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Abstract—The focus of this work is to find ways to make
attribute-based encryption (ABE) more suitable for access control
to data stored in the cloud. However, ABE provides a flexible
solution for “one to many” encryption, its adoption to the cloud
environment require further refinement. One such issue is the
assumption that secret key requests can be verified by one central
key generator authority, which is often not realistic. The other is
the problem of user revocation, for which a solution is essential
in every real-word system, where unexpected events may occur.
In contrast to the technically difficult multi-authority schemes
(with user revocation feature), we investigate the feasibility of
a much simpler approach: enabling secret key delegation in
single authority schemes (with user revocation feature). We show
key-delegation algorithm for one of the most important single
authority ABE construction, and also for its extension that allow
user revocation, thus achieving the desired features.

I. INTRODUCTION

Cloud computing is an emerging paradigm of information
technology, by which computer resources are provided dy-
namically via Internet. Besides cost savings, flexibility is the
main driving force of outsourcing for instance data storage,
although on the other hand it raises the issue of security, which
leads us to the necessity of encryption. In order to fulfil the
new requirements of the cloud environment, that traditional
cryptographic protocols handle inflexibly, new schemes have
appeared.

Attribute-Based Encryption (ABE) was proposed by Sahai
and Waters [SW05] as the generalization of Identity-Based En-
cryption. Contrary to traditional public-key cryptography, ABE
is intended for one-to-many encryption in which ciphertexts
are not necessarily encrypted to one particular user, but for
those who fulfil certain requirements. These requirements are
related to attributes and access policies, namely decryption is
possible if and only if the attributes satisfy the access policy.
Goyal et al. [GPSW06] distinguished the two main variants
of ABE, called key- and ciphertext-policy (KP/CP) ABE. The
latter associates ciphertexts with access policies and attributes
describe the user, accordingly these are embedded in the users’
secret keys. A ciphertext can be decrypted by someone if
and only if, his attributes - in his secret keys - satisfy the
access structure given in the ciphertext1. In this concept the
encryptor defines the access policy (usually expressed by a
Boolean formula with AND, OR gates) and the key-issuer act
as a certifier who gives out an attribute secret key to a user,

1 Contrarily, in KP-ABE attributes are embedded in the ciphertext and the
access policy in the secret key, with other words “intelligence” is assumed to
be with the key issuer, and not the encryptor.

only after it was made sure that he is eligible for that attribute.
In a cloud computing scenario it is a natural expectation of
a user to have the right of determining the access policy of
the shared data, so in this work we are going to restrict our
attention to CP-ABE. To meet the requirements of larger scale
organizations that are intended to outsource data storage, CP-
ABE still needs further refinement.

The assumption that a central key-generator authority is
able to check the validity of all kinds of attributes in an
institution is maybe unreasonable. For instance, in a university
Alice may want to share some data with demonstrators, who
are working on homework assessment. This target group can
consist of undergraduates and other employees of different
departments. To check whether an undergraduate student is
truly a demonstrator of some department, before giving her
the attribute “DEMONSTRATOR” is probably out of a uni-
versity level authority’s scope. Much more realistic to have
the departments own authority for this task, however this
requires a multi-authority setting, which is more complicated
than standard single-authority schemes.

The other relevant issue is user revocation, as a tool for
changing user’s rights is essential in real life, when unexpected
events may occur. Such occasion can be dismissal or the
revealing of malicious activity, and we emphasise that user
revocation is applied in exceptional cases like the above-
mentioned, as all other cases can be handled with the proper
use of attributes. E.g. a demonstrator’s task usually lasts for
a semester, and in the subsequent semester maybe different
people will do the same tasks, although these expected changes
can be handled simpler than revocation, by issuing more so-
phisticated attributes e.g.: “DEMONSTRATOR-2015/SPRING”.

We note that the difficulties of the above problems have
the same roots in ABE: different users may hold the same
functional secret keys (corresponding to their attributes) which
are bounded together (personalized) with randomization, using
the same random values in each element. On the one hand, this
method assumes that the randomization happens all at once,
in a centralized manner, and on the other the revocation of
a user’s attributes affects all those secret keys, in which the
revoked attributes were present.

