
SafeLib: a practical library for outsourcing stateful
network functions securely

Enio Marku∗, Gergely Biczók†, and Colin Boyd∗
∗Dept. of Information Security and Communication Technology, Norwegian Univ. of Science and Technology (NTNU)

{enio.marku, colin.boyd}@ntnu.no
†CrySyS Lab, Dept. of Networked Systems and Services, Budapest Univ. of Technology and Economics (BME)

biczok@crysys.hu

Abstract—A recent trend is to outsource virtual network
functions (VNFs) to a third-party service provider, such as a
public cloud. Since the cloud is usually not trusted, redirecting
enterprise traffic to such an entity introduces security concerns.
In addition to protecting enterprise traffic, it is also desirable
to protect VNF code, policies and states. Existing outsourcing
solutions fall short in either supporting stateful VNFs, catering
for all security requirements, or providing adequate performance.

In this paper we present SafeLib, a trusted hardware based
outsourcing solution built on Intel SGX. SafeLib provides i)
support for stateful VNFs, ii) support for illegal SGX instructions
by integrating Graphene-SGX, iii) protection of both packet
headers and payload for enterprise user traffic, VNF policies and
VNF code, and iv) integration of libVNF for streamlined VNF
development. Our performance evaluation shows that SafeLib
scales properly for multiple cores, and introduces a reasonable
performance overhead. We also outline plans to further improve
SafeLib to satisfy even more stringent functional, security and
performance requirements.

I. INTRODUCTION

Network functions (NFs) are a vital part of modern net-
works, and are used by enterprises to perform complex
tasks. Enterprises have traditionally deployed NFs in dedicated
hardware (known as middleboxes), and used them for differ-
ent purposes such as improving performance (e.g., proxies,
caches), security (e.g., intrusion prevention system, firewalls),
reliability (e.g., load balancers), and efficiency (e.g., WAN
accelerators). Even though hardware middleboxes offer high
performance, they are used pervasively, leading to significant
maintenance and deployment costs.

In recent years the trend is changing. Increasingly, enter-
prises are outsourcing middleboxes to a third-party service
provider as shown in Figure 1. This network architecture
concept is commonly referred to as Network Function Virtu-
alization (NFV) [1], and brings the benefits of cost reduction
and flexibility. On the other hand, several studies have shown
that the cloud is also a target for attackers [2], [3]; therefore,
it is imperative to consider the following security concerns.
User traffic. The user traffic, which may contain sensitive
information, is redirected to the cloud provider for processing
by NFs.
VNF code and policy. VNFs can be directly developed by
the enterprise. For reasons such as cyber-defense strategy and

Figure 1: Outsourcing scenario

competitive advantage, the enterprise may not want to reveal
the code of its VNFs and their policy inputs to the cloud.
VNF states. A number of NFs used for complex packet
processing tasks maintain internal states. States may contain
end-user information such as cached user content and IP
addresses. Such information should be hidden from the cloud.

These security issues motivate our work as we try to answer
the following question: How can NFs be securely outsourced
to a third-party service provider while providing support for
a wide range of NFs and maintaining high performance?

Existing solutions which address the question above fall
into two main categories; i) solutions using a cryptographic
approach ([4] and its follow-up works), and ii) solutions using
a trusted hardware based approach [5]–[10]. Cryptographic
solutions are either limited in functionality (not supporting
complex operations needed by sophisticated NFs), or limited
in performance (built on Fully Homomorphic Encryption [11],
not up to the performance requirements of real-world systems).
In contrast, a trusted hardware based approach is more flexible
and powerful, being able to satisfy stricter functional and non-
functional (e.g., security, performance) requirements.

We believe that a hardware-based approach, and in partic-
ular Intel SGX [12], is an adequate basis for a system that
answers our research question above. Solutions using SGX
shield the processing of the traffic from service providers
by executing NFs within a protected memory region named
enclave. SGX reduces the attack surface by preventing an
administrator with root level privileges, or a malicious OS,
from observing data within an enclave. While we are aware
that SGX has been shown to be vulnerable to side-channel
attacks [13], most of these attacks are hard to carry out, and
Intel and the SGX community are committed to releasing
security patches continuously. Unsurprisingly, there already
exist several SGX-based VNF-outsourcing solutions [5]–[10].
Support for stateful VNFs. Although partially mitigating978-1-6654-0522-5/21/$31.00 ©2021 IEEE

