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Sturm4, Arne Dieckmann5, Oliver Fortmeier5, Eric Boniface6, Clément Mayer6, Arnaud Gohier8,
Peter Schmidtke7, Ritsuya Niwayama8, Dieter Kopecky9, Lewis Mervin10, Prakash Chandra
Rathi11, Lukas Friedrich14, András Formanek1, 3, Peter Antal3, Jordon Rahaman16*, Adam
Zalewski15, Wouter Heyndrickx17, Ezron Oluoch18, Manuel Stößel18, Michal Vančo18, David
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Abstract

To apply federated learning to drug discovery we devel-
oped a novel platform in the context of European Innova-
tive Medicines Initiative (IMI) project MELLODDY (grant
n°831472), which was comprised of 10 pharmaceutical
companies, academic research labs, large industrial compa-
nies and startups. The MELLODDY platform was the first
industry-scale platform to enable the creation of a global fed-
erated model for drug discovery without sharing the confiden-
tial data sets of the individual partners. The federated model
was trained on the platform by aggregating the gradients of
all contributing partners in a cryptographic, secure way fol-
lowing each training iteration. The platform was deployed on
an Amazon Web Services (AWS) multi-account architecture
running Kubernetes clusters in private subnets. Organisation-
ally, the roles of the different partners were codified as differ-
ent rights and permissions on the platform and administrated
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in a decentralized way. The MELLODDY platform generated
new scientific discoveries which are described in a compan-
ion paper.

Introduction
Billions of Euros in research and development are needed to
successfully bring a new drug to the market. Furthermore,
drug discovery and development is a high risk process as
there is a failure rate of around 90% for drug candidates that
reach the clinical studies phase. Therefore, making the early
stages of drug discovery more efficient and accurate holds
the potential to have a significant impact on the pharmaceu-
tical industry.

Tools and models based on machine learning and artificial
intelligence are commonly applied in all stages of drug dis-
covery and development to make the process more efficient.
A standard technique is to use quantitative structure-activity
relationship (QSAR) machine learning models (Ghasemi
et al. 2018) to predict bioactivity or toxicity of small
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Figure 1: Illustrating Federated Learning: within a single
training round, the clients update the model (i.e. W ) us-
ing their local training sets and share only the corresponding
gradients (i.e. ∆Wi) with the Server, who aggregates them
(e.g. by averaging) and broadcast the resulting model update
(i.e. ∆W ) back to the clients.

molecules and possible drug candidates. However, the lack
of data often limits model performance improvement. A col-
laborative approach that brings together industry competi-
tors to leverage vast datasets holds the potential to overcome
this challenge and enable better model performance.

Several levels of collaboration in terms of privacy and
computational overhead can be envisioned. For data privacy,
the focus is on the proper handling of sensitive data, includ-
ing confidential data such as intellectual property, and on
protecting the confidentiality and immutability of the data.
Ensuring data privacy could lead to computational overhead
caused by extra process requirements (e.g. authentication
and encryption). The most efficient in computation usually
means the least effective in privacy (e.g. a centralised server
building a model by pooling the data sets from all part-
ners would enable the models to profit from a large pool
of data, however it would enable all or some partners ac-
cessing data of others). At the other extreme end lies cryp-
tographic techniques such as secure multi-party computa-
tion (SMPC) (Cramer et al. 2015) and homomorphic encryp-
tion (Gentry 2009), that could increase the levels of privacy
guarantees but are less practical when applied on big data
use cases due to computational overhead. Federated learn-
ing (McMahan et al. 2017), by design, provides a minimal
required level of privacy as the data stays under control of
each participant while computational overhead is still rea-
sonable for big data use cases.

Federated Learning has already been used in several ap-
plication fields where the data are sensitive. It originally
emerged (McMahan et al. 2017) as part of edge computing
with mobile applications for which user data were too sensi-
tive to gather in a single place. It has also been used in the au-
tomotive industry and more extensively in healthcare where
medical data are highly regulated and sometimes too valu-
able to share openly (Li et al. 2020a). There has been numer-
ous academic publications about Federated Learning with
virtually split data sets (Mammen 2021; Li et al. 2020b),
but the deployment of such technology in real life has been
much scarcer. Industry-scale federated learning comes hand-
in-hand with many challenges like scalability (computation-

ally) as well as the synchronization of the data preparation
and the orchestration of different partners operationally.

In this paper, we describe a real world application
for drug discovery in the context of a European Innova-
tive Medicines Initiative (IMI) project called MELLODDY
(grant n°831472), which gathered 10 pharmaceutical com-
panies, academic research labs, large industrial companies
and startups. The platform developed for MELLODDY
project enabled to produce scientific results described in the
work of Heyndrickx et al. (2022b). The data used in MEL-
LODDY were chemical and assay data resulting from re-
search conducted by ten pharmaceutical companies over the
span of decades. The companies treat these data as trade
secrets, as the vast majority of it is not yet protected by
patents and therefore cannot be disclosed to the public or
to competitors. Thus, no pharmaceutical company is willing
to share its data with another. However, they are interested in
sharing common predictive models which have been trained
using a scheme visualised in Figure 1 on their combined data
sets, provided their data sets can not be accessed or inferred
by anyone.

