
Clustering IoT Malware based on Binary Similarity
Márton Bak1, Dorottya Papp1,3, Csongor Tamás1,2, and Levente Buttyán1

1CrySyS Lab, BME-HIT
2Ukatemi Technologies

3AIT Austrian Institute of Technology GmbH.

Abstract—In this paper, we propose to cluster malware samples
based on their TLSH similarity. We apply this approach to
clustering IoT malware samples as IoT botnets built from
malware infected IoT devices are becoming an important trend.
We study the performance of two distance-based clustering
algorithms, k-medoid and OPTICS, on a large corpus of IoT
malware samples when they are used with the TLSH difference
metric to measure distances between samples. Our results show
that neither of the two algorithms have acceptable clustering
performance. Hence, we propose a new clustering algorithm,
which achieves a performance superior to both k-medoid and
OPTICS.

I. INTRODUCTION

The concept of malicious software – or malware, as it is
called in the computer security community – is almost as
old as computers themselves. While in early years, malware
was mainly created for fun or for experimental purposes,
with the growing number of personal computers and the
proliferation of Internet connectivity, malware development
became a profitable business for miscreants at the end of
the last century. Later, smart phones appeared, and attackers
started developing malware for mobile devices. Today, we are
witnessing a new trend: all sorts of embedded devices are
being connected to the Internet, which is rapidly transforming
into an Internet of Things, or IoT for short. Not surprisingly,
malware development followed this new trend, and malware
is now developed for embedded IoT devices as well.

A significant problem is that the number of IoT devices is
already large and grows exponentially, which means that they
can be converted into a substantial attack infrastructure by
infecting them with malware and organizing them into botnets.
Actually, such botnets have already appeared in the wild. An
infamous example is the Mirai botnet, and the importance of
the problem is illustrated by the fact that it holds the record
for the most intensive DDoS attack in history ever [1]. Of
course, malware infected IoT devices can be used not only
for building botnets, but also for all sorts of other misdeeds,
such as click fraud and bitcoin mining.

Anti-virus companies rely on malware classification meth-
ods to identify relating malware samples. Clustering malware
into families makes sense, as members of the same family,
while being different at the binary level, exhibit similar
behavior. So ultimately such clustering reduces the load on
virus analysts by allowing them to focus on samples that are
not similar to any known sample.

In this paper, we propose to cluster malware samples based
on their TLSH difference, where TLSH is a fuzzy hash
algorithm developed by Trend Micro [2]. While this approach
can be used for clustering any malware, here we use it to
cluster IoT malware samples due to the importance of this
new trend. We study the performance of two distance-based
clustering algorithms, k-medoid and OPTICS, on a large
corpus of IoT malware samples when they are used with
the TLSH difference metric to measure distances between
samples. Our results show that neither of the two algorithms
have acceptable performance: k-medoid produces clusters with
unacceptably large diameter, meaning that it puts unrelated
samples into the same cluster, whereas OPTICS fails to cluster
more than half of the samples in our data set. To overcome
these problems, we propose a new clustering algorithm, which
is based on OPTICS and achieves a performance superior to
both k-medoid and OPTICS.

The organization of the paper is as follows: In Section II, we
provide some background on program similarity measures, and
clustering. In Section III, we give an overview of our research
methodology, including how we obtained our initial set of IoT
malware samples, how we cleaned this initial corpus, and how
we determined the TLSH difference threshold under which
two samples are considered variants of the same malware. In
Section IV, we present the performance of the k-medoid and
OPTICS clustering algorithms on our corpus and explain why
they are not appropriate for malware clustering. We describe
our own clustering algorithm in Section V, and evaluate its
performance and compare it to that of k-medoid and OPTICS
in Section VI. Finally, we conclude our report and sketch some
possible future work in Section VII.

II. BACKGROUND

In response to polymorphism and metamorphism employed
by modern malware, anti-virus companies have begun to
utilize multi-layered approaches [3], [4], [5] in order to detect
malware. The layers include techniques for metadata-analysis,
static analysis, dynamic analysis and machine learning, as
well as network-based techniques. Our work is concerned with
static analysis and clustering, therefore, we focus on these.