II. RELATED WORKS AND OUR RESULTS

Bethencourt et al. [BSW07] worked out the first CP-ABE
scheme with a security proof in the generic bilinear and ran-
dom oracle models. Waters [Wat11] improved this result both
in terms of efficiency and security, giving a security reduction



to a Diffie-Hellman-type hardness assumption. The problem
of multiple authorities was first considered by Chase [Cha07]
who had to rely on a central authority. Decentralized CP-ABE
of Lewko and Waters [LW11] get rid of this restriction and
avoided placing absolute trust in a single designated entity,
however it is achieved in a practically inefficient way. Attribute
revocation was first considered in [BSW07], while Wang et
al. [WLWG11] and Yang et al. [YJRZ13] applied this in the
multi-authority setting, considering the cloud storage scenario.
A different approach is identity-based revocation, in which
a special, unique “identity attribute” is given to each user
that can be negated in the access policy (for all attributes
it cannot be done efficiently). This approach was applied to
enable revocation in the scheme of [Wat11] by [LZW+13]
and in the decentralized setting by [Hor15].

In this work we investigate the viability of an alternative,
much simpler approach instead of allowing multiple authorities
in the system. We take advantage of the standard secret key
generation algorithm in single authority CP-ABE constructions
to enable the users to act as a restricted authority. More
precisely, we supplement the CP-ABE with a key-delegation
algorithm, that can be run by the user on any subset of
his own secret keys resulting in new secret keys for the
corresponding chosen attributes. Returning to our previous ex-
ample, a professor with the attributes {“CRYPTOPROFESSOR”,
“CRYPTOHOMEWORKASSESSMENT”} could give “CRYPTO-
HOMEWORKASSESSMENT” attribute to a student, who helps
him in this task. This approach significantly decreases the
verification and key-generation burden of the authority and
distribute these among already verified users.

Such key delegation algorithm for ABE was first introduced
in [BSW07]. [IPN+09] considered the question of delega-
tion together with attribute revocation in the presence of a
“mediator”, an additional, semi-trusted2 entity. Without such
an extra assumption we extend two CP-ABE constructions
with delegation algorithms. First we consider the efficient
and secure construction of [Wat11], than we investigate the
possibility of delegation in [LZW+13] where ID-based user
revocation is also possible. We conclude that in spite of
some natural restrictions, this simple approach is a practical
alternative of the multi-authority solution and can fulfil the
requirements of secure cloud storage.

III. BACKGROUND

For our goal - to generate new secret keys for CP-ABE,
using already existing keys and publicly available parameters
- it is inevitable to know the structure of single authority ABE
schemes. A Ciphertext-Policy Attribute-Based Encryption sys-
tem is comprised of the following four algorithms:

Setup(λ,U)→ (PK,MK) The algorithm takes security
parameter λ and attribute universe description as input. It
outputs the public parameters PK and a master secret key
MK.

KeyGen(MK, γ)→ SKγ The key generation algorithm
takes as input the master key MK and a set of attributes γ

2Meaning that although it has no information about the plaintexts, it owns
parts of the secret keys and has to be honest and available during the life-time
of the system.

that describe the key. It outputs a private key SKγ for the
corresponding attributes.

Encrypt(PK,M,A) → CT The encryption algorithm
takes as input the public parameters PK, a message M,
and an access structure A over the universe of attributes. CT
ciphertext is produced such that only a user that possesses a
set of attributes that satisfies the access structure will be able
to decrypt it and obtain M. We assume that the ciphertext
implicitly contains A.

Decrypt(PK,CT, SKγ) → M The decryption algo-
rithm takes in the public parameters PK, a ciphertext CT ,
which contains an access policy A, and a private key SKγ

for a set γ of attributes. If these satisfy the access structure
A then the algorithm will decrypt the ciphertext and return
a message M.

As our supplementing algorithm does not modify neither
the functionality nor the operation of the above algorithms, we
do not need the underlying tools of CP-ABE such as bilinear
maps, access trees or linear secret sharing, so we omit the intro-
duction of these here. For details on how the Setup, Encrypt
and Decrypt algorithms work, we refer to the description of
the used ABE constructions [Wat11], [LZW+13].

IV. KEY DELEGATION IN SINGLE-AUTHORITY SCHEMES

In case of CP-ABE where keys are issued by a central
authority, the right of attribute delegation is a realistic expec-
tation. This feature can subdue the tasks of the authority, in
terms of both computation and verification of users’ attributes.
Of course our goal is not sharing of secret keys among users,
but creating new secret keys without the master secret key,
which have the same form and functionality as the ones that
were created by the key issuing authority as it is depicted on
Figure 1.
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Figure 1. The structure of CP-ABE schemes, supplemented with key
delegation (where τ denotes the access policy).

