
Towards Reverse Engineering Protocol State Machines

Gábor Székely, Gergő Ládi, Tamás Holczer and Levente Buttyán

Abstract: In this work, we are addressing the problem of inferring the state machine of an
unknown protocol. Our method is based on prior work on inferring Mealy machines. We
require access to and interaction with a system that runs the unknown protocol, and we serve
a state-of-the-art Mealy machine inference algorithm with appropriate input obtained from the
system at hand. We implemented our method and illustrate its operation on a simple example
protocol.

Keywords: Automated Protocol Reverse Engineering, State Machines, Mealy Machines

Introduction

Many systems use closed protocols whose specification is not made publicly available. Ex-
amples include industrial control systems and in-vehicle embedded networks. Often, it would
be very beneficial to understand those closed protocols. For instance, network anomaly detec-
tion tools cannot monitor industrial control systems without understanding their protocols,
hence, cannot detect potential cyber attacks on them.

Protocol reverse engineering is the activity of uncovering the specification of an unknown
protocol. This can be a tedious work, so automation is required to make it practical. The goal
of automated protocol reverse engineering methods can be two-fold: determining the format
of messages used by the protocol and recovering the state machine of the protocol. In another
paper [2], we studied the problem of determining the message formats of unknown binary
protocols, and developed a tool which can take captured network traffic containing messages
of the protocol and output the identified message types and the semantics of message fields
for the different message types. In this work, we are addressing the problem of inferring the
state machine of an unknown protocol, and we assume that message types have already been
identified (e.g., by using our tool mentioned above).

Our method is based on prior work on inferring Mealy machines, and in particular, on the
work of Shahbaz and Groz [3]. We use their Mealy machine inference algorithm and extend
it with elements that make it possible to use their conceptual results in practice to reverse
engineer the state machine of real-world protocols in an automated way. Our method requires
access to and interaction with a system that runs the unknown protocol, and it basically consists
in serving the Mealy machine inference algorithm of Shahbaz and Groz with appropriate input
obtained from the system at hand.

Inferring Mealy Machines

We use Mealy machines to represent the state machine of a protocol, as they can be used in a
more straightforward manner to model the behavior of protocols using requests and responses
(which is quite typical in practice) than finite state machines or Moore machines can. Mealy
machines differ from simple finite state machines in that for every state transition that is trig-
gered by an input, an output is defined. The set I of possible inputs is called the input alphabet
and the set O of possible outputs is called the output alphabet.

Angluin described an algorithm in [1] that can be used to infer minimal finite state machines,
and this algorithm can be adapted for inferring Mealy machines too. In this work, we adopt
the techniques of Shahbaz and Groz described in [3], and in the sequel, we refer to the Mealy
machine inferring algorithm described in [3] as LM+.

70



Since we use the LM+ algorithm as a black box, a high level overview of its operation is
sufficient for our purposes here. The LM+ algorithm is executed by a learner and it requires
a teacher. The teacher knows the Mealy machine to be inferred, and the task of the learner
is to infer that machine. The teacher can answer two types of queries for the learner: first,
for a certain sequence of input characters, the teacher returns the output of the machine to be
inferred (input query); second, the teacher can determine whether a certain Mealy machine
conjectured by the learner is the same as the one to be inferred (equivalence query). If the
conjectured machine differs from the real one, then the teacher returns a counterexample:
a sequence of input characters for which the real and the conjectured machines produce a
different output.

Applying and extending the LM
+ algorithm

A Mealy machine can be used to model the state machine of a client-server protocol in
a fairly straightforward manner: the input alphabet of the machine can contain the possible
messages that the client may send to the server (i.e., the requests) and the output alphabet can
contain the possible messages that the server may send to the client (i.e., responses, acknowl-
edgements, errors, etc.).

Clearly, including all possible individual messages in the input and output alphabets can
easily lead to problems: a huge resulting Mealy machine and a very long running time of the
LM

+ algorithm. For instance, if a message contains a 4-byte timestamp, then the alphabet
would contain at least 232 elements to represent all possible messages containing different
timestamp values. To bring the size of the alphabets in a manageable range, we represent
message types by the elements of the input and output alphabets instead of individual messages.
A message type models a group of messages that have the same format but that may differ in
the specific values in the fields of the given message type.

In order to work with messages types, we use two helper functions: a message classifier and
a message generator. The message classifier function takes a particular message as input and
returns its message type. The message generator function takes a message type as input and
generates a valid message that has the specified message type. While the message classifier
function should be deterministic, the message generator can be non-deterministic: the values
of the message fields can be randomly generated as long as the message remains well-formed
(i.e., consistent with its type). An additional function, a message updater is also useful, which
takes as input the set M of all previously sent messages and a particular message m of this set,
and returns a new message m′ of the same type as m, such that the values of certain fields in
m′ are the mutations of the corresponding values in m, and M does not include m′ yet. The
updater function takes into account the semantics of certain fields: for instance, constant fields
and identifiers are not mutated, a counter is mutated by incrementing it, etc. Such an awareness
of semantics improves the efficiency and accuracy of our algorithm.