During static analysis, the instructions and bytes of the
sample are analyzed. Because the sample is not executed,
such approaches typically scale better and can provide a quick
insight into the sample’s functionality. Fuzzy hash algorithms,
such as the Trend Micro Locality Sensitive Hash (TLSH) [6],978-1-7281-4973-8/20/$31.00 c© 2020 IEEE

Fig. 1. Overview of Methodology

are a popular group of static analysis techniques that construct
a fingerprint or digest of the input sample. Two output hashes
can then be compared to measure the similarity of the original
samples. Recent research [7], [8] have shown that TLSH is not
only more precise than previous methods, including the state-
of-the-art approaches ssdeep [9] and sdhash [10], it is
also applicable for malware classification. In order to measure
similarities between files, TLSH digests have to be computed
and compared. TLSH performs well as long as the input binary
is not packed or encrypted.

In this paper, we study the applicability of two clustering
algorithms, k-medoid and OPTICS. K-medoid [11] is a PAM-
based algorithm in which clusters can have only valid data
points as their centers (also called medoids). The algorithm has
one input parameter, k, which determines how many clusters
will be present in the output of the algorithm. The algorithm
first selects k medoids, then tries to fit all data points to
the nearest cluster head. Medoid selection and re-clustering is
repeated iteratively until an optimum is reached. The measure
of goodness for the algorithm is s(k) [11], which measures
the gain in assigning data points to specific clusters based on
distance. The closer the metric is to 1, the better the setup.

OPTICS [12] is a density-based algorithm. It is capable of
identifying sparse and dense regions in the data set in order to
create clusters. It takes two parameters, εmax and minPts. ε
describes the radius of an area, while minPts is the minimum
number of data points in that area. The algorithm dynamically
calculates ε values for data points such that data points have at
least minPts− 1 samples in their ε radius. OPTICS also has
a built-in clustering algorithm, ξ, which clusters data points
by detecting abrupt changes in the ε-values.

III. METHODOLOGY

The high-level overview of the methodology we followed
during this research is shown in Figure 1. The methodology
can be divided into three main steps:

1) data collection, which results in a data set of IoT
malware samples,

2) filtering, which removes packed and/or encrypted sam-
ples from the data set, and

3) clustering, which identifies variants in the data set by
grouping malware samples based on their pair-wise
TLSH differences.

To evaluate cluster configurations, we need the TLSH differ-
ence threshold denoting variants of malware families.

A. Data Collection

In order to acquire a data set of IoT malware samples,
we first need to select an IoT-relevant embedded architecture
which the data set should target. This is a required step as
the different instruction sets could cause TLSH to measure
big differences between variants compiled for different ar-
chitectures. For this study, we select samples targeting the
ARM architecture due to its widespread use in the IoT world.
Secondly, we compile a list of 29 malware family names
based on previous studies of the IoT malware landscape [13],
[14], [15]. These malware families specifically target the IoT
ecosystem. Many of them implement the ability to infect
other machines and connect them to an existing botnet. The
botnet is remotely administered by the attacker via various
channels, e.g. IRC or HTTP-based communication. Samples
from these families take various commands from the attacker
via a command & control server. The families also share
similar traits as they are known to copy and develop features
from each other, e.g. after Mirai’s source code was leaked [16],
several modifications led to the branches Satori, Okiru, Masuta
and PureMasuta.

We use the compiled list to search for and download mal-
ware samples from VirusTotal [17], a publicly available site
to which users can upload executables and submit URLs. The
site scans uploaded executables with a number of anti-virus
tools and returns to the user the collected results, including
the malware family names assigned by anti-virus tools. We
downloaded 12 993 samples and their corresponding anti-virus
scan results.