MELLODDY Use Case
Data
MELLODDY built machine-learning models on data result-
ing from in vitro bioassay measurements on small molecule
samples in the early phases of drug discovery (Hughes et al.
2011). The main prediction tasks were from assays run in
concentration-response mode, where a compound is mea-
sured at multiple concentrations from which an AC50 value
is derived (Beck et al. 2004), typically by the use of au-
tomated curve fitting system (Gubler et al. 2018). These
data are very sparse; far less than 1% of the structure ac-
tivity matrix is filled. Single concentration high-throughput
screening (Macarrón and Hertzberg 2011) data is available
in larger volumes, and can be used as auxiliary tasks to be
included in the training, but ignored for performance evalu-
ation purposes. In contrast to other efforts focusing on pub-
lic data, where results of bioassays on the same target were
merged into one task, for example (Sturm et al. 2020) , each
bioassay in MELLODDY was presented as its own task (or
group of tasks). This means that there was little overlap be-
tween the prediction tasks of different pharmaceutical com-
panies, as the companies may have overlapping target port-
folios, but typically do not share assay protocols.

The data preparation process was executed by the pharma
partners on premise, according to a data preparation man-
ual (Heyndrickx et al. 2022b). The first stage consisted of
extracting the data from the individual data warehouses into
a standardized file format. Here the partners selected the as-
says to include, applied unit conversions and scaling, and
assigned the correct assay type. The second stage of the data
preparation was done using a shared code package called
MELLODDY Tuner (Friedrich 2021), which was built on
the open source cheminformatics toolkit RDkit (Landrum
et al. 2021). MELLODDY Tuner processes the chemical
structures and performs structure standardization, calcula-
tion of the Morgan Fingerprint representation (Rogers and
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Hahn 2010) used as features for machine learning, and as-
signment of train-test fold split (Simm et al. 2021). The fol-
lowing four processing steps were performed on the activ-
ity data: (1) plausibility checks on activity values, (2) repli-
cation of aggregation, (3) identification and application of
classification thresholds for classification models and (4) fil-
tering of tasks by data volume quorum to ensure sufficient
data for training and robust performance metric calculation.

Finally, the data was written out in sparse matrix format
required for the machine learning algorithm. At this stage,
only the data necessary for machine learning was retained,
namely the structure feature matrix, the fold allocation in-
formation, the matrix with the task labels, and a list of task
weights. Different data sets were created this way: a classi-
fication data set (CLS) with only classification tasks, a clas-
sification data set including auxiliary tasks (CLSAUX), a
regression data set with only regression tasks (REG) and
a hybrid data set with both classification and regression
tasks (HYB). The use of MELLODDY tuner and the jointly-
approved Data Preparation Manual ensured the consistency
and compatibility of the data prepared by each partner.

The chemical structures originally exported from data
warehouses in the first stage, as well as any assay metadata,
such as assay names or targets, were removed. This ensured
that only the minimally required data set was present on the
machine learning platform. On the platform the tasks were
identified by the column index in the label matrix, and only
the pharma partners kept on their end the metadata file al-
lowing to map back model predictions to the original as-
says. In total, the pharma partners included data from ∼100
million measurements covering over 40,000 assays and ∼20
million compounds for the main prediction tasks. Added to
this this were ∼2 billion measurements from auxiliary as-
says.

Federated Learning Formulation
The principle goal of federated learning is to train a global
model by minimizing a global objective function Lt which
represents the weighted sum of the local objective functions
Lp of each partner contributing with private data Dp to the
global federated model:

min
θ

Lt(D, θ) with

Lt(D, θ) =
P∑

p=1

wpLp(Dp, θp),

p⋂
p=1

θp ̸= ∅. (1)

The data D, with X as feature space, Y as label space and
I as sample ID space, of the P partners can have several
distribution characteristics. In the work of Yang et al. (2019)
a categorisation is proposed for federated learning (FL) de-
pending on the distribution characteristics of the data, e.g.
horizontal and vertical FL. In the MELLODDY use case,
the feature space X is the same for all partners however in
general the label space Y and sample ID space I would dif-
fer: Xi = Xj , Yi ̸= Yj , Ii ̸= Ij , ∀Di,Dj , i ̸= j. In
practice we expect some (slight) overlap among the partic-
ipating partners in label space Y and sample ID space I in
order to enable federated transfer learning.
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Figure 2: The SparseChem models in this figure have one
hidden layer: h1 = σ(W0x) where σ can be a chosen non-
linearity (e.g. tanh, relu). The output ŷn = Wnh1 is a vec-
tor where each element represents a different task.

A possible scheme for learning a global model in
a federated way would be by using Federated Averag-
ing(FedAvg) (McMahan et al. 2017) proposed by Google.
In this scheme, a global model is trained based on iterative
averaging orchestrated by a central server where the number
of participants is typically large. It concerns a cross-device
FL setting where the learning takes place remotely for multi-
ple iterations instead of updating the model every iteration to
decrease communication at the cost of model performance.