A. Key Delegation in Waters’ Scheme

In the scheme of [Wat11], the publicly available parameters
(generated by the Setup algorithm) include a generator g of the
prime order group G, ga with random (secret) exponent a ∈ Zp
and U random group elements h1, . . . , hU ∈ G associated with
the attributes of the system3. The master secret key (MK) is

3 An additional value, e(g, g)α ∈ GT is also part of the public parameters,
but it is used during encryption, so we will not need it.



gα with random exponent α ∈ Z. The attribute secret key
generation algorithm of the scheme (run by the authority) is
the following:

KeyGen(PK,MK, γ) −→ SKγ

The key generation algorithm will take as input the master
secret key MK and a set of attributes γ and output a key
that associated with that set. It first chooses a random t ∈
Zp, then it computes the key as

SKγ = {K = gαgat, L = gt,∀x ∈ γ : Kx = htx}.

Note that the only information, used during key generation
and not available for a user is the value of gα, which only
appears in K. Although, the delegation of secret keys (without
sharing them) can be realized without this, as it is implicitly
given to the user in his own private key. Delegation can be done
in the manner of [BSW07]: after removing attributes x /∈ γ′ ⊆
γ from the original key, by deleting the component Kx and
re-randomize the remaining values. In order to re-randomize
the components we would like to change the random exponent
t to some (t + t′), where t′ ∈ Zp is chosen randomly by the
user who delegates the key, so (t+ t′) is a random number. To
get this value in the exponent we have to multiply the original
component with some power with index t′. Re-randomization
is possible if in all components the base of powers with index
t is public. In this case we can raise them to the power t′
and multiply the result with the original component, gaining
the re-randomized value. As the ga term was already available
in the reduction of [Wat11], the security proof is essentially
unaffected. Based on these observations the algorithm is the
following:

Delegate(PK, γ′, SKγ)→ SK ′γ′

The algorithm takes in a secret key SK, which is for a set
γ of attributes, and another set γ′ ⊆ γ. The secret key is of
the form SK = (K,L,∀x ∈ γ : Kx). It chooses random
t′ ∈ Zp then creates a new secret key SK ′ as

K ′ = K · gat
′
= gαga(t+t

′)

L′ = L · gt
′
= gt+t

′

K ′x = Kx · ht
′

x = ht+t
′

x ∀x ∈ γ′ ⊆ γ.

This simple algorithm reveals that the [Wat11] construction
inherently contain the opportunity of key delegation, which
can be utilised to decrease the authority’s burden of verifying
user’s key requests, as these can be handled by other users.
This possibility can resolve the need for multiple authorities,
especially in case of a hierarchical setting, where the attributes
of a user form the subset of the attributes of someone, who is
in a higher level in the hierarchy. This is a natural expectation
e.g. in a corporate environment where the central authority
might issue the keys for users belonging to the top ` levels,
who can issue keys for employees under themselves in the
hierarchy.

B. Key Delegation and ID-based User Revocation

In this part, we consider the possibility of key delegation,
when ID-based revocation is supported by the system. We are
going to use the construction of [LZW+13], which builds on
[Wat11] and provides its extension. As negation of attributes in
the access policy is an expensive operation (see [OSW07]) it

is allowed only for unique “identity attributes”. The ciphertext
additionally embeds a list of revoked users and the decryptor
is forced to compare his own ID with the list elements and
decryption is possible if and only if no matching was found.
To achieve this, the used keys and parameters are somewhat
modified, i.e. the input of the KeyGen and Decrypt algorithms
include the ID of the particular user and Encrypt takes in
the IDs of already revoked users. The public parameters in
[LZW+13] are extended with three elements, compared with
[Wat11]: an other generator h of group G, ha and ga

2

(a ∈ Zp
is still random secret), while MSK remains unchanged. In
this case, the authority runs the following algorithm in order
to generate secret key for a user with ID and attribute set γ:

KeyGen(PK,MSK, γ, ID) → SKID,γ The algorithm
takes a unique identifier ID, an attribute set γ, the master
key MSK and the public parameters PK as input. First, it
checks the unique identifier ID to see whether it has been
queried before. If yes, γ must be the same as in the previous
query and the algorithm outputs the same secret key; if not,
then the algorithm chose a random t ∈ Zp and creates the
private key SKID,γ as:

K = gαgatga
2t, L = g−t, DID = (gaIDh)t,
∀x ∈ γ : Kx = htx.

The opportunity to revoke users raises several questions
about key delegation. Should a system trust a user who
delegates keys as much as it trusts the key issuing authority?
What happens with those keys, which have been delegated by
a user who was revoked later? Is it secure to allow users to
create new IDs as well?