Recall that we aim at reverse engineering the protocol state machine of a system under test
(SUT). To achieve this goal, we use the LM+ algorithm as the learner that infers the unknown
Mealy machine representing the protocol, and we need to provide the teacher that answers the
queries of the learner. We construct the teacher by using the above defined helper functions,
and by sending messages to and observing responses of the actual implementation of the
protocol provided by the SUT.

This works in the following way: We start by using the message generator helper function
to produce messages for every message type. We use these pre-generated messages to avoid
a deterministic protocol appearing to be non-deterministic due to freshly generated random
values used in the same message at different stages of our algorithm. Then, we run the LM+

learner and we respond to its queries. Input queries are answered by first resetting the SUT,

71



then sending the pre-generated messages (after running the message updater helper function
on them) corresponding to the learner’s input query to the SUT, and finally running the message
classifier helper function on the SUT’s responses to get the message types that the learner can
understand. Equivalence queries are answered by generating random input queries, running
them against both the SUT and the conjectured machine, and comparing their outputs. The
number of queries needed to decide about equivalence with a given confidence level has been
studied in [1] and we follow those guidelines. Once the LM+ learner conjectures a Mealy
machine that is deemed correct, our algorithm terminates with that machine as the output.

However, the above described version of our algorithm may return an incomplete protocol
state machine, because it may happen that only a single message of a given type is generated,
which always triggers the same type of response, while it may be possible that other variants
of the same message would result in a different response. Consider, for example, a request
for reading the content of some memory address; the response can be the data found at the
specified address or an error if the address was invalid. The extended version of our algorithm
attempts to find these additional behaviors by finding messages of the same type that trigger
different responses of the SUT. This is done by generating multiple messages of each type of
the input alphabet I , and running the simple version of our algorithm with them. The resulting
Mealy machine is analyzed and messages that have the same type but do not produce different
behavior are removed (we call this step deduplication). Then, new messages are generated and
added to the set of possible inputs, and the simple algorithm is executed again. This is repeated
until a certain amount of runs in a row do not generate new messages that induce different
behavior.

Implementation and evaluation on a simple protocol

We implemented the LM+ algorithm and our algorithm in Python, using the NetworkX1

package for representing Mealy machines. We designed the implementation to be modular,
such that the different components are well separated and easy to replace. This is important
for future improvements and to be able to easily plug the functions that are different for each
protocol (e.g., the message generator, the message classifier, and the part of the teacher that
handles communication with the SUT).

For testing and illustration purposes, we constructed and used a simple protocol, which is
illustrated in Figure 1. The protocol has 3 states: the starting state DISCONNECTED, the state
BASE, where only get is a valid input, and the state WRITE, where both get and write are valid
inputs. The difference between get and bad_get is that the parameter (target address) of the get
message is valid, while it is invalid in a bad_get, and likewise with write and bad_write. Messages
get and bad_get are of the same type, and similarly, messages write and bad_write have the same
type. These two message types are used by the message generator to generate messages with
random addresses.

Figures 2, 3, and 4 show the inferred Mealy machine in different rounds after deduplication.
The request messages are postfixed with a number; this is a counter showing how many times
the message generator was called when the given message was generated. The starting state is
*, and every other state is labeled by the messages that can be used in sequence to reach that
state. In the first round, the algorithm generates two instances of each message type, however,
each instance of the same message type produced the same behavior, therefore, only one of
them were kept (see Figure 2). In the second run, a new instance was generated from each
message type, but these did not show new behavior either, so they were discarded too. In the
third round, a variant of the write message type was generated that resulted in an ok response,
as opposed to the error response triggered by the other variant of the write message, so this was

1https://networkx.github.io/

72

https://networkx.github.io/


kept (see Figure 3). Finally, in the fourth round, the algorithm also finds a get message variant
that results in different response observed so far, hence it is retained (see Figure 4). After 5
rounds with no new behavior found, the algorithm stopped. As we can see in Figure 4, in our
example, the Mealy machine inferred is identical to the state machine of the example protocol
(except for the names of the states and message variants, of course).

Figure 1: Protocol Mealy machine Figure 2: First round output

Figure 3: Third round output Figure 4: Fourth round output

Acknowledgment

The research presented in this paper has been supported by the European Union, co-financed
by the European Social Fund (EFOP-3.6.2-16-2017-00013), the Hungarian National Research,
Development and Innovation Fund (NKFIH, project no. 2017-1.3.1-VKE-2017-00029), and the
IAEA (CRP-J02008, contract no. 20629).

References

[1] Dana Angluin. Learning regular sets from queries and counterexamples. Information and
computation, 75(2):87–106, 1987.

[2] Gergő Ládi, Levente Buttyán, and Tamás Holczer. Message format and field semantics
inference for binary protocols using recorded network traffic. In IEEE Conference on Software,
Telecommunications and Computer Networks (SoftCom), September 2018.

[3] Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In International
Symposium on Formal Methods, pages 207–222. Springer, 2009.

73