In contrast to cross-device FL, MELLODDY is a cross-
silo FL scenario, which involved small number of partic-
ipants (simply 10 pharmaceutical companies) who partici-
pated and contributed to the federated model each learning
iteration. The scheme used in MELLODDY was based on
secure aggregation for federated learning (Bonawitz et al.
2017) where the gradients of all participating partners were
aggregated each iteration in a cryptographic, secure way to
update the global model (see Figure 1) instead of sending
the model weights and averaging them as in FedAvg.

Models
SparseChem: Base Model for MELLODDY Multi-task
learning (Caruana 1997), a paradigm also often used in the
drug discovery (Dahl et al. 2014; Simões et al. 2018) field
for for quantitative structure–activity relationship (QSAR)
models, enables the joint training of a machine learning
model where related tasks are involved. SparseChem (Arany
et al. 2022) offers an easy and efficient way to train an
industry-scale (millions of input compounds) multi-task
QSAR deep neural network models with high-dimensional
sparse input features. SparseChem supports classification,
(censored) regression and hybrid (both classification and re-
gression) models and were used as base model for MEL-
LODDY for the single partner baseline models but also for
the global model from the federated platform as visualised
in Figure 2.

Federated Model: Private Head and Common Trunk
The contributing partners to the global federated model can
all have different tasks which should be kept private to each
partner; this is therefore split into a private head and a com-
mon trunk as visualised in Figure 2. During execution of the
federated MELLODDY platform, the weights of the com-
mon trunk were trained jointly by all contributing partners

15578



through the application of federated learning using secure
aggregation of the individual private gradients. The weights
for the private head however remained private for all individ-
ual partners; likewise, no communication was needed while
training, as the private gradients were used directly to up-
date the private head. After federated training, the resulting
model for each partner consisted of stacking the common
trunk (which should be the same for all partners) with the
private head (which is different and private for all partners).

Catalogue Fusion Model As previously mentioned, tasks
may vary across partners and should remain private. How-
ever, the algorithm and platform also provides the opportu-
nity for partners to agree on some tasks to be shared among
all or a subset of partners. This holds the potential to en-
hance the model performance, as for these tasks the model
weights would be shared completely as visualised in Fig-
ure 2 and trained jointly. In the context of MELLODDY and
drug discovery for example, the consortium could allow in-
dividual partners to contribute to a shared head where the
tasks would represent commercial assays such as safety pan-
els (Bowes et al. 2012) performed at contract research organ-
isations (CROs). The catalogue (shared) head would only be
shared with partners contributing to the catalogue tasks.

Risk Analysis
The purpose of Risk analysis is to identify and mitigate risk
events caused by stealing or manipulating confidential in-
formation which can have potentially negative impact on the
benign participants. To make this analysis as comprehensive
as possible, we use a systematic approach detailed in (Pejo
et al. 2022).

Methodology The initial step of any risk analysis is to de-
fine the perimeter, i.e. the actors and the data involved. These
are usually referred as Risk Sources and Assets, respectively.
The former is a person or non-human entity that can cause
a Risk, accidentally or deliberately. The latter are the con-
fidential or private data that the Risk Sources aim to learn
or manipulate, thereby causing Risk. The two primary Risk
Sources are the participants (pharma companies) and the co-
ordinator (aggregator) server, while the assets are the Chem-
ical Fingerprint, the Targets, the Bioactivity, and the Model.

A Risk represents the goal of the Risk Source which is
to infer confidential information about one of the asset. A
Threat is a sequence of actions (or attacks) carried out by a
Risk Source to realize one or more Risks. A Risk is char-
acterized by its impact (which is measured by its associated
negative impact called Severity), while a Threat is charac-
terised with its feasibility (which measures the technical dif-
ficulty for a Risk Source to realize the Threat). Combining
the feasibility and the success probability of these attacks
form the likelihood of the Risk, and this further combined
with the Severity allows for identifying the most dangerous
risks which should be mitigated.

For example, a possible risk is that a participating phar-
maceutical company A (Risk source) learns that a particular
chemical compound (Asset) is used by another participant
B from the model updates sent by B for aggregation. A spe-
cific threat realizing this risk is that A captures the model

update of B and launches inference attack on the captured
update. This risk has maximum severity since B’s business
strategy may be disclosed as a result of a successful attack.
The goal of the analysis is to estimate the success probability
and feasibility of such an inference attack.

Analysis The platform architecture implies that the code
of the clients and the server is audited and verified. Since
malicious manipulation of the training data can result in a
larger accuracy drop for a malicious party than for the oth-
ers (Pejó et al. 2019), there is no real incentive for active
attacks (e.g., poisoning, back-doors (Goldblum et al. 2020))
as long as the adversary also needs good model quality.
Consequently, only honest-but-curious adversaries are con-
sidered which legitimately participate in the learning pro-
tocol. They follow the learning protocol faithfully but also
attempt to infer confidential information about the assets.
In this setup, passive attacks are still possible: the trunk is
shared among all participants, therefore, it is necessary to
understand whether its output (i.e., trunk activation values)
or its updates (i.e., gradients) leak any information about the
assets.

