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Kivonat

A beágyazott rendszerek dedikált funkciót látnak el egy nagyobb rendszerben. Életünk min-

den területén megtalálhatóak, az útvonalválasztóktól a termosztátokig és gyakran használják

®ket biztonság kritikus rendszerekben, mint például ipari irányító rendszerek, vasutak és

autók. Ezen rendszerek a f® mozgató er®i az Internet of Things koncepciónak is, ahol az

összeköttetésben lév® eszközök többsége nem trandícionális számítógép, hanem beágyazott

rendszer lesz.

Hagyományosan a beágyazott rendszereknek több követelménynek is meg kell felelniük,

például elérhet®ség, hibat¶rés és megbízhatóság. A beágyazott rendszerek megbízhatósága

magában foglalja azt a követelményt, hogy a rendszer m¶ködése során nem veszélyeztet

emberi életeket vagy a környezetet. Azonban manapság egy új követelmény is felmerül

a beágyazott rendszerekkel kapcsolatban, a biztonság. Az összeköttetések megnövekedett

száma és az o�-the-shelf szoftverek használata olyan helyzetekhez vezethet, melyekben egy

kártékony kód alááshatja a beágyazott rendszer megbízhatóságát és kárt tehet a �zikai

környezetben, ahogy ez a Stuxnet esetében is történt. A beágyazott rendszereket ezen tá-

madásoktól is meg kell védeni, azonban a védelmi mechanizmusok nem hátráltathatják

a megbízhatósággal kapcsolatos kritériumok teljesítését. Vagyis, a biztonságot és a meg-

bízhatóságot együttesen kell tervezni a beágyazott rendszerekben, azonban az ehhez szük-

séges módszertan még aktív kutatási területnek számít.

Ebben a diplomatervben a beágyazott rendszerek területén feltörekv® egyik trendet, a

virtualizációt vizsgálom, mint alapot, melyet felhasználva megbízhatósági és biztonsági

követelményeknek egyaránt megfelel® beágyazott rendszereket lehet tervezni. A diplomaterv

egy virtuális gépekb®l álló rendszert mutat be, melyben a virtuális gépek forgó rendszer-

ben váltják egymást. A rendszer proaktív biztonságot biztosít beágazott eszközöknek, a

több virtuális gép használata pedig redundanciát biztosít a megbízhatóságért. A megter-

vezett rendszer él®ségi és megbízhatósági követelményeket egyaránt teljesít, melyet formális

veri�kációval ellen®riztem. A diplomaterv tartalmaz továbbá egy prototípus szint¶ imple-

mentációt, mely egy Internet Protocol Security (IPsec) átjárót valósít meg, valamint az

átjáró teljesítményének értékelését.
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Abstract

Embedded systems are dedicated to a single function in a larger system. They are present

in every �eld of our daily life, from routers to thermostats and are also commonly applied

in safety-critical systems, such as industrial control systems, railway or automotive. These

systems are also the main driving force behind the concept of the Internet of Things, where

the majority of the connected devices will not be traditional computers but embedded

systems.

Traditionally, embedded systems must conform with a number of requirements such as re-

liability, availability and fault-tolerance and safety. Safety of an embedded system ensures

that the operation of the system does not endanger human life or the environment. How-

ever, a new requirement arises for embedded systems nowadays: security. The increased

connectivity of devices and the usage of o�-the-shelf software results in a scenario when a

piece of malware is capable of undermining the safety of the embedded system and cause

harm in the physical environment, like Stuxnet did. Embedded systems must be forti�ed

against these attacks but the introduced security mechanisms must not hinder the sys-

tem in conforming with safety requirements. As a result, safety and security should be

designed together in embedded systems but the methodology required is still an area of

active research.

This diploma project explores the emerging trend of virtualization in embedded systems

as a basis on top of which embedded systems can be designed to satisfy both safety and

security requirements. A system of rotating virtual machines is presented that provides

proactive security for embedded devices while the multiple virtual machines in the system

provide redundancy as a safety measure. The designed system satis�es liveness and safety

requirements, the evaluation of which requirements was done with formal veri�cation. The

diploma project also includes a proof-of-concept implementation of the designed system by

implementing and testing an Internet Protocol Security (IPsec) gateway.
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Chapter 1

Introduction

Embedded systems are special-purpose computer system which are part of a larger system.

They are dedicated to a single function and are tightly constrained with respect to cost,

power, size and storage. Embedded systems react to changes in the environment and in

some appliances, must compute results in real-time. They are present in every �eld of

our daily life, from routers to thermostats, from electronic stethoscopes to automotive

applications and are also commonly applied in safety-critical systems, such as industrial

control systems, railway or automotive. These systems are also the main driving force

behind the concept of the Internet of Things, where the majority of the connected devices

will not be traditional computers but embedded systems. [6]

Traditionally, embedded systems must conform with a number of requirements such as

reliability, availability and fault-tolerance. For the scope of this diploma project, their safety

requirements are the most interesting as those ensure that human life or the environment

are not endangered by the embedded system (e.g. avionics control systems or medical

instrumentation). Methodology exists on how to design embedded systems with safety

requirements but methodology in itself may not be enough. To provide proof that embedded

systems conform with safety requirements, they are often subjected to formal veri�cation,

an analytical method capable of deducting whether certain conditions hold in the model

of the designed system.

Nowadays, a new requirement arises for embedded systems: security. As the timeline in [9]

discusses, safety-critical system have been subjected to cyber attacks since 1982. However,

the �rst piece of malware targeting industrial systems to receive world-wide attention was

Stuxnet. [5] Apart from industrial systems, pyrotechnics, health care devices and satellite

systems also face threats [15], just to name a few. Embedded systems must also be forti�ed

against these attacks but the introduced security mechanisms must not hinder the system

in conforming with safety requirements. As a result, safety and security should be designed

hand in hand in embedded systems but the methodology to do this is still an area of active

research. Existing results include analysis of methods [20, 18] and integrating security

analysis to existing tools [4].
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Among the many improvements introduced to the embedded �eld, two technology trends

have signi�cant impact on the embedded market. [17, 12] Virtualization, which provides the

ability to run multiple virtual machines on the same physical board, enables certi�ed legacy

applications to be run on modern hardware while emulating the outdated hardware the

application was written for. Virtualization also increases fault-tolerance and reliability with

the isolation and protection mechanisms preventing a fault in one virtual machine to a�ect

another. The other emerging trend of multi-core processors provides more computational

power to embedded systems. This enables the use of virtualization with each core running

separate virtual machines.

The isolation and protection mechanisms virtualization technology provides are also secu-

rity measures. As a consequence, the use of virtualization in multi-code devices provides

both safety and security. Thus, the question arises: can the usage of virtualization be

a basis on top of which embedded systems can be designed to satisfy both safety and

security requirements? The question is explored in this diploma project by designing a

system of rotating virtual machines that provides proactive security for embedded devices

while the multiple virtual machines in the system provide redundancy as a safety measure.

The designed system satis�es liveness and safety requirements, the evaluation of which

requirements was done with formal veri�cation. The diploma project also includes a proof-

of-concept implementation of the designed system by implementing and testing an Internet

Protocol Security (IPsec) [10] gateway.

The rest of the diploma is structured as follows: Chapter 2 discusses the state-of-the-art, the

high-level overview of the designed system and the arising technical challenges are presented

in Chapter 3. The detailed design of the system of rotating virtual machines is discussed in

Chapter 4 and the proof-of-concept implementation of the design is presented in Chapter

5. The evaluation of both the designed system and the proof-of-concept implementation is

in Chapter 6 and the potential security issues are discussed in Chapter 7 together with the

conclusion and future work.
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Chapter 2

Related Work

The design of rotating virtual machines providing both safety and security was inspired by

the theory called Self-Cleansing Intrusion Tolerance (SCIT) [1]. SCIT was introduced to

several types of servers (DNS, SSO and web) and is able to reduce the exposure time of a

server from several months to less than a minute and provides a new way to balance the

trade-o� between security and availability.

Instead of the currently popular reactive approaches to security, SCIT is a proactive man-

agement approach. It requires the selection of an exposure time and speci�cation of maxi-

mum transaction time. The selected exposure time acts as a metric that de�nes the trade-o�

between security and availability: the higher the exposure time, the less the security and in

return, the more the availability. SCIT provides the following protections for web servers:

• Malware is deleted every minute

• Website is restored to a pristine state every minute

• The server is able to recover from software deletion attacks every minute

• Able to work with reactive approaches to security like an Intrusion Detection System

However, as is the case with every security system, web server utilizing SCIT experience

overhead cost in form of slower response time.

The SCIT Architecture consists of three core components: the virtualization layer, the

persistent short term (session) memory and the SCIT controller. While the prototype

implementation of SCIT for web servers was done using VMware ESX [19], it is important

to note that the architecture is independent of the virtualization platform.

The central component of the architecture is the SCIT controlled tasked with controlling

the rotation and exposure times of the virtual machine. The controller is installed on a

secure machine within the internal network. In [1], during a single cycle of rotation each

of the virtual machines are in one of the following state:
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• Active: virtual machine is online and accepts and processes any incoming requests

• Grace Period: virtual machine processes existing requests but does not accept new

ones

• Inactive: virtual machine is o�ine

• Live Spare: virtual machine has been restored to pristine state and is ready to come

on-line

The transition between states is the following: active → grace period → inactive → live

spare → active... In each rotation only one virtual machine is online and accepts queries,

this virtual machine has the state Active.