the security issues stated above, some prominent SGX-based
solutions do not support stateful VNFs [5], [6], [9]. This
can be a deal-breaking limitation for usage in production
environments: NFs with advanced capabilities call for flow-
based, stateful traffic processing. Examples of such VNFs
are IP Multimedia Subsystem (IMS), Long-Term Evolution
Evolved Packet Core (LTE-EPC) and so forth, which are
widely used in telco applications.
Integrating a VNF framework. There exist a few solutions
[7], [8], [10] with support for stateful VNFs. However, none
of these integrate any known VNF library/framework with
built-in functionality for developing VNFs. This might prove
prohibitive from the usability standpoint: i) developers need to
program their VNF from scratch, and ii) porting their VNF to
be used within the enclave can be cumbersome. On the other
hand, using libVNF results in 50% less code for the same
NF [14].
Performance. All SGX-based solutions [5]–[10] use the Linux
TCP stack, known to cause a significant performance drop [15]
for the following reasons: i) system call overheads, ii) lack of
connection locality, and iii) inefficient packet processing. In or-
der to provide production-level VNF performance, we believe
that a user-level TCP stack is the right choice. Specifically,
mTCP [15] is designed to overcome all three limitations. First,
mTCP uses a user-level socket API instead of the BSD socket
API, resulting in a vastly improved CPU usage efficiency.
Second, mTCP implements a per-core accept queue; this way,
multi-threaded applications can avoid sharing a single accept
queue. Third, mTCP makes use of fast packet I/O libraries
(DPDK [16] or netmap [17]) in order to process packets in
batches.
Our contribution. In this paper, we introduce SafeLib, a
library for securely outsourcing VNFs into a third-party
service provider while also considering the functional and
performance requirements described above. SafeLib follows
the trusted hardware approach, shielding the execution of
NFs within SGX enclave(s), and thus provides strong secu-
rity guarantees. In particular, SafeLib builds upon Graphene
[18], a practical OS library for applications on SGX. For
VNF developers, SafeLib provides a powerful development
framework by adapting the libVNF library [14], built on top
of mTCP. The libVNF API provides support for building
stateful VNFs. SafeLib is designed to overcome SGX’s two
main performance limitations: i) limited memory size of the
enclave page cache (EPC) and ii) illegal SGX instructions [12].
First, SafeLib is carefully partitioned into a trusted and un-
trusted part. Second, SafeLib executes system calls within
the enclave using Graphene, avoiding costly enclave to non-
enclave transitions. Furthermore, SafeLib’s design improves
packet processing performance by using DPDK, and is able
to resist Iago attacks [19]. Our performance evaluation shows
that SafeLib offers an acceptable performance-security trade-
off for both simple and complex VNFs. We also identify the
root causes for overheads, and outline a plan to further improve
performance.

The rest of this paper is organized as follows. Section II

briefly describes related work. Section III introduces our threat
model. Section IV presents the architecture of SafeLib. Sec-
tion V touches upon implementation and deployment issues.
Section VI discusses SafeLib’s security guarantees. Section
VII presents the performance evaluation of our library, and
discusses the potential causes of overheads. Finally, Section
VIII concludes the paper.

II. RELATED WORK

Here we briefly review related work focusing on the trusted
hardware approach for securing NFs. Note that cryptographic
solutions are currently limited in functionality and perfor-
mance. More details can be found in [20], [21].

There exist a number of solutions [18], [22]–[26] which
provide support for different type of applications within SGX
enclaves. These solutions are not concerned with a specific
scenario (securely outsourcing VNFs), and therefore answer
slightly different research questions. These solutions are com-
plementary to, and can be integrated into, our solution.

There exist also other solutions [5]–[10], [27] which target
outsourcing scenarios similar to ours. SEC-IDS [27], Trusted-
Click [6], and S-NFV [7] propose techniques for specific cases.
SEC-IDS [27] uses Graphene-SGX for isolating Snort-IDS
within enclaves; S-NFV [7] uses SGX for isolation of NF
state; and Trusted-Click [6] proposes a proof-of-concept Click
element for pattern matching within enclaves. In contrast, our
solution proposes a general library which can be applied to
a wide range of NFs, and also caters for the interest of the
enterprise by protecting its VNF policies and code.

SafeBricks [5] and ShieldBox [9] integrate Click to pro-
vide developers a VNF library. However, Click does not
support stateful VNFs, and thus SafeBricks and ShieldBox
are limited to stateless VNFs. Moreover SafeBricks does not
support NFs requiring illegal SGX instructions. ShieldBox
uses SCONE [23], and therefore is suitable for such NFs; but
unfortunately, it does not protect packet headers.

SGX-BOX [8] and LightBox [10] provide support for
securely outsourcing stateful VNFs. However, these solutions
integrate neither a VNF library, nor a library OS within the
enclave. This means that VNF developers need to spend effort
on building their VNFs and porting their VNFs inside the
enclave when using either of these two solutions. Added to
this, none of these solutions provides support for NFs which
might need illegal SGX instructions. Security wise, SGX-BOX
[8] does not protect packet headers and VNF code, while
LightBox [10] protects headers, but not VNF code. Last but
not least, none of these solutions uses a user-level TCP stack,
which provides many performance benefits.