To answer them, we must consider the possible conse-
quences. Suppose that a user is allowed to create new IDs
and delegate attributes to them (from among his own). If this
chain of created IDs is not recorded, then someone can simply
duplicate his attribute secret keys, attaching them to a new
ID and after the original ID was revoked, just use this new
one. To record and follow the ID and key delegation chain is
overcomplicated and also against the spirit of delegation, that
supposed to simplify the tasks of the authority and the system.
However, without this, it is obviously not secure to let users
to totally substitute the trusted authority when revocation can
occur.

In our proposal we make the key delegator responsible for
the propagated keys in a simple way. As we have full trust only
in the authority, which can verify whether an ID-attribute pair
is valid or not, users are allowed to delegate their keys, only
together with their ID. Practically it means, that from now on
an ID does not represent a single user, but a user set, which
contains one user with attributes from the authority and all of
those parties who received their keys from that previous user
or from someone who was already a member of that ID set.
In this way, when an ID is revoked, it affects not only its
original owner, but also everyone else who had delegated keys
from any member of the user set with the revoked ID. The
intuition behind this approach is that revocation is most often
the result of some malicious activity, so we need to extend
our countermeasures to all fields of the user’s activity. If this
policy has unwanted victims from the revoked set, these users
can ask for new keys from the trusted authority, after they
proved their right to own the given attributes, or from the



party from where they received their previous key (if his ID
was renewed). However, this method seems squandering, it is
exactly the analogy of the more traditional attribute-based user
revocation (applied by e.g. [WLWG11], [YJRZ13]), where the
revoked attributes affects more users (those who owned any of
the revoked attributes) than intended and these user’s keys must
be updated. This observation roughly implicates, that until the
cardinalities of the biggest sets of users with the same IDs are
under the occurrences of the most often used attributes, our
solution does not require more key updates after revocation,
than attribute-based revocation either in the single- or in the
multi-authority case.

In this spirit, we give the following key delegation algo-
rithm that supplements [LZW+13]:

Delegate(PK, ID, γ′, SKID,γ)→ SK ′ID,γ′

The algorithm takes in a secret key SKID,γ , which is for
a set γ of attributes, and another set γ′ ⊆ γ. The secret
key is of the form {K,L,DID,∀x ∈ γ : Kx}. It chooses
random t′ ∈ Zp then creates a new SK ′ID,γ′ secret key by
computing the following components:

K ′ = K · (ga)t
′
·
(
ga

2
)t′

= gαga(t+t
′)ga

2(t+t′)

L′ = L · g−t
′
= g−(t+t

′)

D′ID = DID ·
(
(ga)

ID
h
)t′

=
(
gaIDh

)t+t′
K ′x = Kx · ht

′

x = ht+t
′

x ∀x ∈ γ′ ⊂ γ.

Note that we used the same re-randomization technique as
before. In the algorithm the new keys are computed using only
those values which were available in the original scheme as
well, so the security proof of [LZW+13] remains unaffected.

V. EVALUATION

Our latter result provides an alternative solution for CP-
ABE, in which secret keys can be issued by multiple parties
and user revocation is also possible. Essentially it is a very
similar functionality as achieved in [IPN+09], [WLWG11],
[Hor15] with different methods. From the perspective of
security, [LZW+13] with our delegation inherits the original
security argument, that is based on a Diffie-Hellman-type as-
sumption (just like [WLWG11]), while [IPN+09] and [Hor15]
are proven to be secure only in the generic bilinear group
and random oracle models. In the other hand, a distributed
scheme like [Hor15] can be more stable, as its security does
not depend on the integrity of a single designated entity.
Although from this point of view, our approach is equivalent
to [WLWG11], where the authorities are not independent; and
more beneficial than [IPN+09], where the proper operation
requires two entities to remain intact, one of which (the
mediator) also needs to be available all the time.

In terms of usability, our proposal is quite natural in case
of the above mentioned hierarchical organizations (which were
also considered in [WLWG11]), as the verification of attribute
requests can be done by the most competent parties i.e. by
someone from an upper layer of the hierarchy. At the same
time, we note that our stronger security guarantees result in
a less flexible revocation than seen in [Hor15] or [IPN+09].
Because of the identification of user sets instead of separate

users, our revocation handling is more comparable with the
attribute-based revocation of [WLWG11], where key updates
might be necessary, just like in our case when not all members
of a user set are intended to be revoked.

VI. CONCLUSION

In this work, we considered an alternative approach to deal
with two obstacles of using ABE for the purpose of access
control for data stored in the cloud. Evading the technically
more challenging case of multiple authorities, we investigated
the viability of key delegation by the users and found that this
opportunity also can lead to a practical solution even when
user revocation is possible, especially in case of a hierarchical
structure of users.
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