The theory of SCIT has been implemented for many use-cases like DNS Server, webserver,

Single Sign On System [7] and Service-Oriented Architecture [14]. However, the design

principals have never been studied in the context of embedded systems to my knowledge.

The domain of embedded systems is an interesting context for the original concept because

the devices run smaller and more limited applications compared to standard PCs and

servers. Plus, embedded system are build with cost and time-to-market in mind, making

them more likely to be vulnerable and vulnerabilities in safety-critical applications are

more di�cult to patch than standard PCs.

In this diploma project, the SCIT theory is applied to multi-core embedded systems where

the application running on top of the embedded system requires a state to function properly.

However, handling persistent data in SCIT is a challenge. The di�culty in the original

concept arises from the practice of destroying a virtual machine and exposing a new one.

The process destroys the temporary memory resulting in the loss of persistent data. While

the authors overcame this problem by using a Network Attached Memory, Terracotta, in

this diploma project, another solution is presented for persistency without using shared

memories. The advantage of my solution is that while a shared memory can be used as a

stepping stone for the attacker from one virtual machine to another, my solution enables

the close monitoring of the persistent data and can be used to e�ectively detect possible

attempts at a compromise.
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Chapter 3

High-level Overview of The System

In this chapter, the designed system is discussed in bird's-eye view. The system follows the

principles of [1] to provide proactive security and has multiple virtual machines capable

of serving requests to provide redundancy. As the objective for the system is to be safety-

critical, whenever a trade-o� between safety and security is required, safety is deemed more

important. The provided security is proactive: the system does not wait for the detection

of a compromise but instead contains potential losses by periodically restoring virtual

machines to a clean state that is guaranteed not to be compromised.

Before the high-level overview of the system can be discussed, some de�nitions must be

made. The active virtual machine is the virtual machine that accepts, processes and replies

to queries from the outside world. The active virtual machine is also the only one exposed

to the outside world and is the only virtual machine having this role. The standby virtual

machine(s) provide redundancy and are capable of taking the place of the active virtual

machine at any time. The cleansing virtual machine is the virtual machine that previously

acted as the active virtual machine and is now being restored to its clean state.

Each rotation in the system consists of three switches in roles: 1) from cleansing role to

standby role, 2) from standby role to active role and 3) from active role to cleansing role.

On Figure 3.1, a single rotation is depicted with the high level interaction needed for

that switch to complete. The unnumbered arrow which points between the active virtual

machine and the outside world should be interpreted that the communication between the

active virtual machine and the outside world happens in parallel to the rotation.

While the rotation of virtual machines is periodical, an intuitive starting point in each

period is the �rst switch of the rotation, the switch from cleansing role to standby role.

When the restoration of its clean state on the cleansing virtual machine is done, it is ready

to accept messages from the other virtual machines and is capable of becoming the active

virtual machine again. It becomes a standby virtual machine. The system has to be noti�ed

that the cleansing action has �nished which can be done by broadcasting a message to the

other virtual machines. This broadcast message triggers the second switch, the switch from

standby role to active role.
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Figure 3.1. High-level Overview of the Design

The second switch, the switch from standby role to active role involves a leader election:

the standby virtual machines must decide which standby virtual machine should become

the new active virtual machine. Several of such algorithms are discussed in [11] but we

can use an even simpler approach by electing the oldest running standby virtual machine.

The elected standby virtual machine is also referred to as the next active virtual machine

in this diploma project. As there are multiple standbys in the system, both they and the

active virtual machine have to be noti�ed of the next active virtual machine. The standby

virtual machine must get all required data for the application it runs for the application

to function correctly and the next active virtual machine must also notify all nodes in the

local network to route packets destined to the active virtual machine to the next active

virtual machine.

The election of a new leader among the standby virtual machines signals the active virtual

machine to be restored into its clean state. However, as the active virtual machine is exposed

to the outside world and is subject to attacks, it may exhibit Byzantine behavior and not

go into cleansing state. Thus, the next active virtual machine must force the cleansing.

From a single virtual machine's point of view, the rotation happens according to Figure

3.2. The virtual machine is initially in the cleansing role during which it is restored to a

compromise-free state. At the end of the cleansing, the virtual machine broadcasts this

information and enters the standby role. It remains in the standby role until it wins the

leader election. Then, it must perform three steps: get the necessary data for the application

it runs, notify the local network of the rotation and initiate the cleansing of the active

virtual machine. When the three steps are complete, it enters the active role in which is

handles requests arriving from the outside world. It enters the cleansing role again when
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Figure 3.2. Roles of Single Virtual Machine in Time

another virtual machine initiates its cleansing. Thus, the cycle completes and a new rotation

may begin.

3.1 Challenges

Several technical challenges arise while designing the system of rotating virtual machines.

While the challenges are discussed here, the solution to them is discussed in Chapter 4

with the detailed design. The �rst challenge involves the relationship between the rotation

and the network. The rotation of virtual machines should be as transparent as possible

to outside entities and services. After all, securing one device should not a�ect other de-

vices. However, nodes on the network must know (or at least must be noti�ed) about the

rotation so that packets on the network can be transmitted to the current active virtual

machine at any time. The lowest network layer must be determined which provides the

most transparency while it retains enough of the knowledge of rotation not to disrupt the

network �ow.

The second challenge involves the switch from standby role to active role. The active

virtual machine is connected to the outside and may be compromised. After a compromise,

it exhibits Byzantine behavior and will operate as the attacker wishes. And it is safe to

assume that the attacker does not wish the virtual machine to be restored to its clean

and compromise-free state. The switch fro active role to cleansing role and the action of

cleansing must be forced but how to implement that relies heavily on the virtualization

platform used. However, the design of the system must provide clear guidelines for the act

of cleansing.

The third challenge is data propagation between virtual machines. As the active virtual

machine is connected to the outside and may be compromised, the data on that virtual

machine may become corrupted and malware may be installed. The designed system must

ensure that no malicious content is propagated to other virtual machines. Also, while the
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switch from standby role to active role is ongoing and the data from the active virtual

machine is being transmitted, the active virtual machine must make no changes to the

application data otherwise the application running on the next active virtual machine and

the entities in the outside world become out of sync. The design must ensure that the

transmitted data for the application and the data on the active virtual machine are the

same, even in the presence of an attacker.

The fourth challenge is related to the application running on the rotating virtual machines.

The rotation requires the application to be able to provide all data necessary for its correct

functioning in a form that can be transmitted to other virtual machines and also requires

the application to be able to restore those data when it is provided. As a result, existing

application require some kind of adaptation or extension to work in this paradigm.

The �fth challenge is the security aspect of the design. While the proactive security pro-

vided by the system aims at containing losses, an attacker compromising the active virtual

machine may have access to the other virtual machines as well. The design must clearly

state the threat model and all the assumptions about the attacker and countermeasures

against that attacker.
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Chapter 4

Detailed Design

In the previous chapter, the high-level overview of the switching of roles was discussed from

the virtual machines' point of view. In this chapter, assumptions about the environment

of the designed system, the design and the communication required to implement the

switching between roles is discussed in more detail.

4.1 Communication and Threat Model

Before the detailed design of the system can be discussed, assumptions must be made

about the environment the system will operate in. For this diploma project, two kinds

of assumptions are necessary: communication and threat model. Assumptions about the

communication deal with the interaction between virtual machines and the outside world

and the attributes of the communication channel used. The threat model is a collection of

assumptions about the attacker from whom the system must be protected. Any security

statement made can only be discussed with respect to the treat model used. If it changes,

statements might change too.

All kinds of communication require some kind of channel through which messages can be

sent, be it wired or wireless. The designed system does not depend on what kind of com-

munication channel is used and is able to handle packet transmission failures. However, it

requires that in case of a transmission failure, the channel noti�es the system about that

failure. It is also assumed that communication with the application running in the virtu-

alized environment does not experience any failure. Any device connected to the network

to which the rotating embedded device is connected does not experience any failure but

packets sent to it may not arrive.

For the nodes on the local network to which the embedded device is connected to, it is

required that every node accepts requests to change the Layer 2 address of any networking

node. For example, all devices connected to the local network should process unsolicited

ARP replies, if ARP is used in the data link layer.

For this diploma project, the assumptions about the attacker are:
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• An attacker can interact with the system by sending packets

• The active virtual machine can become compromised due to interaction with the

attacker and exhibit Byzantine behavior

• The attacker cannot compromise any virtual machines, except for the active virtual

machine

• The attacker cannot use the communication channel between virtual machines for

malicious purposes. He must follow the steps of the designed protocol and his packets

must not contain data that may be used to compromise the other virtual machines

While the described threat model is rather simpli�ed, designing the rotation with complex

attack scenarios proved too complex for the limited time frame of the diploma project.

Instead, the impact of such scenarios on the designed system is discussed in Chapter 7.

The structure of the chapter is as follows. Section 4.3 presents what messages are needed

from the moment the cleansing virtual machine is restored to its clean state until the next

active virtual machine is elected and Section 4.4 discusses how the next active virtual

machine assumes the role of the active virtual machine.