Threats There are many attacks for federated learning; we
give a non-comprehensive list below. For more detailed sur-
veys, we refer the reader to (Liu et al. 2021).

• Model inversion attacks aim to reconstruct a representa-
tive training sample of a class (Fredrikson et al. 2015),
i.e. a record that is similar to all records belonging to a
class.

• Membership inference attacks aim at inferring if a cer-
tain record was part of the target model’s training dataset
(Hu et al. 2021). The most common techniques rely on
shadow models (Shokri et al. 2016) and can exploit over-
fitting (Pyrgelis et al. 2017).

• Reconstruction attacks take membership inference at-
tacks another step forward by reconstructing complete
training samples (Zhu et al. 2019).

• Property inference attacks aim to infer properties of train-
ing data that are independent of the features that charac-
terize the classes of the joint model (Ganju et al. 2018).

• Model extraction attacks arise when an adversary obtains
black-box access to some target model and attempts to
learn a model that closely approximates or even matches
the original model (Tramèr et al. 2016).

Despite the wide range of attacks, for our analysis, we
focus on membership inference attacks, when the adversary
checks if a given compound has been used to train the com-
mon model or not. If this elemental attack succeeds, that
flags information leakage, while if it does not, that can be a
solid empirical argument that other attacks (that potentially
leak more information) would probably fail as well. The ac-
curacy of the membership inference is above 90% when it is
launched on the model update of a single participant (Pejo
et al. 2022), which means that the likelihood of the corre-
sponding risk is very large supposing the adversary (e.g., the
server) can access the update sent by this participant.
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Mitigations In general, there are legal, organisational, and
technical controls. Here, we focus only on technical mea-
sures. A handful of technical mitigation techniques have
been proposed against membership inference attacks such
as regularization and hyperparameter tuning (Yeom et al.
2017). Differential Privacy (Pejó and Desfontaines 2022)
can also be applied to provide provable privacy guaran-
tees but comes with unacceptable accuracy degradation in
our case (Pejo et al. 2022). Besides these, secure aggre-
gation (Ács and Castelluccia 2011; Bonawitz et al. 2017)
is a widely used technical control to prevent access to the
individual model update while preserving the functionality
of the aggregation protocol. In other words, only the phar-
maceutical companies learn the aggregated model, and the
server performs aggregation without learning anything about
the assets. Although a malicious participant can still learn
that one of the parties used a specific training sample by
launching a membership attack on the aggregated model up-
date or the output of the trunk, it cannot attribute this mem-
bership information to any specific party as long as all of
them participate in every single round.

Nonetheless, parties may join or leave during training,
thus, via a successful membership test on the aggregated
model update or the output of the trunk model, the attacker
can attribute a training sample to the leaving/joining party.
This is a differentiation attack that takes advantage of the
change in the coalition. Note that this can be mitigated via
legal controls, e.g. by allowing the join of leave of parties
only in groups. Altogether, secure aggregation coupled with
legal controls mitigate most inference attacks without the
degradation of model quality such that the remaining risks
become acceptable (Pejo et al. 2022).

Contribution Scoring Since secure aggregation prevents
the disentaglement of the participants’ contributions, it also
makes measuring their usefulness within the collaboration
more difficult. This additional requirement is often critical
when monetary gain is involved, and determining the re-
ward distribution is necessary in case the collaboratively
trained model is sold. The silver bullet for contribution score
computation is the Shapley value (Shapley 1997), but unfor-
tunately, it is not feasible to compute in many real-world
scenarios. Hence, most prior works only approximate that
without privacy in mind: they assume access to individual
datasets or the corresponding gradients (Wang et al. 2020).
Computing contribution scores privately is a largely unex-
plored direction, the only works considering this setting are
(Pejó and Biczók 2022) and (Pejó et al. 2021). The for-
mer does not apply to our use case, as it assumes dynamic
changes in the training coalition. However, the latter could
be adopted with care: the participants compute their scores,
thus, verifiable computation techniques should be applied to
prevent dishonest reporting.

Platform Blueprint
Infrastructure
A cloud setup was selected as the infrastructure for the pri-
vacy preserving federated machine learning. To this end, a
multi-account setup at Amazon Web Services (AWS) was

developed to address the computational demands of MEL-
LODDY while, at the same time, providing a secure envi-
ronment for the sensitive information of the pharmaceutical
partners of the project. The AWS organisation contained all
AWS accounts, including two central accounts and a dedi-
cated AWS for each pharmaceutical partner.

The first central account, the “orchestration account”,
hosted a Kubernetes cluster providing a version-control sys-
tem, a setup for a public key infrastructure (PKI), and ser-
vices for cost aggregation and cost reporting. This account
was managed by Kubermatic. The second central account,
the “central ML account,” was utilised to provide the core
components of the federated machine learning framework,
namely the model dispatcher. The model dispatcher was de-
ployed on a Kubernetes cluster. This AWS account was man-
aged by Owkin.