The scan results from VirusTotal are fed to AVClass [18],
which outputs the most likely malware family name based on
a majority vote cast of anti-virus tools’ assigned labels. We
made changes to the tool’s source code as initially, it could
not provide a label for a number of samples. In order for
AVClass to cast a majority vote, it needs at least 4 detections
per sample. As some of our samples have lower detection
rates, we remove this requirement. Throughout our study, we
use AVClass’s output as the ground truth for all samples.

B. Filtering

The second step in our methodology is to filter the down-
loaded samples. The step is required because TLSH has diffi-
culty identifying similarities between packed and/or encrypted
samples. We use two approaches for filtering our data set.
Firstly, we use binary entropy calculation, which calculates
the empirical entropy of a file based on the contained bytes.
There exist best practices for calculated entropy values signal-
ing packed and/or encrypted executables [19]. The measured

Fig. 2. Entropy distribution of our dataset

empirical entropy values of our data set is shown in Figure 2.
There is a clear cut between the set of native executables and
the set of packed and/or encrypted samples. As a result, we
excluded 2817 samples.

TABLE I
DISTRIBUTION OF MALWARE FAMILIES IN THE FILTERED CORPUS

Family # Samples Family # Samples
mirai 6108 dnsamp 5
gafgyt 3711 oneeva 2
dofloo 163 ditertag 2
tsunami 92 zergrush 1
ddostf 63 luabot 1
presenoker 19 lightaidra 1
cloxer 1 no name recovered 7

Binary entropy calculation has one major limitation, namely,
that large sections of low-entropy bytes can lower the calcu-
lated overall entropy. In order to remove this limitation, we
also use YARA-rules [20], as packers can leave traces in the
binary, e.g. specific strings and/or byte sequences unique to
the packer. We run YARA-rules for UPX and other packers
on our whole data set, looking for packed binaries. We found
a total of 980 packed samples, all of which were packed
with UPX and have already been filtered using binary entropy
calculation. Table I shows the distribution of malware families
in our filtered data set.

C. TLSH difference threshold selection

Before being able to cluster our data set, we needed a TLSH
difference threshold signaling variants of malware families that
produce zero false matches. In [8], a threshold of 70 was
suggested to be used for few false positives. This suggestion,
however, was based on a relatively small set of 477 samples
with most of the samples belonging to two families. In order
to define a globally applicable TLSH difference threshold for
malware similarity, we carry out a measurement at a much
bigger scale.

We use the EMBER data set [21], the largest available
labeled malware data set at the time of writing. We process
its test set, containing 100 000 malicious samples from 917
malware families. As the actual malware binaries required
to calculate the TLSH digests are not included in the data
set, our measurements are carried out on the 62 863 samples
available in Ukatemi Technologies’s malware repository. In
order to find the maximal zero false positive threshold, we

Fig. 3. Best s(k) values of our dataset

search the available sample set with a candidate threshold. If
false matches are found, the threshold is reduced. This process
yielded the zero false positive threshold of 1, which is a much
lower threshold than we anticipated. Manual investigation
based on VirusTotal details and behavior pages, as well as
IDA PRO [22] with the Diaphora plugin [23] reveals, that the
EMBER data set labels are often incorrect: samples with very
similar functionality and behavior are labeled as members of
different malware families.

As a result, we resort to manual verification. We randomly
select samples from a a data set of 355 795 714 unlabeled mal-
ware samples, courtesy of Ukatemi Technologies. The selected
samples include 9 Azorult samples, 3 Lightneuron samples
and 10 Pioneer samples. We compare these samples to the
rest of the data set using the above mentioned methodology.
Our analysis yielded the TLSH difference threshold of 48.

D. Clustering

The final step is clustering the data set. Our goal is to group
samples based on their TLSH difference, thereby detecting
variants of malware families. Initially, we clustered the data
set with two widespread algorithms, k-medoid and OPTICS,
using TLSH difference as the distance metric. The results,
presented in more details in Section IV, show that k-medoid
often puts unrelated data into the same clusters, while OPTICS
fails to cluster more than half of the samples in our data set.
Therefore, we develop a new clustering algorithm, which we
present in Section V.