To the best of our knowledge, SafeLib is the first secure out-
sourcing solution that provides i) support for stateful VNFs, ii)
support for illegal SGX instructions by integrating Graphene-
SGX, iii) protection of both header and payload of user traffic,
VNF policies and VNF code, and iv) integration of a VNF
library for streamlined development.

III. THREAT MODEL

Intel SGX. The threat model relies on the properties of Intel
SGX technology [12]. Intel SGX is a set of CPU instructions
providing software isolation and attestation capabilities, both
remote and local. Software isolation allows a process to
request an enclave which can only be accessed by this process.
The process can use the enclave to load code and data, and thus
provides confidentiality and integrity for said code and data.
Access to the enclave is enforced by the processor, so that even
a root-level exploit of a corrupted OS cannot tamper with the
contents of the enclave. Remote attestation is used to provide a
secure connection between the remote verifier and the enclave.
This process assures the remote verifier that outsourced VNFs
run inside the enclave, and on the latest SGX platform with
the corresponding security level. Local attestation is used for
a similar purpose, but between two enclaves.
Threat model. Our threat model is in line with the threat
model of Graphene-SGX [18], and is similar to the threat
model of earlier SGX-based solutions [5], [6], [9], [10]. In a
third-party service provider domain we consider the following
components to be untrusted; i) hypervisor, OS, ii) all user-level
applications residing outside the enclave, and iii) hardware
components outside of the Intel CPU. On the other hand, we
do trust aesmd, an enclave provided by SGX SDK and used
to verify the creation of the enclave and its signatures. In the
enterprise domain, we trust all components such as GW and
VNF developers.

We claim that an attacker is unable to tamper with software
execution within an enclave due to the security guarantees
offered by software isolation. As a result the enclave is
secure, as also assumed in all other solutions. However, the
security guarantees offered by SGX software isolation are not
enough to satisfy all the security requirements mentioned in
Section I. Instead, we consider a powerful adversary able to
compromise all untrusted components, and able to observe
communications between the enclave and the enterprise GW,
and also between enclaves. For instance, such a powerful
attacker can compromise the OS, and then mount a Iago
attack [19] during enclave exit by running arbitrary code,
and responding incorrectly to system calls. In Section VI, we
show how SafeLib protects against such a powerful adversary.
Although SGX enclaves are known to be vulnerable to side-
channel attacks [13], in line with the threat model of existing
solutions [5]–[10], we consider these attacks out of scope.

IV. SAFELIB: ARCHITECTURE

Here we describe the design of SafeLib and our tech-
nology choices for achieving the desired functionality and
performance, while protecting against the powerful adversary
described in Section III. We follow the guidelines put forward
in [21].

A. End-to-end architecture

The current end-to-end design and deployment of SafeLib
follows the Bounce outsourcing architecture [1]. As shown in
Figure 2, SafeLib forwards the client traffic to the GW (1); in

Figure 2: Bounce outsourcing model for SafeLib

turn the GW establishes a set of IPSec tunnels to the enclave
in the cloud domain (2). The VNF residing inside the enclave
processes the traffic and sends the result back to the GW (3);
in turn, the GW forwards the result back to the destination (4).
Consistent with our threat model, the GW is a trusted entity,
hence the client-to-GW traffic can be sent in the clear. Note
that the client could choose to use a secure channel such as
SSL, but then the GW would have to intercept the client traffic,
decrypt it, then send it through the IPSec tunnel nevertheless
(adding a performance overhead).

The Bounce outsourcing model makes it easier to provide
our target security and functionality capabilities by keeping the
related burden minimal on both the destination and SafeLib.
Therefore, Safelib’s performance is also evaluated in the
Bounce scenario (see Section VII), with the traffic redirection
bringing some latency overhead. Note that our library can be
adapted to other outsourcing models [1], if the necessary trust
relationships between domains are pre-established. Moreover,
SafeLib can also be used for joint multi-operator service
delivery, much discussed in 5G verticals [28].

B. SafeLib: high-level design

At a high level, the core of our library is an amalgamation of
libVNF over mTCP [14] running within an Intel SGX enclave
using Graphene-SGX [18], while also adding DPDK for batch
processing (see Figure 3). Although this high-level view seems
reasonably simple, the actual integration is highly non-trivial
owing to the two main limitations of SGX.