Each pharmaceutical partner owned a dedicated AWS ac-
count containing multiple services to store the sensitive data,
to pre-process the data, manage the compute resources in the
account and finally to perform the federated machine learn-
ing. The key services in the pharmaceutical partner accounts
can be described as follows: The sensitive data was stored in
a secured S3 bucket and prior to the upload, internet access
is removed from both pharma private VPC and shared VPC.
A Kubernetes cluster was deployed using EC2 instances, i.e.
the control plane was hosted by three instances managing an
adaptively adjustable number of worker node. The worker
nodes of the Kubernetes cluster were located in a “shared
subnet” within a peered VPC (virtual private cloud) to en-
able high-bandwidth network connectivity between local re-
sources and the model dispatcher. A “console” server was
utilised to deploy and manage the Kubernetes cluster and
additionally, to host a CLI (command line interface) which
was—in turn—used by the partners to adjust the number of
worker nodes, to trigger the pre-processing of data, and to
initiate the federated machine learning runs. The AWS ser-
vices were monitored by CloudWatch not only for health
status but also for security issues. The infrastructure was de-
ployed using the tool Terraform (HashiCorp 2022).

The entire MELLODDY platform, including the infras-
tructure setup at AWS, underwent a thorough security audit
by an external auditor (i.e. Cirosec); findings and code were
revised by each pharma company’s security experts and the
platform was ultimately signed off by all partners. The suc-
cessful audit is testament that the setup is capable of han-
dling sensitive classified data in the context of drug discov-
ery. To allow changes of the setup after the audit, a review
process had been implemented. That is, every change of the
underlying code had to be reviewed by at least three pharma-
ceutical partners for security issues before being deployed to
production.

Application Layer
Platform The platform consists of a set of interconnected
organizations. Figure 3 represents the main components of
a deployed platform in two organisations: a pharma partner
and a central aggregation one.

The application layer of MELLODDY relied heavily on
Owkin Connect (based on Substra (Substra 2022), open-
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Figure 3: Overview of the deployed platform

source software mainly developed by Owkin), an application
to train and evaluate machine learning models on distributed
data sets without centralising the data or compromising the
privacy of the data maintaining traceability of training and
evaluation operations. It supports simple training and eval-
uation scheme, such as training a model on data in a center
A and evaluating the model on data in a center B, or more
complex federated learning (FL) schemes, such as Federated
Averaging. It also enables both horizontal FL and vertical
FL, as well as multi-partners multi-task learning.

The platform uses the following elementary components:

Federated Learning (FL) Orchestrator is responsible for
the orchestration of ML tasks on distributed datasets: it
distributes the tasks to the workers of the different or-
ganizations. It stores non-sensitive metadata of assets of
Connect, makes it possible to verify the integrity of assets
and ensures that permissions on assets are respected. The
orchestrator can be a centralized component or used in a
decentralised mode through a Distributed Ledger Tech-
nology (DLT) (Rauchs et al. 2018).

Connect-Backend is a core component in each organisa-
tion: its REST API is the main entry point to interact with
the platform. It also handles the storage of assets like al-
gorithms, data samples and models. One of its main sub-
system is the compute engine, where algorithms and data
samples meet to create added value. The compute engine
can scale horizontally to leverage multiple compute re-
sources (CPU/GPU/memory).

Connect Interfaces and Libraries used to interact with
the connect backend either by data scientist or IT op-
erational contacts. The most notable ones are the fron-
tend, allowing to monitor assets and compute plan exe-
cution; there are also several Substra libraries (substra-
tools, substra SDK & CLI) to simplify algorithm defini-
tion and API interaction.

Melloflow is a library and CLI providing mini-batch gen-
eration and data set, algorithm and hard coded com-
pute plan registration in the context of the MEL-
LODDY project. One of the central library is the secure-
aggregation used for federated learning of models.

Deployment Artifacts and Tools regrouping both Kuber-
netes manifests to deploy Owkin Connect, melloddy CLI

and its associated server providing on-demand manifest
generation for pharma operators.

Compute Plans The ML experiments executed on the
platform were registered and executed as compute plans, a
concept specific to Connect. A compute plan is a directed
acyclic graph of tasks. A task used for training is defined by
an algorithm, the data it is executed on and the inputs from
its parent tasks. A task used for evaluation is defined by a set
of metrics, the train task it evaluates and the data used for the
evaluation. An aggregation task is defined by an algorithm
and the inputs from its parent tasks.

The algorithm contains the code executed by the task and
the description of the environment of the execution, via a
Dockerfile. The metrics define how to get a score from pre-
dictions and the ground truth.

In the context of the MELLODDY project, the data
was registered under the format of samples, each sample
corresponding to one mini-batch of an epoch. The mini-
batches were generated from the output of the MELLODDY
Tuner (Friedrich 2021) library using the Melloflow library.