IV. CLUSTERING RESULTS

A. K-Medoid

There are several rationales behind choosing k-medoid
as the clustering algorithm. It is unsupervised, ie. there is
no need to supply any additional data, only the similarity
measurements between samples. In addition, the algorithm
only selects existing data points as cluster heads. This is useful
in our scenario, because cluster heads can represent other
malware samples in the same cluster. The disadvantage of this
algorithms is that the input k has to be specified.

Unfortunately, we do not know how many variants there are
in our data set, therefore, we calculate cluster configurations
for all potential k values. We compute the s(k) metric for all
cluster configurations in order to rank our setups. As shown
in Figure 3, the best s(k) values of the calculated cluster
configurations barely differ, however, the corresponding k
values have a wide range, making it unclear which setup

TABLE II
STATISTICS FOR K-MEDOID CLUSTER CONFIGURATION WITH k = 17

s(k) 0.4054158410234883
Maximum diameter 1038
Minimum diameter 180
Mean diameter 467.823529411
Largest cluster size 1110
Smallest cluster size 35
Mean cluster size 573.294118

to choose. We also observed that several cluster heads have
small TLSH differences when compared to other cluster heads,
which suggests that clusters could be merged. As variants have
a TLSH difference lower then 48, cluster heads of different
clusters should have a TLSH difference score higher than
48. With this requirement in mind, we looked at our cluster
configurations and found, that with TLSH thresholds ranging
from 30 to 70, k = 17 achieves the best s(k) value.

Statistics of the cluster configuration k = 17 is shown in
Table II. In this configuration, the calculated cluster diameters
range from 180 to 1038, the mean being 468. In our scenario,
cluster diameter is interpreted as the largest TLSH difference
between any two samples in the same cluster. Taking our
TLSH difference threshold for variants of 48 into consider-
ation, we can conclude that clusters in this setup contain very
different samples; clusters should be split into smaller clusters.

Cluster sizes in the setup range from 35 to 1110 samples.
However, as shown in Table I, certain families contribute only
a small number of samples to our data set. The configuration
does not reflect that distribution as it does not have any
singleton or small clusters. Thus, we conclude, that the k-
medoid algorithm does not perform well for the goal of
clustering malware samples based on TLSH differences.

B. OPTICS

The second algorithm we tested was the density-based
algorithm, OPTICS [12]. The algorithm is able to detect
and cluster dense and sparse regions in the data set. This
characteristic makes it favorable in our scenario as we have
families with only a few samples as well as families with
thousands of samples, as shown in Table I.

The algorithm takes two additional parameters besides a
precomputed distance matrix: minPts and εmax. We can
specify an upper bound for εmax as the maximum TLSH
difference in our data set. However, selecting minPts is a
challenge without knowledge about the internal structure of
our data set. To gain this knowledge, we ran OPTICS with
different parameter setups: εmax values were set to be 40, 50,
60 and 70, while minPts was set to be 1, 2, 5, 10, 20, 40,
50, 70, 100, 150 and 200.

The resulting cluster configurations are again unsatisfactory.
In all configurations, the number of unclassified samples is
very high. Different values of εmax does not seem affect
this trait: setting minPts to 2, εmax = 40 yielded 1800
unclassified samples, while εmax = 70 resulted in 1721
unclassified samples. The more we increased minPts, the

more unclassified samples were returned. The configuration
εmax = 70, minPts = 200 resulted in 6934 unclassified
samples, which is 68% of our data set. Such a high number
of unclassified samples is disadvantageous in our scenario, as
many samples would require additional analysis.

C. Discussion

The results of both tested algorithms present issues for
malware analysis. Firstly, the k-medoid algorithm produces
clusters whose diameters are too large to represent variants
of malware families. We determined that the threshold TLSH
difference for variants is 48, however, k-medoid’s diameters
range between 180 and 1038. OPTICS’s cluster diameters are
more in line with our threshold value, however, as much as
68% of our samples are detected as outliers.

