack
the buffer could only allow traffic measures for 20 seconds, after
this the buffer filled up and after this the identification algorithm
produced less accurate results.

The numbers in the maximum buffer level row show that when
the time window is too short, our algorithms cannot determine the
correct level of the attack. Therefore a too low number of hosts
were filtered at ws = 5 and this way the maximum buffer level
reached a very high level at a later time. The simulation results
show that our method can successfully protect the system with a
good estimation of the parameters, and when enough buffers are
available for measuring the traffic levels.

3.3. Simulation 2
During the second simulation we simulated a smaller system:

The sample system consists of N = 50 legal and A = 50 attacker
clients. Using λn = 0.1 and λa = 0.2 the task of the identification
algorithm is hardened. The service rate µ = 8 while the buffer
lengths are L1 = 40 and L2 = 160. The window size parameter
was considered as ws = δ = 10. Other parameters and used
algorithms are the same. During Simulation 2 we repeated our tests
on 500 different sets of input data to gain statistical information
about the properties.

After running the simulation 500 times on different data sets
we found that the attack was firstly detected by Algorithm A1 in
4 cases, Algorithm A2 was faster in 454 cases while the attack
has been detected by both Algorithm A1 and A2 in 42 cases. The
simulation results are summarized in Table 4.

Table 4 Simulation results
minimum average confidence

interval
(95%)

traffic restoration time (after t∗) 51 116.624 1.8671
packets dropped 0 0.708 0.312
normal user filtered (error type II) 1 7.228 0.223
number of attackers filtered 24 34.102 0.286
attack detection time (after t∗) 0 3.07 0.09

The mean time of attack detection is E(t̂ − t∗) = 3 seconds.
After this time the DDoS front-end can start to suppress the
attacking traffic. The minimum detection time is (t̂ − t∗)min = 0
seconds, the maximum is (t̂ − t∗)max = 6 seconds.

3.4. Selection Of Parameter r

We carried out investigations on how the number of successful
detections by different algorithms depends on the value of r (i.e.
tolerance for traffic jump).

Table 5 The effect of parameter r on the first detection
r Alg. A1 Alg. A2 Alg.

A1+A2
same
time

A1 error
type II

A2 error
type II

0.2 0 500 0 0 1117
0.3 0 499 1 0 234
0.4 0 495 5 0 37
0.5 0 485 15 1 9
0.6 4 454 42 0 1
0.7 18 375 107 0 2
0.8 54 273 173 0 0
0.9 138 176 186 0 1
1.0 227 106 167 1 0

The first 3 columns of Table 5 show which algorithm detected
the attack firstly. Other columns show Type II error events in case
of Algorithm A1 and A2. The length of L1 was set to fit to the
normal traffic, so the number of type II errors by Algorithm A1 are
very low. In the range of r ≤ 0.4 the number of false detections
in case of (Algorithm A2) is too high.

The high number of attack detections by Algorithm A2 in this
area shows that the algorithm detects the attack correctly, but signals
the attack in a too early stage. In this stage the success checking
algorithm (Alg. D) might report the end of the attack because
of the low number of packets in the buffers. Due to the lack of
attacker identifications the attack detection algorithm detects the
attack again. Meanwhile the traffic measurements do not reflect
the correct values, because the timeframe measures contain more
data from the (not fully detected) attack stage too. This makes
our solution ineffective. The optimal detection would detect every
attack once and identify all the attacking sources.

When r is between 0.5 and 0.9 then we can see that the number
of attack detection by Algorithm A2 decreases and for Algorithm
A1 slowly rises. For Algorithm A2 high values of r cause that we
are not detecting the attack by a traffic jump, but rather by a buffer
overrun.