4.2 Design of State Propagation

To ensure the correct functioning of the application that is running on the virtual machines,

all data that the application handles and uses (con�guration �les, global variables, etc.)

needs to be propagated from the active virtual machine to the elected standby virtual

machine. In this context, the application-handled data is called state, while the action of

moving said data from the active virtual machine to another is called propagation of the

application state. The propagation is one of the main challenges of this diploma project,

for which there are two possible solutions:

1. Copy data from the memory used by the application

2. Modify the application to make it aware of the rotation and the propagation

Monitoring the memory used by the application requires the software layer implementing

the rotation to interact with the memory segment used directly and keep a list of variables

whose accesses it must keep track of. In case a variable is written to, the exact value written

to the memory would be propagated to the standby virtual machines and written to their

memory. This solution requires no extra e�ort on behalf of the developer, the rotation

is kept transparent from the application. However, directly writing value to the standby

virtual machines poses a serious security risk as compromises might be propagated too. As

a result, this solution to the propagation of application state is not acceptable from the

security point of view.
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The second approach is to make the application aware of the rotation. For applications

running in the environment discussed in this master thesis, an additional software layer

is required that implements the rotation and interacts with the application. This software

layer is referred to as an API. While new application could be developed with the rotation

in mind, existing applications could also be tailored to the rotating environment with little

e�ort from developers. Two methods should be added to the application: get state and

set state. The get state method should transform the state of the application into a

form that can be transmitted over the internal network between virtual machines. This

form is referred to as the serialized form of the application state. The set state should

take the serialized form of the state to make the state available to the application (e.g.

creating con�guration �les or setting global variables). The software layer implemented for

the rotation, which could run on top of the guest operating system, can then query the

application for its state and propagate the changes to the standby virtual machines without

directly interacting with the compromised memory. Another advantage of this approach

is that the serialized form of the application state could be subjected to validation and

a failure at validation can imply the compromise of the virtual machine. If such a signal

is received by the standby virtual machines, they can elect a new active virtual machine

and force the cleansing of the current active virtual machine. All in all, even though this

approach requires extra e�ort from developers, it is favorable from the security point of

view.

Figure 4.1. Interaction of Existing Application and Rotation API

A possible high-level implementation of the above mentioned software layer is on Figure

4.1. The software layer uses events to query the application for the serialized form of the

application state and to signal the availability of the serialized form to the set state

method. The serialized state is propagated to the standby virtual machines via the inter-

nal communication channel between the virtual machine. Serializing and setting the state

may take some time for the application and during that time packets may arrive for the

application. The API provides a bu�er of packets for the application so that packets des-

tined to the application is put on hold until the application is ready to process them again.
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Assuming that the application implements a gateway or a router, a bu�er exists for all

interfaces the application expects packets from.

4.3 Selecting The Next Active Virtual Machine

As discussed in Chapter 3, the standby virtual machines must decide which virtual machine

should assume the role of the active virtual machine. This is an instance of the leader

election problem, a challenge often discussed in literature with many solutions for many

environments. [11]

Despite the di�erences in the algorithms, all of them assumes that nodes (computers,

processes, etc.) taking part in the leader election have some kind of ID. For the environment

discussed in this thesis, the ID of virtual machines is the amount of time elapsed since their

last restoration to their clean state. This way, the oldest standby virtual machine will always

be elected as leader and sooner or later, all virtual machines will have to go through the

restoration, which is advantageous from the security point of view.

4.4 Taking the Place of the Active Virtual Machine

After the standby virtual machines decide on the next active virtual machine (also referred

to as the elected standby virtual machine), two steps must be completed for the next active

virtual machine to be able to assume the role of the active virtual machine. Firstly, the

next active virtual machine must acquire the serialized form of the application state and

signal the application to set it. Secondly, the local network to which the embedded system

is connected to must be noti�ed about the rotation. This step is necessary for packets

routed to the active virtual machine to be routed to the next active virtual machine.

4.4.1 Phase 1 - Transferring the State

Phase 1 stands for the communication and processing needed for the elected virtual machine

to receive the state of the application running on the active virtual machine. It is started

by a trigger message from the next active to the currently active virtual machine. While

the application on the next active virtual machine processes the provided serialized state,

the application on the active virtual machine cannot handle any requests as that could

alter the state, rendering the previously sent state out-of-date. To avoid packet loss at this

stage, arriving packets are bu�ered and retransmitted in a later Phase. A bu�er is used

for each interface the active virtual machine has to the outside. Figure 4.2 illustrates the

process on a sequence diagram.

Phase 1 starts when the leader election for deciding the next active virtual machine ends

and the next active virtual machine is elected. The active virtual machine is noti�ed of the

event by a trigger message, signaling the end of it being the active virtual machine. The
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Figure 4.2. Propagation of State During Switch From Standby Role To Active

Role

active virtual machine then uses the get state method of the application to acquire the

state of the application in a serialized form. The serialized state is then transmitted to the

next active virtual machine, followed by a sync state message to signal that transmission

is �nished. The transmission of the serialized state can be done by any program capable of

transferring �les e.g. rsync, scp, etc. The next active virtual machine acknowledges having

the transmitted state and uses the set state method of the application to signal the

application that the state is available. Since it is assumed of the attacker not to use the

internal communication channel of the virtual machines for malicious purposes, it is safe

to assume that the application will be able to correctly set the transmitted state. While

the state is being transferred, the application running on the next active virtual machine,

it should not process any packets it receives as it could result in a change in the state. To

avoid packet loss during this time, the packets are bu�ered for each interface the application

could receive packets from.

As failure on the channel during communication may happen, the protocol has to have

some means of error recovery. For Phase 1, the next active virtual machine sets a timeout

and waits for the sync state message during the timeout. If the message does not arrive

in time, the next active virtual machine can retry sending the trigger message. After the
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speci�ed amount of retries, the next active virtual machine will abort the protocol, deeming

safety requirements more important than security risks. Namely, it is more important

for the application to run and process requests than it is important to clean the virtual

machines for security. Since it is stated in the threat model that the attacker will not use

the communication channel between virtual machines for malicious purposes, the abortion

on the next active virtual machine's side is not the result of the attacker shutting down

communication to the next active virtual machine. The currently active virtual machine

sets a timeout too after sending the sync state message. If the acknowledgement does

not arrive in time, the currently active virtual machine can resend the serialized state.

If acknowledgement does not arrive for the speci�ed amount of retries, the next active

virtual machine aborts the protocol, deeming safety more important than security. As the

packets are bu�ered at the currently active virtual machine, the virtual machine can start

processing those packets and no packet loss occurs. However, depending on the safety

requirements imposed on the embedded device, the response sent by the virtual machine

after processing a bu�ered packets may be too late and considered invalid at the device

communicating with the embedded device rotating virtual machines. Thus, the number

of retries the system should attempt at most is dependent of the safety requirements the

embedded device should conform with.

4.4.2 Phase 2 - Con�guration of Network Interfaces

When the next active virtual machine has the application state, Phase 2 can start: all

possible next hops in the network must be noti�ed that the packets destined currently

destined to the active virtual machine have to be sent to the next active virtual machine

from now on. While notifying the network of the rotation is also an important part of

taking the place of the currently active virtual machine, it loses its meaning if the next

active virtual machine is unable to process networking packets because of the absence of

the application state. As a result, noti�cation to the network about change in the active

virtual machine is attempted only if the application running on the next active virtual

machine is ready to process packets, namely, it has the application state. The detailed

communication during Phase 2 is depicted on Figure 4.3.

After the application restored the state, the next active virtual machine tries to bring

all of its interfaces up through which the application expects packets. The process may

be successful in which case the virtual machines continue the protocol, or unsuccessful in

which case the parties need to abort.

In case of success, the next active virtual machine sends this information to the active

virtual machine and signals the network to send packets destined to the active virtual

machine to it, the next active virtual machine. As both the active virtual machine and the

next active virtual machine has the same IP address, it is their address in the data link

layer that determines who gets a packet. Notifying the network about the switch means

that nodes on the local network must be informed about a change in the Layer 2 address
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Figure 4.3. Taking the Place of the Active Virtual Machine from the Net-

work's Point of View

of the embedded device. In case of ARP, this is done by invalidating the ARP cache of

network nodes by sending an unsolicited ARP reply. From now on, packet destined to the

embedded device are forwarded to the next active virtual machine in Layer 2. At the end of

this Phase 2, the next active virtual machine instructs the active virtual machine to bring

down its interfaces to the outside. If the next active virtual machine is unable to bring

the necessary interfaces up, the information is send to the active virtual machine and the

protocol is aborted.

As is the case with Phase 1, Phase 2 might experience communication failure. To recover

from the event the result of bringing up the interfaces of the next active virtual machine

is lost, the active virtual machine should set a timeout when the acknowledgement of the

state arrives. At this point, there is no turning back from the protocol, the active virtual

machine has to poll the next active virtual machine about its status without the chance

of aborting the protocol. The reason lies in the requirements of the system which state

that at any time, there is one active virtual machine accepting requests. Let us assume for

a moment that after a speci�ed amount of polling for status, the active virtual machine

deems the communication channel broken, aborts the protocol and goes back to accepting

requests from the outside. The same is true for the next active virtual machine: it has the

application state, the correct networking con�guration and is accepting requests from the
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outside. Now, we have two virtual machines in the role of active virtual machine. This

situation is in contradiction with the speci�cation.