These algorithms were originally developed to cluster mea-
surements which may be noisy. In order to remove noise, the
data set must be cleaned and it must also be balanced. A
balanced data set in our scenario requires exclusion of samples
from families with very high and very low sample counts.
Such a step, however, is undesirable as potential outliers may
represent previously unseen variants or entirely new families.

V. NEW CLUSTERING ALGORITHM

In light of our experiment presented previously, we develop
a new clustering algorithm which meets the following require-
ments. Firstly, it has to cluster samples based on their binary
similarity expressed as TLSH differences. Secondly, it has to
be able to find even the smallest clusters in a varying density
data set. The input data set may contain singleton clusters, i.e.
samples dissimilar to every other sample, however, these must
not be treated as noise because these are the most interesting
samples for malware analysis.

Our algorithm is based on OPTICS, however, we replace
its default clustering algorithm, ξ. Our algorithm can be
divided into three major phases. In the first phase, we extract
information about the structure of the data set. In the second
phase, we generate a greedy, initial cluster configuration based
on TLSH differences. In the last phase, we merge clusters in
order to compensate for the greedy mechanism in the previous
phase.

In order to extract structural information from the data
set, we reuse OPTICS with input parameters minPts and
εmax. OPTICS can compute the ε values required to form a
cluster around individual samples. Samples with low ε values
represent dense regions while samples with high ε values
represent sparse regions. We sort the resulting ε values such
that samples in dense regions come first in the list.

Our initial clustering begins with no clusters and chooses the
first sample with the lowest ε value. This sample represents
the densest region of the data set and it becomes the first
cluster head. We then put all samples into the selected head’s
cluster which are considered similar enough, captured by a
threshold parameter. Subsequent cluster heads are selected
such that they have the lowest corresponding ε value and
they are significantly dissimilar to previously selected cluster

TABLE III
COMPARISON OF THE CLUSTERING METHODS

k-medoid OPTICS Our algorithm
Number of clusters 17 13 745
Number of singletons 0 6058 353

Fig. 4. Diameters Produced by Clustering Algorithms

heads. There may be cases when new cluster heads cannot be
selected this way. In such cases, we select the sample with the
maximum dissimilarity to every other cluster head. We repeat
this process until all samples are clustered.

The data set may contain dense regions whose diameter is
larger than the maximum allowed dissimilarity. In such cases,
the initial clustering strategy faces a limitation as it groups
the center of the region into one large cluster and generates
several small clusters on its perimeter. In order to overcome
this challenge, we try to detect such perimeter clusters and
merge them with the center cluster. We combine two clusters
if the combined cluster’s diameter either remains under 48
(our empirical threshold for variants), or merging increases
the diameter of the center cluster by a fixed parameter.

VI. EVALUATION

In order to evaluate the efficiency of our proposed clustering
algorithm, we compared it against the results of both k-medoid
and OPTICS. During evaluation, we took into consideration
cluster diameters, the number of singleton clusters generated
and two new measures of goodness.

The number of generated clusters and singleton clusters are
shown in Table III. K-medoid and OPTICS both generate
considerably fewer clusters than our algorithm does, more
in line with the number of malware families our data set
contains. Our algorithm generates 745 clusters of which 353
are singletons, a negligible amount compared to OPTICS’s
performance.

The diameters of cluster configurations from all three
algorithms are shown in Figure 4. Because our algorithm
produced much more clusters than k-medoid and OPTICS,
we use a different scale for the number of clusters in its
case. Our experiments have shown that in order to detect
variants of malware families, cluster diameters must be below
48. The figure shows that both k-medoid’s and OPTICS’s
cluster diameters are too large to denote variants. The cluster

Fig. 5. Goodness Ratios Produced by Clustering Algorithms

Fig. 6. Relaxed Goodness Ratios Produced by Clustering Algorithms

configuration of our algorithm, however, is much closer to
this threshold with 93.69% of our clusters having diameters
below 50. As a result, our clusters are more likely to represent
malware variants.