On the platform, the data does not leave the organisa-
tion it was registered on. Each task can only be executed
on the data from one organisation and the execution takes
place on that organisation. The other assets (algorithm, met-
ric and task inputs) move from one organisation to the other
as needed.

The algorithms and metrics are shared publicly to all or-
ganisations. The task input and outputs may contain sensi-
tive information and as such are kept private. The training
tasks have two outputs: (1) the full model which does not
leave the organisation and (2) the model metadata (e.g. trunk
gradients), that is shared with the central aggregation organ-
isation. This model metadata is encrypted using a secure ag-
gregation scheme.

The aggregation task is executed on the central organisa-
tion, taking as input the model metadata from other organi-
zations and returning an aggregation of the metadata, which
is sent to each organization. The test task outputs a list of
metrics, which are anonymised and showed publicly on the
frontend.

(Sparse) Secure Aggregation The Secure Aggregation
protocol is utilized to prevent attribution of any inferred in-
formation from the shared trunk model. Within Connect it is
based on (Ács and Castelluccia 2011; Bonawitz et al. 2017)
with two changes: the secret sharing is disabled, but a com-
mon secret mask shared among all participants is utilized.
The former is not required, since all partners must stay con-
nected all the time in order to prevent differential attacks.
The latter is essential to prevent the aggregator from access-
ing the result of the aggregation: in addition to the pair-
wise masks, each participant adds another secret mask to
their model update that is unknown to the server and can
be removed only by the participants. Hence, the aggregator
can perform aggregation without learning anything about the
model updates and their aggregate.

Although the computationally heavy secret sharing is re-
moved, the new protocol still incurs a significant commu-
nication and computational cost, as random keys must be
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generated and added to each gradient value of all partici-
pants in each round. Yet, a considerable portion of the gra-
dient update values is zero because the training data within
a batch correspond to a small number of tasks and the input
chemical fingerprints are also sparse. Therefore, the gradi-
ents are sparse as well, and compressing the model update
before encryption can increase efficiency with presumable
minor accuracy drop. Moreover, these techniques also miti-
gate confidentiality risks to some extent (Pejo et al. 2022).

Unfortunately, secure aggregation hides the location of
non-zero coordinates, and hence participants do not know
which gradient values are non-zero at the other parties. In
MELLODDY, a simple and cheap approach is followed, that
is, every participant sends the gradient values at exactly the
same random subset of coordinates for aggregation. In par-
ticular, each participant first selects the same random sub-
set of coordinates uniformly at random using a common se-
cret seed, then it sends the encrypted gradient values only
at these coordinates for aggregation. After decrypting the
aggregate, only the aggregated coordinates are updated, the
rest remains unchanged.

Partner Weighting The platform supports runs with dif-
ferent schemes of relative weighting of partner contributions
within each training iteration of the federated run. Partner
weighting is enabled by scaling each gradient of each partner
before aggregating. For default partner weighting the gra-
dients of all partners are scaled by a constant so that each
data point is equally weighted and partners with more data
contribute more to the aggregated gradient. Other possible
schemes are to scale the gradient depending on the mini-
batch size or number of non zeros in the mini-batch per part-
ner. This would allow partners to contribute more equally to
the aggregated gradients. In the work of Heyndrickx et al.
(2022b) it was however found that default weighting was
more beneficial for the federated model.

Platform Tools
MELLODDY Federated Learning (FL) Simulator Dur-
ing the MELLODDY project, many options were considered
to improve the performance of the model (Heyndrickx et al.
2022b). In order to quickly assess each option, the partners
conducted single partner studies. In these studies, they used
the Melloflow library to simulate FL experiments locally on
public data and their own data, split into n virtual FL part-
ners. This allowed them to get preliminary results for each
option, and decide whether to integrate the option into the
final experiment. Melloflow, used on top of Owkin Connect’
local backend, can simulate the FL experiment by running
the tasks locally with Python subprocesses or Docker con-
tainers on the same development environment.

MELLODDY Predictor MELLODDY Predictor (Owkin
2022) is an open-source Python package made for external
data scientists without high knowledge of the MELLODDY
stack to perform predictions on new data easily from the
models produced during the yearly runs. It is built on top
of MELLODDY-Tuner and SparseChem to manage both
data pre-processing and model inference steps. It is flexible

enough to handle multiple models and data size, and predict
on subset on tasks.

Model Fusion Model fusion is a processing option de-
signed to increase the overall performance. It enables se-
lection of the best model per task instead of a single best
average performer. To this end, each partner can select the
group of already trained models from the pool of single- and
multipartner models. The best model for each task is then
selected based on the separate dataset and the performance
is measured based on the held-out test set (Heyndrickx et al.
2022b).

Operational Model
The MELLODDY model required the collaboration of part-
ners with different roles in the consortium. These different
roles were reflected in the platform as various tasks to per-
form and security permissions.