4. PROTOTYPE APPLICATION

To support our method we are currently engineering a prototype
to apply the method on a real-world problem. Our candidate is the
SMTP system with real-time virus scanning. The simple system
consists of an exim MTA, an Amavis scanning engine, and a virus
scanner. This system is vulnerable to DoS attacks, as the scanning
and processing of an email can take 0.1-0.5 seconds and thus a
sophisticated attacker against a system with a bandwidth more than
256 kbps can initiate an attack against this system. The attacker can
send legitimate e-mails to one or more known recipients, so it is
not obvious that the system is being attacked. This attack can also
be the result of an Internet virus (e.g. sobig). Our sample scenario
is shown in Figure 4.

The basic SMTP system is extended with a general TCP
wrapper, a DoS front-end client and a DoS front-end engine. The

MTA

TCP

wrapper Virus

scanner

MTA-scanner

middleware

DoS front-end

client

DoS front-end

engine

MDA

sender

MTA

Fig. 2. Prototype topology

TCP wrapper is a simple wrapper that first asks the DoS front-
end if the sender is permitted to send e-mails. After that it simply
forwards the data through the connection towards the mail transport
agent (MTA). The DoS front-end client is a simple application,
its duty is to communicate with the DoS front-end engine and
depending on the decision of the engine, send the result back to
the wrapper application. The DoS front-end engine consists of a
statistical engine that measures the traffic and maintains the state-
variables of the DoS front-end and a decision engine that decides if
a sender should be filtered out preventing to send any e-mails. If our
system considers a state as an attack state, it simply sends back a
regular SMTP temporary error to the sender. If the system decision
is a false detection (type II error), then the sender is not able to
send the message immediately, but due to the way SMTP works,
after some time-out the senders SMTP server will try to send the
message again. This way we can set an efficient protection against
the attackers without harming the regular traffic (as we do not
filter all the traffic only the attacking traffic), and we do not cause
intolerable problems even if the decision is a false-positive (type
II error). Our prototype is currently in the programming phase, we
plan present the results of the prototype system at the conference.

5. SUMMARY

In the paper we introduced a model to handle some special cases
of DDoS attacks at the victim server. We identified a trade-off at the
attacker which makes the protection by traffic analysis possible. We
described a simplified, but applicable model on this problem, and
described all the methods and algorithms needed to successfully
deploy such a protection. Our approach does not need to modify
network elements outside the victim server and minimizes the
number of legitimate sources blocked by the server. We gave
upper bound to the error rate of the detection algorithm, and to
the probability of false identification. The simulations confirm our
analitical results and help in investigation of the sensitivity of the
parameters

Appendix. Analysis Of The Algorithms

Reliability Of Attack Detection

In time slot t we test the following hypothesis about the state
of the system

H0: state of no attack
H1: state of attack
There are two types of error: Type I error is the event of a

missed detection, when our server is under attack and we failed to
detect it, while Type II error is the event of a false detection, when
an attack is detected and there is no attack.

Consequently Type I and Type II errors are the following:

PI = P ({decision on H0 at time t}|H1)(= 0), (8)

PII = P ({decision on H1 at time t}|H0). (9)
We assumed that the system has been in normal state for a

long time, when a change of state occurs. Considering detection
algorithm A3 we can give the following rough upper bound on
PII

PII,A3 = P ({queue length ≥ L1} ∪ (10)

{λ̂(t̂) > (1 + r) · λ̄(λt)}|H0)

≤ 2 · max{PII,A1, PII,A2} (11)
where the individual probabilities for the Algorithms A1 and A2
are the following:

PII,A1 = P ({queue length ≥ L1}|H0) (12)

PII,A2 = P ({λ̂(t̂) > (1 + r) · λ̄(t̂)}|H0) (13)
Probability PII,A1 can be calculated (designed) using ap-

proaches of standard buffer design (any corresponding textbook
covers the needed techniques, see e.g. [17]). Probability PII,A2 is
considered below, where we give upper bound on it.