4.4.3 Phase 3 - Optional Bu�ering

The next active virtual machine cannot handle packets during Phase 1 because it does not

yet have the state. Meanwhile, the active virtual machine is also unable to handle packets

during Phase 1 because handling the packets may result in changes to the state, rendering

the state transferred to the next active virtual machine out-of-date. As a result, packet

loss may occur during Phase 1 and that may not be acceptable depending on the safety

requirements.

Phase 3 exists to solve this problem: while the switch is ongoing, packets are bu�ered at the

active virtual machine and at the end of the switch, they are sent to the next active virtual

machine for processing. Unfortunately, the latency introduced may still not conform with

strict safety requirements. The amount of latency introduced depends on the serialized

size of the application state, the number of packets arriving to the active virtual machine

during the switch and the network throughput between virtual machines. In some cases,

however, packet loss is acceptable (e.g. communication using UDP), or the bu�er may be

too large and introduce too much latency, so the bu�ering of packets during the switch is

optional. However, if bu�ering is disabled, the packets have to be dropped by the active

virtual machine.

When entering Phase 3, the application running on the next active virtual machine is ready

to process incoming packets. Meanwhile, the transmission of bu�ered packet between the

virtual machines occurs. The sequence diagram of Phase 3 is shown on Figure 4.4. The next

active virtual machine �rst requests information about the bu�er from the active virtual

machine, to which the active virtual machine responds with the requested information. The

information contains the size of the bu�er (among with other information the next active

virtual machine might need) and the next active virtual machine has to decide whether

to accept those packets or not and send the decision to the active virtual machine. If the

decision is refusal, Phase 3 ends. If the decision is acceptance, the packets are sent to the

next active virtual machine and replayed there. With the last packet replayed, Phase 3

ends. The switch from standby role to active role is then completed with the initiation to

cleanse the active virtual machine.

Even though Phase 3 is optional, chance of recovery from possible errors in the channel

is added to the protocol. When the active virtual machine receives the command to bring

its interfaces down and Phase 3 is enabled, it sets a timeout during which the request for

sending information about the bu�ered packets needs to arrive. If it does not arrive, the

active virtual machine forcibly sends the information to the next active virtual machine

and waits for the decision. If the decision does not arrive, it is treated as a refusal. On

the next active virtual machine, after the request for information is sent, a timeout is set
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Figure 4.4. Replaying Bu�ered Packets

during which the requested information has to arrive. If it does not arrive, the next active

virtual machine can retry and then ultimately abandon Phase 3 deeming minimizing the

latency introduced more important than avoiding packet loss.
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Chapter 5

Proof-of-Concept Implementation

5.1 Internet Protocol Security

As a proof-of-concept, we implemented the protocols described in Section 4 to support

a rotating IPsec gateway. IPsec is a set of security services for tra�c at the IP layer,

for both IPv4 and IPv6. [10] The services provided o�er access control, connectionless

integrity, data origin authentication, protection against replays and limited tra�c �ow

con�dentiality. IPsec creates a boundary between protected and unprotected interfaces

(e.g. a host or a network). Tra�c traversing through the boundary is subjected to access

controls which indicate whether packets should be allowed to traverse with or without

protection or should be discarded.

Two protocols are used to provide security services: Authentication Header (AH) and

Encapsulating Security Payload (ESP). ESP is mandatory for implementations and AH

is optional. AH o�ers integrity and data origin authentication with optional anti-replay

features. ESP o�ers the same set of services as AH and also o�ers con�dentiality. Both

protocols o�er access control which in enforced through the distribution of cryptographic

keys and the management of tra�c �ows.

IPsec relies heavily on the concept of Security Associations (SAs). An SA is a simplex

connection that provides security services to the tra�c carried by it with the use of AH or

ESP, but not both. To security a typical, bi-directional communication between to IPsec-

enabled system, a pair of SAs is needed. SAs van be created automatically by IKE or

manually by the system administrator. For unicast tra�c, the Security Parameters Index

(SPI) is used to specify an SA. SAs are stored in the Security Association Database (SAD)

and are indexed by the SPI and destination IP address or the source and destination IP

addresses. In addition to the source and destination IP addresses, the protection services

are also indicated, e.g. ESP vs. AH, authentication and encryption algorithms and keys.

While an SA is a management construct used to enforce security policy for tra�c, the

policies that specify what services are to be o�ered to IP packets and in what fashion are

the Security Policies and are stored in the Security Policy Database (SPD). The SPD is
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ordered and consistent with use of Access Control Lists or packet �les. While processing

each packet, the SPD must be consulted and it must provide three choices for tra�c:

discard, bypass or protect. If the choice is discard, the tra�c is not allowed to traverse

the IPsec boundary in the speci�ed direction. In case of bypass, the tra�c is allowed

to traverse the boundary, but no protection is provided. In case of protect, the tra�c is

a�orded IPsec protection and the SPD must specify the security protocols to be employed,

their mode, security service options and the cryptographic algorithms to be used. For

outbound processing, each SAD entry is pointed to by entries in the SPD that require

tra�c to be protected. For inbound processing in case of unicast, the SPI is used either

alone or with the destination address to select the corresponding SA from the database.

IPsec protocols and SAs have two modes of operation: transport and tunnel. Transport

is used to provide end-to-end security while tunnel mode provides security between two

intermediate systems along a path. The IPsec protocols and modes of operation is shown

on Figure 5.1. The �gure also shows how the di�erent modes protect IP packets.

Figure 5.1. Protocols and Modes of Operation in Internet Protocol Security

5.2 Test Environment

To model communication on the Internet, additional 5 virtual machines are used. The

overview of the network is shown on Figure 5.2. The network is composed of two sides: the

client side on the right of the Internet and the server side on the left of the Internet. Non-

endpoint virtual machines follow a naming convention by �rstly stating the role they play

in the network followed by the side they are found at. For example, IPsecGatewayServer
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is an IPsec gateway found at the server side. The Internet itself is modeled as network

between the routers of the two sides: RouterServer and RouterClient. On the client

side, the virtual machine Client is one of the communication participants which generate

the real-time packet �ow for testing and uses the IPsec tunnel to communicate securely

with its partner, the Server. The IPsec tunnel has one end-point on both sides, the end-

point on the client side is IPsecGatewayClient and the end-point of the server side is

IPsecGatewayServer. The latter is composed of 4 virtual machines implementing the ro-

tation. To IP addresses on Figure 5.2 show the static IP address of each virtual machine

in the corresponding network.

Figure 5.2. Test Environment

The rotating virtual machines together compose IPsecGatewayServer and have two ad-

ditional network for internal use as shown on Figure 5.3. The Leader Election network

is used to decide the next active virtual machine and the State Exchange is used by the

active virtual machine and the next active virtual machine to communicate via the pro-

tocol discussed in Section 4.4. As before, the IP addresses on the Figure are the static IP

addresses con�gured for each virtual machine. The leader election and the state exchange

take place in di�erent network so that only the those virtual machines can see the mes-

sages for whom the messages are intended. Depending on the role of the virtual machine,

it has di�erent interfaces up. Standby virtual machines use the Leader Election network

while the elected standby virtual machine and the active virtual machine use the State

Exchange network. Other interfaces are kept down.

All virtual machines run on VMware ESXi [19] and have the same operating system,

Ubuntu 14.04 Server LTS (Trusty Tahr). The rotating virtual machines have additional

packages installed for the implementation: openssh-server for �le transfer, ulogd2-pcap

for bu�ering packets into pcap �les, arping for noti�ng nodes on the local network about

the change in network topology and python-pip as the code was written in Python. The

following two Python packages are needed: netaddr for working with IP addresses and

scapy to process pcap �les.
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Figure 5.3. Internal Network for Rotation

5.3 IPsec Tunnel at the Rotation Gateway

The Linux kernel contains a native IPsec stack, known as NETKEY since version 2.5.47

[8] and the management of all IPsec-related objects can be done manually via the ip xfrm

utility (see man ip xfrm).