Decentralised Administration A decentralised approach
had to be implemented to meet with the strong confidential-
ity requirements of MELLODDY and to allow for the in-
dustry partners’ private and sensitive data sets to be kept in
their respective private IT environments. This also required
specific processes and operation sequences to be developed.
In particular: (1) partners set up and maintained their own
IT platform component environments, (2) each partner was
represented for IT operations by an ”Operational Contact”
in the project, and (3) a detailed coordination approach was
elaborated.

This decentralized approach raised a number of chal-
lenges and difficulties: (1) as only the operational contact
of each partner was able to access the IT environment of a
given industry partner, remote assistance without access was
set up in order to resolve bugs, (2) a fine-grained planning of
operations was necessary to take into account working hours
and time zones, and (3) an error by one partner can poten-
tially result in numerous operations for all other partners.

Different Phases of Operation Operations were split into
3 phases: (1) Phase 1 was used for hyper-parameter tuning of
machine learning models. In this phase only 60% of the data
was used to train the machine learning models, while 20%
of the data was used to evaluate the models and the other
20% is left out. (2) In phase 2 the best hyper-parameters
were selected from phase 1 and the machine learning models
were retrained using the 80% of the data and evaluated on
the 20% left out data in phase 1. (3) In phase 3 100% of data
was used to train machine learning models using best hyper-
parameters from phase 1. The performance of the models
could not be evaluated in phase 3 (100% of data is used as
training data) but we assume they perform better compared
to phase 2 models as more data was used to train them.

Application Use The MELLODDY project spanned 3
years, with a run taking place each year using the most
recent version of the platform. The performance increased
(number of compute plans) each year and in year 3 the plat-
form supported a run of 219 compute plans on the 4 different
data sets (see Data Section ) over the 3 different operational
phases. More precisely, 34 compute plans ran on CLS data
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Figure 4: The multi-partner models trained on the platform
resulted in a relative improvement for all partners compared
to single partner model for all metrics: (1) the AUC-PR for
classification, (2) the R2 for regression, and (3) the exten-
sion of the domain of applicability as the delta median con-
formal efficiency for classification.

set, 47 on CLSAUX data set, 62 on REG data set and 76
on HYB data set. A total of 1.189M US$ compute budget
was spent in year 3 with a maximum of 32 workers in par-
allel per partner. These 32 workers were distributed over 2
parallel platforms. A single epoch of a compute plan, de-
pending on model complexity and number of data points,
would take 1.7 hours to 8.1 hours using 50 mini batches
or 2.8 hours to 12.9 hours using 80 mini batches. A com-
pute plan would typically run around 20 epochs to reach
model convergence. During application use the main bottle-
necks encountered were communication overhead and mem-
ory usage. The communication overhead is inherent to fed-
erated learning and increases with number of mini batches
but also number of model weights. The memory usage in-
creases when model size increases (e.g. number of tasks) or
mini-batch size (e.g. data-points). With these bottlenecks in
mind our choice for AWS instances resulted in c5n.18xlarge
(192GiB Memory, 100Gbps Network bandwidth) for the
central aggregating node and r5n.2xlarge (64GiB Memory,
up to 25Gbps Network bandwidth) for the workers of the
contributing partners.

Results
The deployed application at scale resulted in improvements
across all pharmaceutical partners in the predictive perfor-
mance of collaboratively trained models over single partner
models as shown in Figure 4. For the classification mod-
els produced by the platform the primary evaluation metric
was AUC-PR on average across 100.000+ ML learning tasks
representing 40.000+ concentration-response assays. For the
regression models the metric reported was the R2. Lastly,
the extension domain applicability (AD) measured as the

delta median conformal efficiency for classification (Heyn-
drickx et al. 2022a) means that the model can support nav-
igation of a broader chemical space previously unknown to
that partner. On Figure 4 the relative improvements to per-
fection (where single partner model performance is 0 and
perfect model is 1) for the three metrics (AUC-PR, R2 , CE)
are visualized for the cross-company distribution (N = 10)
aggregated over all tasks. Across all pharmaceutical part-
ners, federated models were typically 4% better at categoriz-
ing molecules as either pharmacologically or toxicologically
active or not active. The typical multi-partner model also
showed a 10% increase in its applicability domain, its abil-
ity to yield confident predictions when applied to new types
of molecules. Finally, the federated models were typically
2% better at estimating values of toxicological and pharma-
cological activities. Performance improvements were more
prominent for the subset of assays relating to pharmacoki-
netics and toxicology and for assays with ongoing data ac-
quisition. For further details, we refer to the work of Heyn-
drickx et al. (2022b).

Collectively, these results show improvements to predic-
tive models that support the drug discovery process holding
the potential benefits for the discovery of new drugs. Mod-
els that more accurately predict molecules’ pharmacologi-
cal and toxicological activities better support the decision-
making process of which candidate drug molecules to make
and test. All ten pharma partners attest to observing benefits
for living and ADME assays and aim to utilise the models in
their internal pipelines.