The first limitation is the limited EPC memory size (128
or 256 MB). When placing DPDK inside the enclave, the
memory limitation is surpassed, triggering EPC paging. This
is expensive as it requires additional encryption/decryption
operations between the enclave and the non-enclave region.
Therefore, it became obvious that DPDK should be placed
outside the enclave. That is precisely when the second main
limitation is met: all instructions that are not allowed to
be executed within the enclave result in an enclave exit.
Such a transition happens by default via ECALLs (enclave
enter) and OCALLs (enclave exit) causing overheads due to
their synchronous nature. Thus, partitioning the library into
enclave and non-enclave regions is a tricky endeavor: we had
to reduce the amount of code and data inside the enclave

Figure 3: SafeLib: high-level design

(also yielding a smaller trusted computing base (TCB), a
good security practice), while also minimizing the number of
enclave transitions.

C. Partitioning

In Figure 4, the detailed architecture of our library is shown.
To overcome SGX limitations, we partitioned SafeLib into
trusted (enclave) and untrusted (non-enclave) parts. At the bare
minimum, the enclave should contain the libVNF code base,
the Graphene OS library, and VNF policies (if any). We now
explain each component of SafeLib.
Trusted SafeLib. Graphene LibOS is a library that provides
OS features from within an enclave. By design, SGX does
not support OS features such as opening or reading a file. For
such an operation the application inside the enclave gives the
control back to the host OS for handling it (OCALL). After the
host OS handles the operation, it returns control back to the
application inside the enclave (ECALL). Having a feature-rich
library OS within the enclave eliminates the need for most of
these calls, with the potential to greatly increase performance.
Contrary to earlier works [23], [24], Graphene-SGX is able
to provide these benefits plus some protection against Iago
attacks [19], while keeping the TCB of manageable size [18].
The RA-TLS library is used to establish a TLS connection
between the enclave running on the remote platform (i.e,
cloud) and the GW. The enterprise remotely attests the enclave
in order to verify the integrity of the enclave. Finally, the
enterprise sends the cryptographic keys to inside the enclave
via the secret provisioning library (Secret Prov lib). The key is
used to decrypt configuration/policy files, which the enterprise
classifies as sensitive. These configuration files mainly consist
of VNF policies.
IPSec endpoints. Simply excluding DPDK from the enclave is
not a practical choice. VNFs (built using libVNF over mTCP)
access the packet buffers that are allocated by DPDK without
performing any copy operation. This means that DPDK will
have access to the packets after decryption. To overcome this
issue we implemented IPSec endpoints within the enclave
(see Listing 1). We modified function (1) to pop pointers of
encrypted packets inside the enclave from the shared queue on
the border of enclave and non-enclave regions; then we use
function (2) to decrypt them once inside the enclave. After
processing, function (3) encrypts the packets; then function (4)
pushes the pointers of encrypted packets to the shared queue.

Figure 4: SafeLib architecture. Dashed box is a new component we
developed, shadowed boxes are components we modified.
.

1 1)rte_ring_dequeue_burst(dpc->rmbufs[ifidx].rw_ring,
2 (void **)dpc->pkts_burst, MAX_PKT_BURST, NULL)
3 #receives the pointers of encrypted packets
4 2)esp_decrypt_aes_cbc_128_hmac_sha1_96(mtcp->mb_mgr,
5 rte_pktmbuf_mtod(m, char*),m->pkt_len,
6 cipherkey, authkey)
7 #performs decryption within enclave
8 3)esp_encrypt_aes_cbc_128_hmac_sha1_96(mtcp->mb_mgr,
9 rte_pktmbuf_mtod(m, char*), m->pkt_len,

10 cipherkey, authkey)
11 #performs encryption within enclave
12 4)rte_ring_dequeue_burst(dpc->wmbufs[ifidx].rw_ring,
13 (void **)pkts_burst, MAX_PKT_BURST, NULL)
14 #Dequeues encrypted pointers and sends them

outside enclave

Listing 1: IPSec endpoints

Trusted mTCP. We divided mTCP into a trusted and an un-
trusted part. The trusted part consists of TCP packet processing
and a trusted I/O interface used for interacting with untrusted
mTCP code for packet I/O invocation (see Section V-A for
details).
The libVNF code base includes libVNF programming and state
abstractions. The libVNF library [14] is lightweight, therefore
we decided to place the whole library inside the enclave.
VNF processing logic is the VNF code base outsourced by the
enterprise, and built over libVNF.
Configuration and keys includes VNF policies and other con-
figuration files considered sensitive. The actual configuration
files are specific to the VNF scenario, but always include
the IPSec configuration file and IPSec and TLS keys. IPSec
keys are used for encrypting/decrypting the packets reaching
the enclave, while the TLS key is used for decrypting VNF
policies.
Untrusted SafeLib. The pal-sgx loader is used to initialize
the enclave by calling SGX drivers. During the initialization
phase, the enclave contains a shielding library, VNF code,
Graphene LibOS, standard C libraries, and a manifest file
which specifies all binaries of the enclave libraries. The mani-
fest includes integrity measurements of all libraries residing
within the enclave. The shielding library will open these