Security Associations de�ne the transformation packets protected by IPsec undergo. As

each Security Association is responsible for one direction of the communication, a tunnel

through which both the Server and the Client send packets has two Security Associations,

one for the Client → Server direction and one for the reverse. Below are the Security

Associations used in the implementation. Taking the �rst as an example, the Security

Association states the new IP addresses to be used are 172.16.2.1 as source and 172.16.4.1

as destination. The packet is to encapsulated by ESP using the Security Parameter Index

0xaf96d37e in tunnel mode. The transformation uses HMAC-SHA1 for authentication and

AES in CBC mode for encryption with their respective keys. The Security Association

has a selector (sel) which states packets from which networks are to be transformed. In

this case, the network 0.0.0.0/0 applies the transformation to all packets. The Security

Association has an ID (reqid) which can be used by policies to reference the Security

Association.

user@ipsecgwvm3:~$ sudo ip xfrm state

[sudo] password for user:

src 172.16.2.1 dst 172.16.4.1

proto esp spi 0xaf96d37e reqid 1 mode tunnel

replay-window 0

auth-trunc hmac(sha1) 0x430ac913d93cd8696d4016b340b4ece8b2ab7fd8 96

enc cbc(aes) 0x4eb97e932e8b1f2ca32b28657723208
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ad3c6d29db2e7c1d33dcc6ed41d72b165

sel src 0.0.0.0/0 dst 0.0.0.0/0

src 172.16.4.1 dst 172.16.2.1

proto esp spi 0xaf6cae5a reqid 2 mode tunnel

replay-window 0

auth-trunc hmac(sha1) 0x67bd95699c7cdb84c9d8e8179c8feec3a40d7149 96

enc cbc(aes) 0x6daf46085bff90bd508261871cfd188

337a87bb61eab13fd58e422aeab7db710

sel src 0.0.0.0/0 dst 0.0.0.0/0

Security Policies determine what kind of tra�c should be protected by IPsec and the pro-

cessing needed to provide the protection. A Security Policy state the source and destination

network and port of the packet, the protocol used and the direction of the packet �ow. If a

packet matches this description, the Security Policy de�nes the Security Association that

is used to process the packet. The Security Policies used in the proof-of-concept implemen-

tation is shown below. As an example, the �rst policy states that packets coming from the

network 172.16.1.0/24 (where the Client virtual machine is found), going to the network

172.16.5.0/24 (network in which the Server is located) and in an inbound direction should

be processed by a Security Association. The Security Association transforms packets in

tunnel mode that are coming from the IPsecGatewayClient virtual machine (172.16.2.1)

and routed to the rotating virtual machines (172.16.4.1) by using the ESP protocol.

user@ipsecgwvm3:~$ sudo ip xfrm policy

[sudo] password for user:

src 172.16.1.0/24 dst 172.16.5.0/24

dir in priority 0

tmpl src 172.16.2.1 dst 172.16.4.1

proto esp reqid 1 mode tunnel

src 172.16.1.0/24 dst 172.16.5.0/24

dir fwd priority 0

tmpl src 172.16.2.1 dst 172.16.4.1

proto esp reqid 1 mode tunnel

src 172.16.5.0/24 dst 172.16.1.0/24

dir out priority 0

tmpl src 172.16.4.1 dst 172.16.2.1

proto esp reqid 2 mode tunnel

5.4 Leader Election

The leader election algorithms discussed in [11] all require to send the identi�er of the

network node to its neighbors. In this case, the standby virtual machines are all in the
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same network, every machine has all others as neighbors. As a result, sending the identi�er

of the machine to its neighbors is most easily done by a broadcast message via UDP. As

discussed in Section 4.3, the identi�er of each virtual machine is the amount of time elapsed

since the restoration of the machine. In this implementation, restoration to a clean state

of the virtual machine is done by reverting to a snapshot. The snapshot was created of

each virtual machine after the installation of required packages and a reboot. As a result,

the uptime of the virtual machine found in /proc/uptime is pretty close to the time the

snapshot was take. The few seconds of di�erence becomes insigni�cant when compared to

the minutes during each rotation. The used identi�er of each virtual machine is value found

in /proc/uptime.

The leader election starts when the cleansing virtual machine noti�es the standby virtual

machines about the end of the restoration. This message is also broadcasted in the Leader

Election network and is received by all virtual machines. After the message is sent, the

cleansing virtual machine becomes a standby virtual machine and the leader election takes

place.

During the leader election, every virtual machine broadcasts its identi�er and received the

identi�ers of other virtual machines. When all identi�er are received, each virtual machine

compares the received identi�ers to its own. If the highest value received is the same as the

one the virtual machine sent, the virtual machine won the leader election and broadcasts

this information to the other standby virtual machines. Then, the elected virtual machine

brings down its interface to the other virtual machine. When a virtual machines receives

the information that the leader election is won by another, it stops the execution of the

leader election and waits for the signal of the next successful restoration.

5.5 Propagation of the State

When a virtual machine wins the leader election, it brings down its interface to the network

Leader Election and then brings up its interface to State Exchange. It signals the switch

to the active virtual machine by connecting to it on a TCP port and sending the trigger

message. Then, it waits for the sync_state message which signals that the state of the

application, in this case the IPsec tunnel, has been transferred to the virtual machine.

When the active virtual machine receives the connection request and the trigger message,

it serializes the data needed to create the IPsec tunnel end-point. The data consists of two

types of data as discussed before: Security Policies an Security Associations. [10]

The Security Associations and Security Policies are written to a �le and are transmitted

to the next active virtual machine. The proof-of-concept implementation uses scp (see

man scp) for �le transmission which uses SSH for authentication. Therefore, all rotating

virtual machine have the public keys of the other rotating virtual machines installed. This

eliminates the need to type passwords each time a �le is transmitted. On the next active

virtual machine, both kinds of data are added to the system using the ip xfrm interface
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after being subjected to input validation. If the data is added successfully, the next active

virtual machine sends the acknowledgement and con�gures its interfaces. An example of

adding Security Association and Security Policies is given below.

#!/bin/bash

# Flush SAD

ip xfrm state flush

# Add Security Associations

ip xfrm state add src 172.16.4.1 dst 172.16.2.1 proto esp spi 0xaf6cae5a

reqid 2

mode tunnel

enc aes 0x6daf46085bff90bd508261871cfd188337a87bb61eab13fd58e422aeab7db710

auth sha1 0x67bd95699c7cdb84c9d8e8179c8feec3a40d7149

ip xfrm state add src 172.16.2.1 dst 172.16.4.1 proto esp spi 0xaf96d37e

reqid 1

mode tunnel

enc aes 0x4eb97e932e8b1f2ca32b28657723208ad3c6d29db2e7c1d33dcc6ed41d72b165

auth sha1 0x430ac913d93cd8696d4016b340b4ece8b2ab7fd8

#Flush SPD

ip xfrm policy flush

# Add Security Policies

ip xfrm policy add src 172.16.5.0\/24 dst 172.16.1.0\/24 dir out

tmpl src 172.16.4.1 dst 172.16.2.1

proto esp

reqid 2

mode tunnel

ip xfrm policy add src 172.16.1.0\/24 dst 172.16.5.0\/24 dir fwd

tmpl src 172.16.2.1 dst 172.16.4.1

proto esp

reqid 1

mode tunnel

ip xfrm policy add src 172.16.1.0\/24 dst 172.16.5.0\/24 dir in

tmpl src 172.16.2.1 dst 172.16.4.1

proto esp

reqid 1

mode tunnel
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As the IPsec tunnel-related data is serialized, transmitted and added to the system, incom-

ing packets are bu�ered on the active virtual machine, if Phase 3 is enabled. If not, packets

are simply dropped. Bu�ering happens in Layer 3: by adding rules to the routing tables

via iptables (see man iptables), packets are sent to the user-space daemon of ulogd2.

ulogd2 has a number of input formats it accepts and lots of output formats from text to

certain databases. In this implementation, ulogd2 receives the raw packet from the kernel

and outputs it in pcap form to a �le.

5.6 Networking Interfaces

After the Security Associations and Security Policies are present in the next active virtual

machine, it has to bring its networking interfaces up the outside and the protected networks.

This is achieved by using the ifup command (see man ifup). If result of trying to bring

the interfaces up is sent to the active virtual machine. If the result is failure, the virtual

machines abort the protocol. On the next active virtual machine, this means no extra

processing, but the error is recorded in a log �le. On the active virtual machine, the

bu�ered packets are retransmitted and bu�ering is stopped.

If bringing up the interfaces is successful, the next active virtual machine noti�es the local

networks it is connected to about the rotation. As the IP address of both the active virtual

machine and the next active virtual machine are the same, it is their Layer 2 address that

speci�es which machine gets the packets. In Layer 2, ARP is used to match MAC addresses

to IP addresses and the matches are stored in the ARP cache. To notify the network to

send packets to the next active virtual machine, it has to invalidate the ARP cache of

the nodes on the local networks it is connected to by supplying a new IP-MAC pair.

The package arping is capable of this, among other network monitoring activities. The

command arping -Aq -w 1 -S 172.16.4.1 -c 1 -i eth4 -B sends a single unsolicited

ARP reply stating that 172.16.4.1 is at the MAC address of the interface eth4. Normally,

arping waits for a reply which will not arrive in this case, so the waiting timeout (-w) is set

to the lowest value. If the invalidation is seemingly successful (the command is executed

without errors), the next active virtual machine instructs the active virtual machine to

bring its interfaces down and proceeds to the execution of Phase 3.

5.7 Bu�ering

If Phase 3 is disabled in the protocol, the following steps are skipped and the switch from

standby role to active role is concluded. If it is enabled, the next active virtual machine

requests information about the bu�ered packets to which the active virtual machine replies

with the size of the pcap �le in which the packets are stored. If the bu�er is not too large,

i.e. it would not take too much time to process those packets, the pcap �le is requested,

it is sent by the active virtual machine and the contents of the �le are processed by using

the Python package scapy.
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Chapter 6

Evaluation

In this chapter, the design of the system and the proof-of-concept implementation are eval-

uated. Section 6.1 presents results of formally verifying the designed protocol discussed in

Chapter 4. Sections 6.2 and 6.3 present the performance of the proof-of-concept implemen-

tation using ICMP packets and TCP stream respectively.

6.1 Formal Veri�cation of Protocol

The greatest question regarding the protocol is related to the switch from standby role to

active role. The outcome of the protocol should be that the virtual machines reach a global

state in which either

• the switch happened without errors and the elected standby virtual machine took

the place of the active virtual machine, or

• the global state before the protocol is restored in case of errors and the active virtual

machine is still in the active role

It is also important to know whether virtual machines following the protocol can get stuck in

an inconsistent state and that no deadlock occurs. To answer these questions, the protocol

was subjected to formal veri�cation with the tool called Uppaal [2]. The formal veri�cation

is not aimed to �nding security issues leading to malfunction, these are discussed in Chapter

7, but to check the correctness of the protocol with respect to performance.