Theorem

Assume that random variables Tn(t), t=1,2,..., describing the
aggregate traffic of legal sources are pairwise uncorrelated. The
probability that the short time window measurement with window
length ws results in a value exceeding rtimes the mean traffic of
normal state, assumed H0 is true, can be upper bounded by

P{λ̂(t̂) > (1 + r) · λ̄(λt)} ≤
1

wsr2

(

σn

λn

)2

(14)

Proof: Let

η =
1

ws

ws
∑

m=1

ξ(m) (15)

where

ξ(m) = Tn(tm), m = 1, ..., ws (16)
are nonnegative, pairwise uncorrelated random variables.
Applying Chebysev’s inequality:

P [η > (1 + r)E(η)] = P [η − E(η) > rE(η)] ≤ (17)

≤ P [|η − E(η)| > rE(η)]

≤
1

r2

(

ση

E(η)

)2

where

E(η) = E(ξ(m)) = λnσ2
η =

1

ws

σ2
ξ . (18)

Bound (10) decreases with the inverse of the window length, ws.
In the case of Poisson distribution, the probability of the event that
the short time window average exceeds the double of the normal
traffic (i.e. r = 1) is upper bounded by 1/(wsλn) ((σn)2 = λn).
♣

A stronger upper bound can be found by using the Hoeffding
bounding technique [18] if we assume the stronger condition of
independence of the aggregate traffic of legal sources. In this case
the corresponding bound decreases exponentially with the window
length, ws. Assume that the peak aggregate traffic level in the

normal state can be bounded by a constant K. The probability that
the short time window measurement results in a value exceeding r
times the mean traffic of normal state, assumed H0 is true, can be
upper bounded by

2 · exp

(

−2ws

(

(1 + r)λn

K

)2
)

(19)

The Probability Of False Identification And The Problem
Of Hiding

The identification algorithm outputs a subset Z∗
a of set Z of all

active sources. The case when Z∗
a⊂Za means the attacking sources

are not fully identified.
The attacker wishes to hide as effectively as he can. Assume the

attacker deploys the same aggregate attacking traffic independently
of the number of attacking sources, A(t), i.e. the use of more
attacking machines means the generation of less traffic per machine.
The attack is more severe when the total attacking traffic is
distributed among more attacking sources. There are two extreme
cases in the number of attacking sources.

Consider first the case of A = 1. Identification error occurs if
event:

max
i∈Zn

λ̂i
n > λ̂j

a (20)

where Za = {j} (i.e. there will be at least one misidentified
source).

Let F
(i)
n (k), and Fa(k), k = 0, 1, 2, ... denote the probability

distribution functions of the traffic corresponding to the legal source
with index i and the attacking source, respectively. The probability
of event 20 is

P (event(20)) =

∞
∑

k=0

(

1 −

|Zn|
∏

i=1

F
(i)
n

(k)

)

(Fa(k) − Fa(k − 1))

(21)
where Fa(−1) = 0.

The other extreme case is when the number of attackers and
legal users are equal and all active sources emit same traffic level.
In this case, a legal user will be identified attacking with the same
chance as an attacking source. The decision is cannot better as a
random selection from set Z. For instance, the probability that there
will be no misidentified source is practically zero.

Therefore the best strategy of the attacker is to spread uniformly
the attacking traffic among as many sources as he can. If the attacker
has a good estimate on parameters λn , λ

(i)
n and µ, i.e. the aggregate

level and the per source traffic level of legal users and the service
rate of the server, then the most powerful attack deploys A attacking
sources where

A =
µ − λ̂n

min
i

λ̂
(i)
n

(22)

Time Duration Of Unavailability Of The Service

If the identification of attacking sources is perfect, the sup-
pression of attacking traffic frees the buffer from overload at once
because all packets from attacking sources are discarded.

Therefore the time of unavailability of the service is determined
by the eventual reiteration of the identification and suppression step.

This complex mechanism does not seems tractable for an analysis,
it is better suited for simulation.