Table I: OCALLs interface between trusted and untrusted SafeLib
OCALLs Description

ocall_set_net_env

Gets CPU and memory info, and

calls rte_eal_init() to

initialize dpdk_eal_env

ocall_dpdk_load_module

Loads and configures dpdk device

and deploys Rx/Tx queues for

dpdk packet I/O

ocall_dpdk_init_handle Creates Tx/Rx ring buffers

ocall_dpdk_destroy_handle
Releases resources allocated by

ocall_dpdk_init_handle

libraries only if their computed SHA-256 hash matches the
manifest. The shielding library continues to load other libraries
inside the enclave after the initialization phase, given that
their hash value is correct. (Note that the shielding library
and manifest are part of trusted SafeLib but we omit them in
Figure 4 for readability. For more details please refer to [18]).
Untrusted mTCP code. This component has two main tasks.
It defines the DPDK thread for the ring buffer, and interfaces
with the trusted mTCP code. We give more details in Sec-
tion V-A.
DPDK resides outside the enclave, and communicates with the
enclave via the interface in mTCP untrusted code. DPDK is
a fast packet I/O library which processes packets in batches.
mTCP supports both DPDK and netmap; our current SafeLib
implementation relies on DPDK. Integrating DPDK into our
scenario is not straightforward: we had to modify DPDK to
work with encrypted packets, since packets are only decrypted
once they reach the enclave.

V. IMPLEMENTATION AND BOOTSTRAPPING

Here, we provide some details on SafeLib’s implementation
and bootstrapping.

A. Packet I/O

Excluding DPDK from the enclave results in two interfaces
between trusted and untrusted parts of SafeLib. The first
interface is a collection of four OCALLs (see Table I) used
for starting and stopping DPDK. This interface is called only
during initialization and termination. Hence, the invocation of
this interface does not result in performance overheads.

The second interface (see Figure 5) is used to handle
every send and receive operation (packet I/O invocation) asyn-
chronously, and is the only active interface during run-time.
We designed N DPDK threads, where each thread receives
and sends pointers from/to the NIC in bursts. Then each thread
pushes the pointers of packets to an RX ring, and pops pointers
of packets from the TX ring. We designed N mTCP threads
running inside the enclave, used to pop the available batch of
pointers from the RX ring from within the enclave, and, after
processing, to push the pointers of the packets to the TX ring
from within the enclave. This way, there is no need for enclave
transition for each send and receive operation.

Figure 5: Packet I/O via RTE lockless ring

RX and TX rings are implemented as RTE lockless rings,
and are used as a shared memory between enclave and non-
enclave regions. RX/TX rings contain only the pointers of
packet buffers, processing them in place without any copying.
We use a pair of RX/TX rings per mTCP thread because each
mTCP thread has its own bidirectional network flow. Note
that the procedure shown in Figure 5 is motivated by [27];
however, SafeLib works with encrypted packets and supports
generic stateful VNFs.

B. Illegal SGX instructions and Iago attacks

System calls and instructions leading to enclave exit (e.g.,
rdtsc) are not allowed within the enclave. Our library en-
sures that no system call results in an enclave exit. SafeLib in-
herits this property for three main reasons: i) mTCP eliminates
system calls used for event handling with batched function
calls, and also uses user-level socket API [15]; ii) Graphene-
SGX provides support for most used Linux system calls
from within the enclave (e.g., open, close, read, write,
fstat, fchmod, poll, etc.); and iii) for other system calls
Graphene-SGX provides “exitless” features (executing them
within the enclave) by using RPC thread.

Although we carefully designed and implemented the
I/O interface, initial experiments showed prohibitive per-
formance overheads. Further investigation revealed that
clock_gettime() was the main culprit: this system call
is resolved in user space by rdtsc, and is not supported
by Graphene-SGX; this resulted in an enclave exit for each
invocation. Therefore, we adopted an existing technique [27],
and introduced a “secure clock” thread inside the enclave. This
thread uses dummy code which emulates rdtsc to resolve
this system call within the enclave.

On a further note, we have decreased the possibility of Iago
attacks [19] in multiple ways by i) using an asynchronous
interface (Figure 5), ii) integrating Graphene LibOS to pro-
vide intra-enclave Linux system calls [18], and iii) emulating
rdtsc inside the enclave.

C. VNF chaining

We provide basic support for VNF chaining by running all
VNFs on separate enclaves. One can use the local attestation
procedure to attest the enclaves, and then establish a TLS
channel between enclaves. Support for VNF chaining is pro-
vided by the combination of libVNF and Graphene by forking
a child enclave and copying the content of the parent enclave

Figure 6: Deployment procedure of SafeLib; the orange box refers to
the enclave (detailed in Figure 4), the green box refers to the SafeLib
code base and its dependencies, the double arrow between enclave
and file storage denotes the dynamic loading process of the enclave.