Uppaal is an integrated tool for modeling, verifying and validated real-time systems using

networks of timed automata, extended with data types. The tool consists of three main

parts: a description language, which is a modeling or design language to describe system

behavior; a simulator, which is a validation tool, enables the examination of possible dy-

namic execution, enables early fault detection and a model-checker, which explores the

state-space of the system and checks invariant and reachability properties.
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6.1.1 Models

To verify the designed protocol, all participants must be modeled as a network of timed

automata. For this protocol there are three participants: the elected standby virtual ma-

chine (called New), the active virtual machine (called Old) and a node on the local network

(called Router). In Uppaal, participants are called processes. Each process consists of lo-

cations depicted by �lled circles and edges between its locations depicted by arrows. Edges

are annotated with selections, guards, synchronization and updates. The labels have the

following meaning:

• Selection: non-deterministically bind a given identi�er to a value in a given range,

e.g. i : int[0,1] binds either 0 or 1 to the identi�er i. The other three labels are

within the scope of Selection. On the GUI, Selections are shown with the color dark

yellow

• Guards: the edge is enabled in a state if and only if the guard evaluates to true, e.g.

i == 0. On the GUI, guards are shown with the color green

• Synchronization: synchronize processes over channels. On the GUI, synchronizations

are shown with the color light blue

• Update: the expression is evaluated and, as a side-e�ect, the state of the system is

updated with the value, e.g. i += 1. On the GUI, updates are shown with the color

dark blue

Communication between the participant is modeled using channels which can be de�ned

with the chan keyword as shown on Figure 6.1. Channels can also be de�ned as arrays.

Uppaal also de�nes urgent channels: no delay is allowed if the transition using urgent

channels is enabled. In a real environment, this means that if a message can be sent, it will

be sent as soon as possible.�
urgent chan ack; // acknowledgement
urgent chan trigger ; // trigger state sync in old
urgent chan sync_state; // sync state with new
urgent chan status_up; // new's interface is up
urgent chan status_down; // new's interface is down
urgent chan invalid_arp ; // invalidating ARP cache
urgent chan bring_down; // bring down old's interface
chan packet[5]; // transmitting packets:

// 0 − to old,
// 1 − to new,
// 2 − from old,
// 3 − from new,
// 4 − from old to new

chan status_poll ; // polling status of new�
Figure 6.1. Model of Communication Channels
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Network Node

Figure 6.2 shows the model of a node on the network. The node has two locations which

correspond to which virtual machine packets are sent: in ToOld it sends packets to the Old

active virtual machine, while in ToNew, it send packets to the New active virtual machine.

Edges between the locations de�ne transitions between the locations: if the process is a

recipient during synchronization, the channel name is followed by a ?, if the process is the

sender, then a ! is written after the channel name. Change in the location happens only

if a received packet has another source than the process expects (e.g. packet originates

from the New active virtual machine, even though the network node would send packet to

the Old active virtual machine) or the change is explicitly asked by the protocol with a

noti�cation about a change is Layer 2.

Figure 6.2. Model of a Network Node

Active Virtual Machine (Old)

To create the model of the Old active virtual machine, local variables are also needed. The

local variables are shown on Figure 6.3. To model time and timeouts, the variable timer

is used, which is of type clock. Uppaal uses a dense-time model where clock variables

evaluate to real numbers. Clocks in the system progress synchronously. Unfortunately,

Uppaal does not model random communication failures, so it has to be introduced to the

model by hand. For this reason the variable hasError of type int is added as a local

variable. Unless constraints are placed a variable regarding its value, Uppaal will verify the

model using all possible values for each variable. In case of int, it is both time and space

consuming and since hasError tells whether a communication error happens, the values

0 and 1 are used as lower and upper constraints respectively. While the variable could be

de�ned as bool, it is not possible to select a random boolean value on an edge, which is

needed to model random communication failures. The number of errors (numErrors) in a

location must also be tracked to know how many retries the system attempted and whether

the maximum number of allowed errors (maxErrors) is reached (which causes the protocol

to be aborted).

Figure 6.4 shows Phase 1 of the switch from standby role to active role from the active

virtual machine's point of view. Initially, the active virtual machine is in the ActAsActive

location in which it accepts and sends packets whenever needed. When it receives the

33



�
clock timer; // timer
int [0,1] hasError = 0; // whether an error happened
int [0,2] numErrors = 0; // how many errors happened
int [0,2] maxErrors = 2; // maximum number of errors allowed in a location�

Figure 6.3. Local Variables of Model of Active Virtual Machine

trigger message from the next active virtual machine, it transits to theInitiateSync

location. While the transition is underway, a random value is selected and is given to the

local variable hasError.

Figure 6.4. Model of Phase 1 from the Active Virtual Machine's Point of View

In Uppaal, a process is allowed to stay in a location in�nitely unless a clock speci�es the

maximum amount of time that can pass without using an enabled transition. Therefore, a

maximum amount of time is speci�ed while the active virtual machine can try to send the

sync_state message and for all other locations in the model. The message gets across if

the randomly selected value of hasError is 0 and fails if the value is 1, provided that the

maximum amount of retries is not exceeded. Each time sending fails, the counter numErrors

is incremented until it reaches the maximum amount of allowed errors. If that value is

reached, the protocol is aborted by transiting back to the location ActAsActive. Since

the switch of the newly elected standby virtual machine is underway, no packets can be

processed but incoming packets may be bu�ered. Therefore incoming packets (packet[0]?)

are accepted in this location (and are bu�ered) as long as time at the location is within the

speci�ed limits and not too many errors happened. Because of timing issues, it is possible
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to receive additional trigger messages in this location. If that happens, the clock is reset

and the virtual machine continues to send the sync_state message.

When the sync_state message gets across to the newly elected standby virtual machine,

the active virtual machine enters the WaitingForAck location. In this location, it waits for

the acknowledgement from the next active virtual machine about getting the state. If the

response is not got within timeout, the active virtual machine goes back to the location

InitiateSync and retries while also incrementing the number of errors that happened. Due

to timing issues, it is possible to get a trigger message in this location. In this case again,

the active virtual machine goes back to the location InitiateSync. As in the previous

locations, incoming packets are accepted within timeout (and are bu�ered). When the

acknowledgement arrives from the next active virtual machine, the active virtual machine

enters Phase 2.

For the active virtual machine's point of view, Phase 2 starts when it enters the location

WaitingForStatus as shown on Figure 6.5. In this location, the active virtual machine is

waiting for the newly elected standby virtual machine to notify the active virtual machine

about the status its network interfaces. As discussed in Section 4.4.2, if the protocol reaches

this point, the protocol cannot be aborted because of timeouts. Instead, when a timeout

does occur, the active virtual machine must poll the next active virtual machine for the

required information. At this point, network nodes still send packets to the active virtual

machine, thus incoming packet are accepted (and bu�ered). When the status message of the

next active virtual machine arrives, the active virtual machine transits to the corresponding

location.

If the status message is negative (status_down?), i.e. the interfaces could not be brought

up, the protocol is considered aborted and the active virtual machine transits to the location

Aborted. In this location, the bu�ered packets are replayed in hopes of preventing packet

loss. The location is urgent, meaning that no time is allowed to pass in this location. In

reality, as soon as the retransmission of bu�ered packets is done, the location is left and

the active virtual machine transits to the starting point ActAsActive.

If the status message is positive (status_up?), i.e. the interfaces are up and invalidation

will happen, the active virtual machine transits to the state WaitingForCommand. As in

this location, packet may still be sent to the active virtual machine (it has no knowledge

about when the invalidation happens), packets are accepted (and bu�ered). The active

virtual machine waits for a speci�ed amount of time to get the �nal bring down interface

message (bring_down?). Whether the message arrives within timeout or not, the active

virtual machine enters Phase 3 in the location CleanUp. Since bu�ering is optional in the

protocol, the messages that lead up to the point where the bu�ered packets are sent to the

next active virtual machine are not modeled. Instead, the simpler approach is to let the

model decide: if bu�ering happens, the synchronization packet[4]! is taken by the model,

if not, the edge is not enabled. Because the active virtual machine may not wait for the

bring down interface message, the message may arrive when the virtual machine is in

the location CleanUp.
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Figure 6.5. Model of Phase 2 and 3 from the Active Virtual Machine's Point

of View

Newly Elected Standby Virtual Machine (New)

The model of the elected standby virtual machine also needs local variables as shown

on Figure 6.6. Most of the variables are the same as in the model of the active virtual

machine. The only new variable is called interfaceError and is of type int. It serves a

similar function as the variable hasError in a sense that it is used to model a random error.