REFERENCES

[1] Lau, F. and S. H. Rubin and M. H. Smith and L. Trajovic. “Dis-
tributed Denial of Service Attacks.” IEEE International Conference
on Systems, Man, and Cybernetics, Nashville, USA, 2000.

[2] Matsuura, K. and H. Imai. “Protection Of Authenticated Key-
Agreement Protocol Against A Denial-of-Service Attack.” In Proceed-
ings of 1998 International Symposium on Information Theory and Its
Applications (ISITA’98), pp. 466-470, Oct. 1998.

[3] Leiwo, J. and T. Aura, P. Nikander. “Towards network denial of service
resistant protocols.” In Proceedins of IFIP SEC 2000, Beijing, China,
pp. 301-310, August 2000.

[4] Aura, T. and P. Nikander. “Stateless Connections.” In ICICS’97, LNCS
1334. Springer-Verlag, pp. 87-97, 1997.

[5] Park, K. and H. Lee. “On The Effectiveness Of Probabilistic Packet
Marking For IP Traceback Under Denial Of Service Attack.” Tech.
Rep. CSD-00-013, Department of Computer Sciences, Purdue Uni-
versity, June 2000.

[6] Eronen, P. “Denial Of Service In Public Key Protocols.” Paper
presented in Helsinki University of Technology’s Seminar on Network
Security course (Fall 2000), December 2000.

[7] Ferguson, P. and D. Senie. “Network Ingress Filtering: Defeating De-
nial Of Service Attacks Which Employ IP Source Address Spoofing.”
RFC 2827, May 2000.

[8] Ioannidis, J. and S. M. Bellovin. ”Implementing Pushback: Router-
based Defense Against DDoS Attacks.” In Proceedings of Network
and Distributed System Security Symposium, Reston, VA, USA, Feb.
2002, The Internet Society.

[9] Gil, T.M. “MULTOPS: A Data Structure For Denial-of-service Attack
Detection.” Vrije Universiteit, 2000.

[10] Dwork, C. and M. Naor. “Pricing Via Processing Or Combatting Junk
Mail.” In Advances in Cryptology. In Proceedings of the Crypto ’92:
12th Annual International Cryptology Conference, Lecture Notes in
Computer Science volume 740, pp 139-147, Santa Barbara, California,
August 1992. Springer.

[11] Jakobsson, M. and A. Juels. “Proofs Of Work And Bread Pudding
Protocols.” In Proceedings of the IFIP TC7 and TC11 Joint Working
Conference on Communications and Multimedia Security (CMS ’99),
pp. 258-272, Leuven, Belgium, Spetember 1999. Kluwer.

[12] Juels, A. and J. Brainard. “Client puzzles: A Cryptographic Counter-
measure Against Connection Depletion Attacks.” In Proceedings of the
1999 Network and Distributed System Security Symposium (NDSS
’99), pp 151-165, San Diego, California, February 1999.

[13] B. Bencsáth, L. Buttyán, I. Vajda, ”A Game Based Analysis Of The
Client Puzzle Approach To Defend Against DoS Attacks”, Proceedings
of SoftCOM 2003 11. International conference on software, telecom-
munications and computer networks, pp. 763-767, University of Split,
2003,

[14] Forristal, J. “Fireproofing Against DoS Attacks.” http://
www.networkcomputing.com/1225/1225f3.html, Network Computing

[15] Mutaf, P. “Defending against a Denial-of-Service Attack on TCP.” In
Proceedings of the Recent Advances in Intrusion Detection Confer-
ence, 1999.

[16] Ramanathan, A. “WADeS: A Tool For Distributed Denial Of Service
Attack Detection.” Thesis at Texas A&M University, August 2002.

[17] Gross, D. and C. M. Harris. Fundamentals of Queueing Theory, Wiley-
Interscience; ISBN 0471170836

[18] Hoeffding, W. “Probability Inequalities For Sums of Bounded Random
Variables”. American Statistical Association Journal, pp 13-30, 1963.