The first measure of goodness we present shows how ”pure”
a cluster is, i.e. how many samples of the cluster are of the
family with the most samples in that cluster. This metric can
only be computer for non-singleton clusters as clusters con-
taining only a single sample automatically achieve the measure
of 1. Figure 5 shows the algorithms’ performance with respect
to this measure of goodness. Cluster configurations of both k-
medoid and OPTICS typically achieve ratios between 0.56 and
0.63. By contrast, of the 392 non-singleton cluster produced
by our algorithm, 185 have ratios over 0.6 of which 103
outperform both OPTICS and k-medoid.

We need to take into consideration that malware families
share and/or copy features from each other. In response, the
relaxation of our measure of goodness considers not only
the family with the most samples in a given cluster but also
families with which it is known to share features. Singleton
clusters can be included, since non-singleton clusters have
a chance of achieving the ratio 1 due to the relationships
between malware families. The relaxed measure of goodness
ratios achieved by the compared algorithms are shown in
Figure 6. The figure shows that even though both OPTICS and
k-medoid achieve ratios above 0.95, our algorithm outperforms
both with almost all clusters achieving the measure of 1.
However, our algorithm produces clusters whose relaxed ratios

are well below those achieved by k-medoid and OPTICS.
While investigating this issue, we found an indication of poor
anti-virus labels. Specifically, all clusters achieving ratios of
0.5 contain 2 samples and their malware family labels do
not match. However, the diameters of these clusters is quite
low, the mean diameter being 30.71. Checking the samples’
VirusTotal pages, we also saw that there were only a few labels
on their scan pages. As a result, the low ratios could be the
result of misclassifications.

VII. CONCLUSION

In this paper, we proposed to cluster malware samples
based on their TLSH fuzzy hash values. We applied this
approach to cluster IoT malware samples as IoT botnets built
from malware infected IoT devices are becoming an important
trend, however, we note that our approach is generic and can be
applied to other malware as well. We studied the performance
of two distance-based clustering algorithms, k-medoid and
OPTICS, on a large corpus of IoT malware samples when
they are used with the TLSH difference metric to measure
distances between samples. We found that neither of the two
algorithms had acceptable performance: k-medoid produced
clusters with unacceptably large diameter, meaning that it put
unrelated samples into the same cluster, whereas OPTICS
failed to cluster more than half of the samples in our corpus.

To overcome these problems, we proposed a new clustering
algorithm, which was based on OPTICS, but achieved a better
clustering performance. Our algorithm identifies dense regions
in the data set and considers the data points in the center of
the dense regions as cluster heads. A data point is included
in a given cluster if and only if its TLSH difference to the
cluster head is below a threshold value. We also merge clusters
if they are close to each other in terms of TLSH difference
and the diameter of the resulting merged cluster does not
exceed a pre-specified threshold. We determined the TLSH
difference threshold below which two samples are considered
to be variants of the same malware by empirical analysis of an
independent set of malware samples (the EMBER data set).

Our future work consist of analyzing the relationships
between clusters by looking at their content more closely. Our
suspicion is that this analysis will help us identify evolving
features of variants in malware families. If this proves to
be true, then our method can be used to identify individual
variants within malware families, allowing for a finer grained
classification of samples than that based on family labels.

ACKNOWLEDGEMENT

The presented research has been partially supported by
the SETIT Project (no. 2018-1.2.1-NKP-2018-00004), which
has been implemented with the support provided from the
National Research, Development and Innovation Fund of
Hungary, financed under the 2018-1.2.1-NKP funding scheme,
and by the European Union, co-financed by the European
Social Fund (EFOP-3.6.2-16-2017-00013, Thematic Funda-
mental Research Collaborations Grounding Innovation in In-
formatics and Infocommunications).