However, the error is not in the communication but a random error that may occur while

bringing up the network interfaces of the virtual machine. If bringing them up is successful,

the value is 0, and if not, it is 1. Similar to hasError, this variable could be de�ned as a

boolean value but because boolean value cannot be randomly selected in Uppaal, it is of

type int and has a constraint on its value: 0 or 1.�
clock timer;
int [0,1] hasError = 0; // whether some kind of error happened
int [0,2] maxErrors = 2; // maximum number of allowed errors
int [0,2] numErrors = 0; // number of errors happened
int [0,1] interfaceError = 0; // whether the interface can be brought up or not�

Figure 6.6. Local Variables of Model of Newly Elected Standby Virtual Ma-

chine

The model of Phase 1 from the newly elected standby virtual machine is shown on Fig-

ure 6.7. Initially, the standby virtual machine is in the location Start and is waiting

for the leader election. As the problem of leader election has been discussed in literature

many times (see Section 4.3), the leader election itself it not modeled and the process
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is assumed to have won the election. As a result, it immediately transits to the location

LeaderElectionWon while randomly selecting a value for the communication. The location

has an upper time limit on how long the virtual machine should try to send its message. If

sending is unsuccessful (hasError == 1) or the time limit is reached (timer == 2) and the

maximum number of allowed errors is not yet reached, the counter for errors is incremented

and the virtual machine tries again. However, if the maximum number of allowed errors is

reached (numErrors == maxErrors), the protocol is aborted by transiting to the location

Aborted.

Figure 6.7. Model of Phase 1 from the Newly Elected Standby Virtual Ma-

chine's Point of View

When sending the trigger message to the active virtual machine, the newly elected

standby is waiting for the synchronization of application state in location WaitingForState.

If the time limit during waiting is reached, the error is recorded and the virtual machine

transits back to the location LeaderElectionWon. When the sync_state message from

the active virtual machine arrives, the standby transits to the location StateArrived and

attempts to send the acknowledgement. If sending is not possible either because of com-

munication failure or the time limit set on this location, the error counter numErrors is

incremented until the maximum number of allowed errors is reached. If the maximum is

reached, the protocol is aborted by transiting to the location Aborted. Because of timing

issues, a sync_state message may arrive while the virtual machine is in this location (e.g.

as a result of a retry from the active virtual machine). If the acknowledgement can be sent,

the virtual machine enters Phase 2 of the protocol.

Figure 6.8 shows the model of Phase 2 and 3 from the newly elected standby virtual ma-

chine's point of view. When the newly elected standby virtual machine enters Phase 2 by
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transiting to the location BringUpNewInterface, a value is selected randomly (interfaceError)

that indicates whether the interface can be brought up or some kind of error happened.

If the interface cannot be brought down and the message status_down can be sent, the

protocol is aborted. If the interface is up and ready and the message status_up can be

sent, the virtual machine transits to location Invalidation. If no message can be sent,

the virtual machine retries. In this location, a status_poll message can also be received

if the status message had not been sent in time.

Figure 6.8. Model of Phase 2 and 3 from the Newly Elected Standby Virtual

Machine's Point of View

In the location Invalidation, the standby virtual machine tries to send a message to the

network node informing it in the change in Layer 2. If sending fails, the virtual machine

retries immediately, if it is successful, it transits to the location BringDownOldInterface.

As the interface of the virtual machine is up and the state of the application is available,

the virtual machine is able to send and receive packets. In this location, the virtual machine

tries to send the bring_down message to the active virtual machine and moves to Phase 3

if it succeeds. As in the model of the active virtual machine, the optional bu�ering part of

the protocol is only modeled by receiving the bu�ered packets in the location CleanUp.

System

With the models ready, the system can be composed of the timed automata. Firstly, for

each model, an instance is created. Then, the system is de�ned as the instances. The source

code to de�ne the system of timed automata is shown on Figure 6.9.
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�
// Place template instantiations here.
Old = OldActive();
New = NewActive();
R = Router();

// List one or more processes to be composed into a system.
system Old, New, R;�

Figure 6.9. System Composed of Timed Automata

6.1.2 Results

With the system ready, it is uploaded to the model-checker to test whether it satis�es the

requirements. The model-checker does not evaluate the behavior of the system but the

state-space. The state-space can be represented by a graph in which every node contains

a possible set of states of the system and directed edges are possible changes is the state

of the system. Queries to the model-checker are expressed using a simpli�ed version of

Timed Computation Tree Logic. The query language consists of path formalae and state

formulae. A state formula is an expression which is evaluated by looking at the state-space.

For example, the expression i == 0 evaluates to true in all states in the state-space where

in the system i == 7. The state of processes can also be expressed with state formulae by

using the syntax of ProcessName.LocationName. In Uppaal, deadlock is expressed by a

special state formula called deadlock and is satis�ed for all deadlock states. Path formulae

are shown in Figure 6.10. The �lled states depict states for which the state formulae φ

holds, bold edges show the paths the formulea evaluates on.

Figure 6.10. Path Formulae in Uppaal

Uppaal can be used to check three kinds of properties: reachability, safety and liveness.

Reachability properties are sati�ed when a path exists from the initial state, such that
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the state formulae φ is satis�ed by any state along that path and are expressed by E<> φ.

Safety properties mean that something is invariantly true in the system. If φ should be true

in all reachable state, then the path formula is A[] φ. The path formula E[] φ says that

there should exist a maximal path such that φ is always true. Liveness properties express

that something will eventually happen and are expressed by the path formulae A<> φ and

φ --> ψ.

The protocol must have the following properties. Firstly, the reachability property, namely

that it is possible for the protocol to end with the virtual machines in consistent state.

Two such ends exist: 1) both the active and the elected standby virtual machines aborted

the protocol and packets are sent the active virtual machine and 2) both the active and

the elected standby virtual machines entered Phase 3 and packets are sent to the elected

standby, now active virtual machine. The �rst requirement is formulated as

E<> (New.Aborted and Old.ActAsActive and R.ToOld)

while the second is

E<> (New.CleanUp and Old.CleanUp and R.ToNew)}.

Secondly, there is a safety property the model has to conform with: there must be no

deadlock in the model. There must not be a state in which the system is unable to transit

to another state. This is formulated as

A[] not deadlock.

And thirdly, the protocol also has a liveness property: from the moment the protocol is

started, the protocol must be aborted and the starting state must be reached or it must

reach Phase 3 eventually. This can be formulates as

(Old.ActAsActive and New.LeaderElectionWon and R.ToOld) -->

((Old.ActAsActive and New.LeaderElectionWon and R.ToOld) or

(Old.CleanUp and New.CleanUp and R.ToNew)).

Figure 6.11 show the result of the formal veri�cation. The green lights next to the re-

quirements show that each requirement is met, the model has all the above mentioned

properties.

Figure 6.11. Results of Formal Veri�cation
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Additional liveness properties may be de�ned, for example if the elected standby virtual

machine reaches Phase 3, eventually the active virtual machine must reach it too and the

network node must send packet to the new active virtual machine. The formula would be

New.CleanUp --> (Old.CleanUp and R.ToNew) Or, if the active virtual machine aborts

the protocol, eventually the newly elected standby virtual machine must abort it as well

and packet must be sent to the active virtual machine. This property would be formulated

as Old.Aborted --> (New.Aborted and R.ToOld). Both example properties are also suc-

cessfully veri�ed by Uppaal.

6.2 Packet Loss Using ICMP packets

The �rst test of the proof-of-concept implementation aimed at determining whether packet

loss is still possible with bu�ering enabled in the proof-of-concept implementation. The

packet �ow needed for the test must have had no mechanism to protect against packet

loss. The test was performed by executing a ping command on the Client aimed at the

Server, thus sending ICMP requests and replies between the virtual machines. During the

�ow, the rotation of the virtual machines was triggered manually by starting the execution

of the protocol at the cleansing virtual machine. The results are shown on Figure 6.12.

Figure 6.12. ICMP Pequests and Replies

The rotation was triggered when ICMP request #81 was sent from the Client. Even though

test aimed at investigating packet loss, the results also show that no signi�cant latency

was introduced to the packet �ow. From the Client's point of view, ICMP request #81

got lost. The log �les of the proof-of-concept implementation provided more insight into

the issue. After the Security Associations and the Security Policies had been transmitted

to the next active virtual machine, the active virtual machine and the next active virtual

machine entered Phase 3. When the next active virtual machine requested information

about the bu�ered packets, ICMP request #81 had not yet been processed by ulogd2 and

an empty pcap �le was transmitted to the next active virtual machine. It was only after

Phase 3 that ICMP request #81 was processed and showed in the pcap �le. Running the

test multiple times resulted in the same outcome.
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6.3 Continuous Packet Flow with TCP

The second test of the proof-of-concept implementation aimed at changes in the user-

experience. The packet �ow used in the test was created by initiating the download of the

500 Mb �le from the web server at the Server to the Client. As in the previous test, the

rotation was triggered manually. As the HTTP protocol used to download the �le uses

TCP in Layer 4, the packet �ow also provided insight into how the latency introduced by

the protocol in�uences TCP. The results are shown in Table 6.1 generated by Wireshark

using the captured packets at the Server.

Table 6.1. Continuous Packet Flow with and without Rotation

Without Rotation With Rotation
Transmission time 23.680 s 23.684 s
Duplicate IP address con�gured (172.16.5.254) 0 2
Retransmissions 55 315
Out-of-order segments 32 39

The most obvious result of the test was that the TCP connection between the Client and

the Server did not break even with the rotation. As expected, the rotation introduced

latency to the transmission, but the transmission time increased with only 0.004 s, which

does not in�uence the user-experience.