(except VNF binaries and policies, of course) via message
passing [18].

Note that such a mechanism would not satisfy our security
requirement on user traffic, as TLS does not protect packet
headers between enclaves. Our current implementation cir-
cumvents the issue by redirecting the traffic from the parent
enclave through the GW to the child enclave over IPSec;
this naive approach introduces large overheads. We outline
a potential real solution in Section VIII.

D. Bootstrapping the system

To make use of SafeLib, the enterprise has to request an
enclave and, after creation, verify the enclave running in
the cloud. This process involves two parties, enterprise and
public cloud, as shown in Figure 6. The first preliminary
step is for the enterprise to retrieve SGX-related information
from the Intel Attestation Service (IAS) (1). The second
preliminary step is for VNF developers to download1 and build
SafeLib together with its dependencies (e.g., Graphene-SGX,
libVNF, mTCP, etc.) (2). Our manifest file lists all necessary
binaries, but VNF developers should take at least two actions
before building SafeLib: i) generate their own cryptographic
key, and encrypt configuration files (VNF policies plus their
own IPSec config), and ii) load these configuration files into
the manifest. Now they can build SafeLib, and then load
VNF-specific executables in the manifest file. The process of
building SafeLib generates enclave signatures and an SGX-
specific manifest file defining the integrity measurements of
the VNF’s configuration files and executables plus SafeLib’s
executables. Next, VNF developers ship all these files to a file
storage on the untrusted host in the cloud (3). Then, SafeLib is
executed on the untrusted host creating an enclave as depicted
in Figure 4; in this phase, the dynamic loading process of
the enclave and integrity checks are performed. Meanwhile,
VNF developers start the secret provisioning library on the
trusted host. Using RA-TLS (4), the trusted and untrusted hosts
establish a TLS connection, and VNF developers verify the
enclave running on the untrusted host (5). If the verification is

1SafeLib’s source code is available at https://github.com/eniomarku/SafeLib

Table II: An overview of security properties provided by SafeLib.
Property Security

VNF execution Integrity

VNF state (flows streams) Integrity and confidentiality

VNF policies Integrity and confidentiality

VNF code Integrity (confidentiality: planned)

User traffic Integrity and confidentiality

successful, VNF developers send their cryptographic keys to
the untrusted host via TLS (6). With the cryptographic keys
provisioned, the untrusted host can start executing the VNF
application (7), and decrypting the configuration files within
the enclave.

Afterwards, the GW configures a set of IPSec tunnels: one
per client application thread. To load balance flows on the
cloud side we use Receive Side Scaling (RSS) based on port
number. RSS makes sure that packets from the same tunnel
end up at the same core.

VI. SECURITY GUARANTEES

As mentioned in Section III, we are only concerned with an
attacker able to observe the communication between enclaves
and between the GW and the enclave. (Recall that side-channel
attacks against SGX are out of scope.) Here we describe how
SafeLib protects against the powerful adversary considered in
the threat model. Table II summarizes all security properties
that our library offers.
Confidentiality and integrity of VNF’s execution and states.
Since the VNF’s processing is done within the enclave, the
integrity of execution is provided by SGX. As of now, we
store all VNF states within the enclave, so confidentiality and
integrity of VNF states are also provided by SGX.
Confidentiality of VNF policies and code. We use RA-TLS
and secret provisioning libraries to allow VNF developers to
encrypt configuration files (e.g., VNF input policies) using
their own cryptographic key, and then ship this key to inside
the enclave via TLS. The key is then used to decrypt the
configuration files, once they are loaded within the enclave.
The key is sent via TLS, and then stays inside the enclave:
the confidentiality of VNF policies is guaranteed. As of now,
SafeLib does not protect the confidentiality of the VNF code.
Although the attacker has to invest significant effort to reverse-
engineer the binaries sent to the non-enclave region of the
untrusted host, and with questionable results, this threat is
not fully mitigated. On a positive note, the developers of
Graphene2 will provide support for VNF code confidentiality
soon; we plan to integrate this feature to SafeLib promptly.
Integrity of VNF policies and code. To provide integrity
protection, we rely on the shielding library of Graphene-SGX
which compares the original and the to-be-deployed hashes,
and loads configuration files and VNF binaries into the enclave
only if hashes match.
Confidentiality and integrity of user traffic between GW
and enclave. The main benefit of our library is that we