REFERENCES

[1] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai
botnet,” in 26th USENIX Security Symposium (USENIX Security
17). Vancouver, BC: USENIX Association, Aug. 2017, pp.
1093–1110. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/antonakakis

[2] J. Oliver, C. Cheng, and Y. Chen, “Tlsh–a locality sensitive hash,” in
2013 Fourth Cybercrime and Trustworthy Computing Workshop. IEEE,
2013, pp. 7–13.

[3] K. Lab, “Advanced cybersecurity technologies: How it works,” https://
www.kaspersky.com/enterprise-security/wiki-section/home, last visited:
Feb 28, 2020.

[4] s. s. r. ESET, “ESET leading-edge technology,”
https://www.eset.com/int/about/technology/, last visited: Feb 28,
2020.

[5] Broadcom, “Symantec content and malware analysis,”
https://www.symantec.com/products/atp-content-malware-analysis,
last visited: Feb 28, 2020.

[6] J. Oliver, C. Cheng, and Y. Chen, “Tlsh – a locality sensitive hash,”
in 2013 Fourth Cybercrime and Trustworthy Computing Workshop, Nov
2013, pp. 7–13.

[7] F. Pagani, M. Dell’Amico, and D. Balzarotti, “Beyond precision and
recall: understanding uses (and misuses) of similarity hashes in binary
analysis,” in Proceedings of the Eighth ACM Conference on Data and
Application Security and Privacy. ACM, 2018, pp. 354–365.

[8] C. Tamás and B. Bencsáth, “Method for similarity searching in large
malware repository,” 2018.

[9] J. Kornblum, “Identifying almost identical files using context triggered
piecewise hashing,” Digit. Investig., vol. 3, pp. 91–97, Sep. 2006.
[Online]. Available: http://dx.doi.org/10.1016/j.diin.2006.06.015

[10] V. Roussev, “Data fingerprinting with similarity digests,”
IFIP Advances in Information and Communication Technology,
vol. 337 AICT, pp. 207–226, 2010, cited By 88. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.
0-78651093858&doi=10.1007%2f978-3-642-15506-2 15&partnerID=
40&md5=d72d586c1e2186fdc9519c8ca35661f9

[11] L. Kaufman and P. J. Rousseeuw, Finding groups in data: an introduc-
tion to cluster analysis. John Wiley & Sons, 2009, vol. 344.

[12] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics:
ordering points to identify the clustering structure,” in ACM Sigmod
record, vol. 28, no. 2. ACM, 1999, pp. 49–60.

[13] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “Analysis of
ddos-capable iot malwares,” in 2017 Federated Conference on Computer
Science and Information Systems (FedCSIS). IEEE, 2017, pp. 807–816.

[14] E. Cozzi, M. Graziano, Y. Fratantonio, and D. Balzarotti, “Understand-
ing linux malware,” in 2018 IEEE Symposium on Security and Privacy
(SP). IEEE, 2018, pp. 161–175.

[15] B. Vignau, R. Khoury, and S. Hallé, “10 years of iot malware: a feature-
based taxonomy,” 2019.

[16] “Source code for iot botnet ‘mirai’ released,”
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-
released/, Oct 2016, last visited: Feb 28, 2020.

[17] “Source code for iot botnet ‘mirai’ released,”
https://krebsonsecurity.com/2016/10/source-code-for-iot-botnet-mirai-
released/, last visited: Feb 28, 2020.

[18] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A tool
for massive malware labeling,” in International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 2016, pp. 230–253.

[19] R. Lyda and J. Hamrock, “Using entropy analysis to find encrypted and
packed malware,” IEEE Security & Privacy, vol. 5, no. 2, pp. 40–45,
2007.

[20] “YARA,” https://yara.readthedocs.io/en/latest/, last visited: Feb 28, 2020.
[21] H. S. Anderson and P. Roth, “EMBER: An Open Dataset for Training

Static PE Malware Machine Learning Models,” ArXiv e-prints, Apr.
2018.

[22] Hex-Rays, “Ida interactive disassempler,” https://www.hex-rays.com/
products/ida/.

[23] joxeankoret, “diaphora,” https://github.com/joxeankoret/diaphora.