Conclusion and Next Steps
The ready to use platform described in this work demon-
strates that federated learning for drug discovery is possible
on industry scale. It enabled a groundbreaking collaboration
without sharing data in a industry where data confidential-
ity is high priority. The platform is deployed easily on a
cloud infrastructure using a AWS multi-account setup and
has already run for 3 years in production. We also explained
how a decentralised administration works as a organizational
model in a real case federated setup. Many options remain
to be explored in future work such as sparse secure aggre-
gation or partner weighting as well as post processing tools
of the platform like model fusion. There is opportunity for
the platform to be further optimised so that current bottle-
necks like communication and memory limitations are re-
duced. There is interest to use the platform beyond MEL-
LODDY scope and formalities and initiatives are ongoing.
Finally, code related to the MELLODDY project is made
available on GitHub (MELLODDY 2022).
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Ács, G.; and Castelluccia, C. 2011. I Have a DREAM! (DiffeRen-
tially privatE smArt Metering). In IWIH.
Arany, A.; et al. 2022. SparseChem: Fast and accurate ma-
chine learning model for small molecules. arXiv preprint
arXiv:2203.04676.
Beck, B.; et al. 2004. Assay Operations for SAR Support. In Assay
Guidance Manual.
Bonawitz, K.; et al. 2017. Practical Secure Aggregation for
Privacy-Preserving Machine Learning. In Proc. ACM Conf. Com-
put. Commun. Secur.
Bowes, J.; et al. 2012. Reducing safety-related drug attrition: the
use of in vitro pharmacological profiling. Nat. Rev. Drug Discov.
Caruana, R. 1997. Multitask learning. Machine learning.
Cramer, R.; et al. 2015. Secure Multiparty Computation. Cam-
bridge University Press. ISBN 9781107043053.
Dahl, G. E.; et al. 2014. Multi-task neural networks for QSAR
predictions. arXiv preprint arXiv:1406.1231.
Fredrikson, M.; et al. 2015. Model Inversion Attacks That Ex-
ploit Confidence Information and Basic Countermeasures. In Proc.
ACM Conf. Comput. Commun. Secur.
Friedrich, L. 2021. MELLODDY TUNER release v2 public data
(1.0) [Data set]. 10.5281/zenodo.4835670.
Ganju, K.; et al. 2018. Property Inference Attacks on Fully Con-
nected Neural Networks using Permutation Invariant Representa-
tions. In Proc. ACM Conf. Comput. Commun. Secur.
Gentry, C. 2009. A fully homomorphic encryption scheme. Stanford
university.
Ghasemi, F.; et al. 2018. Neural network and deep-learning algo-
rithms used in QSAR studies: merits and drawbacks. Drug Discov.
Goldblum, M.; et al. 2020. Data Security for Machine Learning:
Data Poisoning, Backdoor Attacks, and Defenses. arXiv preprint
arXiv:2012.10544.
Gubler, H.; et al. 2018. Helios: History and Anatomy of a Success-
ful In-House Enterprise High-Throughput Screening and Profiling
Data Analysis System. SLAS Discov.
HashiCorp. 2022. Terraform by HashiCorp. https://www.
terraform.io/. Accessed: 2022-11-29.
Heyndrickx, W.; et al. 2022a. Conformal efficiency as a metric for
comparative model assessment befitting federated learning. Chem-
Rxiv preprint. 10.26434/chemrxiv-2022-j3xfk.
Heyndrickx, W.; et al. 2022b. MELLODDY: cross pharma
federated learning at unprecedented scale unlocks benefits in
QSAR without compromising proprietary information. ChemRxiv
preprint. 10.26434/chemrxiv-2022-ntd3r.
Hu, H.; et al. 2021. Membership inference attacks on machine
learning: A survey. ACM Comput. Surv.
Hughes, J. P.; et al. 2011. Principles of early drug discovery. Br. J.
Pharmacol.
Landrum, G.; et al. 2021. RDKit: Open-source cheminformatics.
https://www.rdkit.org. Accessed: 2022-11-29.
Li, L.; et al. 2020a. A review of applications in federated learning.
Comput. Ind. Eng.
Li, T.; et al. 2020b. Federated learning: Challenges, methods, and
future directions. IEEE Signal Process. Mag.
Liu, B.; et al. 2021. When Machine Learning Meets Privacy: A
Survey and Outlook. ACM Comput. Surv.
Macarrón, R.; and Hertzberg, R. P. 2011. Design and implementa-
tion of high throughput screening assays. Mol. Biotechnol.

Mammen, P. M. 2021. Federated learning: Opportunities and chal-
lenges. arXiv preprint arXiv:2101.05428.
McMahan, B.; et al. 2017. Communication-efficient learning of
deep networks from decentralized data. In PMLR.
MELLODDY. 2022. MELLODDY GitHub Repositories. https:
//github.com/melloddy. Accessed: 2022-11-29.
Owkin. 2022. Melloddy Predictor. https://github.com/melloddy/
MELLODDY-Predictor. Accessed: 2022-11-29.
Pejó, B.; and Biczók, G. 2022. Quality Inference in Fed-
erated Learning with Secure Aggregation. arXiv preprint
arXiv:2007.06236.
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