2Private communication with Dmitrii Kuvaiskii (Intel), December 2020

protect the confidentiality and integrity of user traffic. SafeLib
protects both headers and payload using IPSec in tunnel mode.
Moreover, we have implemented IPSec endpoints within the
enclave as explained in Section IV-C: traffic is protected
all the way between the GW and the enclave. Also, if an
attacker in the cloud attempts a Iago attack [19], such as
modifying queues or packet buffers from outside the enclave,
this will be detected by the authentication mechanism of
IPSec. Furthermore, we transfer the IPSec keys to the enclave
via TLS established using the RA-TLS library in the setup
phase. Therefore, SafeLib also protects IPSec keys. Moreover,
the integrity of the traffic is guaranteed by IPSec. Note that
SafeLib does not protect traffic metadata.
Confidentiality and integrity of traffic between enclaves. As
mentioned in Section V-C, if TLS is used for communication
between enclaves then our library provides confidentiality and
integrity for the payload. If IPSec is used then our library
provides confidentiality and integrity for both payload and
header, albeit with considerable performance overhead owing
to multiple traffic re-directions.

VII. PERFORMANCE EVALUATION

We have evaluated SafeLib in several VNF scenarios; we
only present two of them due to the lack of space. Note
that SafeLib has performed within the same range in all
cases. Scenarios we show here involve VNF chains of two,
where a single VNF is outsourced to a public cloud. We run
micro-benchmarks, and compare the end-to-end performance
of the SafeLib-enabled outsourced scenario to vanilla libVNF;
it is shown that libVNF itself does not introduce measurable
overheads [14].
Setup. We use two Intel(R) Core(TM) i7-8809G
CPU@3.10GHz servers with 8 cores, and with an enclave size
of 128MBs. Our computers are interconnected via a 1Gbps
link. Note that in both scenarios the outsourced VNF does
not run inside a VM, but directly on the physical machine.
The reason for this is, while using DPDK, we could not run
mTCP inside a VM; we found that mTCP could not interpret
the multiple queues exposed by the BESS software switch.
Scenario AB. This scenario is a very simple service chain,
and consists of only two VNFs: VNF A, implemented over
pthreads as a multithreaded C++ application, and VNF B,
built over libVNF, and securely outsourced using SafeLib in
order to be executed within the SGX enclave. Here, we focus
on worst-case throughput: VNF B operates close to capacity.
In order to saturate VNF B, VNF A generates multiple
requests to VNF B in a closed loop fashion. For each received
request, VNF B performs a CPU-intensive computation such
as updating a value, and then replies back to VNF A. The
performance of VNF B is evaluated by means of end-to-end
throughput (number of completed requests per second). Figure
7 reports an average of 5 runs of 120 seconds (with minimal
variation between runs, standard deviation is omitted).

The results offer two takeaways. First, SafeLib’s through-
put scales linearly with the number of cores used. This is
crucial: SafeLib preserves the scalability advantage of cloud

Figure 7: Throughput and scalability

computing. Second, the worst-case overhead is around 50%,
and is independent of the number of cores used. While this
may seem a little steep, recall that this VNF is operating close
to capacity. Modern cloud management platforms offer auto-
scaling mechanisms that are able to adjust available resources
on the fly; thus, such unfavorable operating points could be
avoided [29]. In fact, results show much lower overheads under
lighter loads (not shown due to the lack of space).
Scenario LTE-EPC. Evolved Packet Core (EPC) is a frame-
work used to handle converged data and voice on a Long-
Term Evolution (LTE) network. The three main components
of EPC are: i) Mobility Management Entity (MME) used
for handling the registration of mobile users in the network,
among other tasks , ii) Packet GateWay (PGW) is mainly used
to manage quality of service (QoS), and acts as an interface
between LTE and other packet data networks; and iii) Serving
GateWay (SGW) is used for routing the packets through the
access network. Our scenario is similar to the scenario used
in [14] with a few changes: i) we implemented SGW and
PGW over TCP, ii) we make use of HSS for initial attachment
and authentication, and iii) SGW, HSS and PGW run over the
Linux kernel stack. Our EPC framework is simplified, handling
only data path setup, registration/de-registration of mobile
users and data transfer. MME is built with the libVNF API,
and then outsourced to the server machine using SafeLib in
order to be executed within the enclave. All other components
including a load generator reside in the enterprise (see Figure
8). The load generator is a C++ application used to generate
data and control plane traffic in a closed loop fashion.

Again, we compare the performance of SafeLib to vanilla

Figure 8: LTE-EPC scenario; gray arrows show the packet flow for
initial attach and authentication phase, black arrows show the packet
flow for session setup and detach phase

Figure 9: Latency

Figure 10: Throughput

libVNF. Performance is measured in terms of end-to-end
latency (the time it takes to successfully register a mobile
user) as shown in Figure 9 and end-to-end throughput (number
of mobile users registered successfully per second) as shown
in Figure 10. We report averages of 5 runs of 120 seconds
each under three different load settings, where high load is
close to saturation, while low and medium settings roughly
corresponds to 25% and 50% load, respectively (with minimal
variation between runs, standard deviation is omitted.)