Wireshark gave the warning of Duplicate IP address con�gured, realizing that while the IP

address of the gateway did not change, the MAC address did. This warning was present 2

times in the packet �ow (see Figure 6.13), once when the interface is brought up and once

when the invalidation of the ARP caches in the network 172.16.5.0/24 happened.

Figure 6.13. Continuous Packet Flow during Rotation

On the other hand, the rotation introduced a signi�cant increase in retransmissions for

TCP. To understand the issue here, the retransmission mechanism of TCP must be dis-

cussed �rst. If the acknowledgment for the segment sent does not arrive within the retrans-

mission timeout, the segment is sent again. All TCP implementations must use two speci�c

algorithms for computing the retransmission timeout as dictated by [3]. The algorithms

combined adjust the retransmission timeout to the capabilities of the connection link: con-

nection with higher throughput have lower retransmission timeouts and connections with
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lower throughput have higher timeouts. In our case, up until the bu�ering during the rota-

tion, the network throughput in the test environment is very high, �rstly because there is

no other source of tra�c and secondly because the test environment is also virtual and the

virtual machines are simply ports from the host's point of view. Each packet in the virtual

environment is passed from one port to another on the host. The retransmission timeout

calculated by Wireshark is 0.25 s before the rotation. Then, the switch from standby role

to active role happens as discussed in Section 4.4 and one of the �rst things to happen is

that all incoming packets are bu�ered at the active virtual machine. The exact moment of

the start of the switch cannot be seen in the packet �ow as the protocol was designed to be

transparent in Layer 3 and above. However, acknowledgement for packets 31328 to 31336

on Figure 6.13 does not arrive in time and so, the Server retransmits part of the segment

from packet 31328 in packet 31337 before the invalidation. The evidence is in the sequence

numbers: the sequence number of the �rst retransmission matches the sequence number of

packet 31328 and the next sequence number of the last retransmission matches the next

sequence number of packet 31336. The arti�cial latency introduced by the rotation makes

the TCP implementation of the Server think that some kind of network error happened

and all segments from packet 31328 to 31336 need to be retransmitted in smaller segments,

therefore the signi�cant increase in retransmissions. TCP needed 0.006556 s to retransmit

all the bu�ered segments.

The increase in out-of-order segments is also caused by the rotation, speci�cally Phase 3 in

which the previously bu�ered packets are retransmitted by the next active virtual machine.

As discussed in Section 4.4.3, when the next active virtual machine has its interfaces up,

new packets are allowed to �ow while the bu�ered ones are retransmitted. In case of TCP,

this means that bu�ered acknowledgements are sent to the Server after it started the

retransmission, causing the segment �ow to become out-of-order.

Based on the discussed issues, it seems that the optional bu�ering at the rotating virtual

machines only hinder the performance of TCP. The test was repeated with Phase 3 disabled

and as a result, TCP needed only 0.005113 s to retransmit the bu�ered segments.
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Chapter 7

Discussion on Security and Future

Work

As mentioned in Chapter 4, the threat model used during the design of the protocol

assumes that the attacker does not use the internal communication channel between the

virtual machines. Nevertheless, a more realistic model of the attacker would assume that

after the attacker compromises the active virtual machine, they start attacking the standby

virtual machines as well, trying the gain complete control over the system. The complexity

of an attacker with such abilities proved to be too complex for the design phase. Instead, a

few implications of the realistic threat model and possible countermeasures as future work

are discussed here.

In Phase 2 of the switch from standby role to active role (see Section 4.4.2) the next

active virtual machine instructs the active virtual machine to bring down its interface.

The attacker may choose not bring down the interface and instead, send packets to the

network (violating the bu�ering feature of the design). The packets sent contain the Layer

2 address of the active virtual machine and can be used to overwrite the invalidation

originating from the next active virtual machine. For example, in case of ARP, in a packet

is processed whose MAC and IP addresses are not a match in the cache, the standard allows

the implementation, to override the cache with the new information. In our scenario, if the

attacker sends any packets after the invalidation (which they can detect by sni�ng the local

network during Phase 2), the sent packet will generate a mismatch on the local network and

the MAC address of the active virtual machine will become cached instead of the next active

virtual machine's. To counter this situation, two approaches could be takes. The �rst would

involve modifying the nodes on the local network not to accept packets from the active

virtual machine after the invalidation message is received. However, this approach would

violate the design requirement of transparency to the outside and is thus inadequate. The

second approach would involve recon�guration of the active virtual machine either before or

after the invalidation. In case of recon�guration before the invalidation, the rotation might

cause packet loss which is unfavorable. In the latter case, there is a timing window during
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which the attacker can still send packets and override the invalidation. If the invalidation is

sent both before and after the recon�guration, the timing window of the attacker would be

limited to from the �rst invalidation to the recon�guration. During this time, the attacker

could cause packet loss. The second invalidation would cause the local network to resume

functioning as expected.

Even though the next active virtual machine brings down its interfaces to the internal com-

munication channel for the leader election during its switch from standby role to active role,

but it may become compromised as the active virtual machine. The attacker could bring

this interface up and forge large IDs for the leader election. As a result, no standby virtual

machine could possibly win the leader election and the attacker could prevent the cleans-

ing of the system. To counter this attack, two solutions are available. The �rst solution

require the standby virtual machines to keep track of the role of the other virtual machines

and accept IDs from the standby virtual machines only after authentication. However, if

additional virtual machines were to be added to the rotation, this approach would require

the system administrator to recon�gure the existing virtual machines informing them of

the change in the virtual machines. Even if the standby virtual machine use some kind of

automatic mechanism to discover new virtual machine added to the rotation, the discovery

would require additional computation resources the multi-core embedded device may not

have. The second (and in my opinion a better) approach has been discussed before, namely

that instead of bringing down interfaces, the virtual machine becoming the active virtual

machine should be recon�gured without access to the network in which the leader election

takes place.

Another way for the attacker to compromise the next active virtual machine is through the

application data the next active virtual machine requests during the switch. If the attacker

sends malicious content instead of the application state exploiting a vulnerability in state

restoring function of the application, the attacker can escape the cleansing and continue to

reside in the active virtual machine. Even if the attacker does not send malicious content

but bogus data or does not answer to the state request at all, the application is cut from

the state needed to provide seamless execution from the outside world's point of view.

While malicious content or bogus data can be detected by extensive input validation, the

denial of service arising from the missing state is not easily handled.

The internal communication channels are not the only the way for the attacker to reach

the other virtual machines from the active virtual machine. I expect that the multi-core

embedded device will use bare-metal virtualization, meaning that there is no guest oper-

ating system, the virtualization platform runs directly on the multi-core hardware. In this

scenario, the aim of the attacker is to compromise the hypervisor. If they succeed, they

can execute arbitrary code with root privileges and gain complete control over the multi-

core embedded device. A programming error in the virtualization platform is enough for

the attacker to escape the active virtual machine. [16] mentions a heap over�ow exploited

in a proof-of-concept example. This scenario is the most frightening as there is nothing

the system administrator or developer can do the prevent this attack. Only the vendor of

45



the virtualization platform has the necessary means for a countermeasure in this case, for

example, with extensive training in the area of secure software development [13] for its

developers.

Apart from the attacker model, the fault-tolerance of the designed system could also be

improved by using fault detection. In the discussed design, a fault in the active virtual

machine can render the system unable to function as the application state is lost with

the active virtual machine. What is more, the fault may not even be detected if it occurs

before the switch from standby role to active role. The reason for that is that if the fault

happens before the trigger message of the elected standby virtual machine and the active

virtual machine, which experienced the fault, is unable to reply to that message, the next

active virtual machine will ultimately consider the communication channel broken and will

abandon the switch. In this scenario, the presumption that only the communication chan-

nel may be faulty is wrong. By adding fault detection, the standby virtual machines could

monitor the performance of the active virtual machine and determine when it experiences

faults. The fault detection could also be used to save the current state of the application

in case a fault is detected. On the other hand, fault detection is disadvantageous from the

security point of view. If the standby virtual machines interacted with the active virtual

machine, the activity would add to the attack surface of the standby virtual machines, po-

tentially allowing the attacker to compromise the standby virtual machines. If the standby

virtual machines observed the network to see whether the active virtual machine is able to

reply to requests, their interfaces to the outside would have to up, adding to their attack

surface again.

At the time of writing, the proof-of-concept implementation runs in a PC environment. As

the next step, the code will be ported to an embedded Linux operating system running

on a multi-core architecture. The use-case will demonstrate an open deterministic network

with mixed-criticality.

To conclude, in this diploma project the co-design of safety and security was studied in

multi-core embedded systems. The emerging trend of virtualization opens new perspec-

tives for redundancy in multi-core embedded systems while virtualization in itself provides

security features such as isolation of virtual machines and protection from other virtual ma-

chines. As such, virtualization may be the basis on which both safety and security could be

designed. The explore this possibility, a system of rotating virtual machines was designed

to provide proactive security to the embedded system while being transparent in Layer 3

and above. The design was formally veri�ed and a proof-of-concept implementation was

made that implemented an IPsec gateway. The results of testing the proof-of-concept im-

plementation showed that while the rotation introduces latency, it does not in�uence the

user-experience. However, the threat model used during the design is somewhat limited, so

a stronger attacker and the implications of their abilities with possible solutions as future

work was discussed.
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