Our main observation is that overheads are clearly load-
dependent. Regarding throughput, SafeLib introduces ≈ 7%,
13% and 27% overhead for low, medium and high load
settings, respectively (latency values are similar). There is a
clear proportional relationship between load and overhead.
Note that we have also evaluated SafeLib for longer time
spans, and have not observed any increase in overheads.
Discussion on performance. Although SafeLib introduces
reasonable overheads, especially under lighter loads, we be-
lieve there are ways to improve, so that our library may
perform close to line rate speed. Such improvements could be
particularly important when running outsourced VNFs close to
capacity; this may happen when the Service Level Agreement
(SLA) between enterprise and cloud contains forgiving per-
formance guarantees in exchange for lower prices [29]. Based
on our investigations, our current understanding of the main
culprits for overheads introduced by SafeLib are the following.
EPC size. In our setup, EPC size is 128 MBs. This means that
the procedure of EPC paging is triggered more often compared
to if we were to use brand new Intel CPUs with an EPC size
of 256 MBs. By switching to brand new Intel CPUs, we have
a straightforward solution to this issue.
Bounce architecture. Depicted in Figure 8, we are evaluating

end-to-end throughput while redirecting the traffic back to the
GW. Such setup introduces additional overheads, especially
with two-way IPSec communications. To overcome this issue,
we plan to provide support for the Direct outsourcing model
[1], by using a GW in the cloud domain, instead of redirecting
the traffic back to the enterprise.
States. The current version of SafeLib keeps all states of
stateful VNFs inside the enclave. This inflates the size of TCB,
and may cause additional EPC paging. In fact, we plan to
implement a more efficient state management in the future.
We will divide states into active and inactive, and keep only
active states inside the enclave. We will encrypt inactive states
before putting them into the main memory. This approach also
requires a timer to keep track of states, retrieve them into the
enclave upon activation, and decrypt them before modifying.

Note that while there could be other potential performance
issues, utilizing Graphene-SGX does not introduce significant
overheads. We ran performance evaluations for the AB and
IMS scenarios [14] with modifications. We used the Bounce
architecture, but i) without IPSec tunnels between enterprise
and cloud, and ii) without using mTCP and DPDK, relying on
the Linux kernel TCP stack. In such a stripped setup we mea-
sured overheads of around 2% for high loads; consequently,
Graphene LibOS itself is not a performance bottleneck for
SafeLib.

VIII. CONCLUSION

In this paper we have presented SafeLib, a practical solution
for outsourcing general purpose network functions securely.
SafeLib is the first secure outsourcing solution that provides
i) support for stateful VNFs, ii) support for illegal SGX
instructions by integrating Graphene-SGX, iii) protection of
both header and payload of user traffic, VNF policies and
VNF code, and iv) integration of libVNF for streamlined
development. Our performance evaluation shows reasonable
performance overheads compared to vanilla libVNF, with
room to improve under high load conditions.
Limitations and future work. First and foremost, we
plan to implement the security (confidentiality of VNF code,
see Section VI) and performance enhancements as discussed
above. Adding to these, we are working on adding support for
stateless VNFs relying on libVNF’s API (recall that SafeLib’s
support for stateful VNFs comes from the integration of
libVNF), making SafeLib the first solution for really general-
purpose VNFs.

Second, SafeLib’s support for VNF chaining (Section V-C)
is rudimentary. While SafeBricks [5] supports multiple NFs
within the same enclave, Graphene-SGX does not offer such a
feature. Instead, it uses TLS between NFs in separate enclaves;
this would break our security guarantees for user traffic.
Hence, SafeLib uses multiple IPSec-based re-directions to
overcome this issue, hurting end-to-end performance. We are
currently investigating ways of using IPSec directly between
enclaves. One approach we are closely monitoring is SGX-
LKL [30] which sets up a set of etap devices and a virtual
interface in the enclave serving as an IPSec endpoint.

Third, SafeLib has limitations owing to being based on
SGX. The limited enclave memory size renders the secure
outsourcing of NFs with very large computing power im-
practical. Note that future versions of SGX may provide a
larger enclave-dedicated memory. Another inherent limitation
of SGX is its vulnerability to side-channel attacks; we rely
on on Intel updates to mitigate such attacks. Moreover, SGX
is a feature of Intel CPUs, so our library can only be used
with such processors. Last but not least, our library cannot
currently be deployed into a container (e.g., Docker) owing to
an inherent limitation of mTCP and DPDK, which may change
in the near future.

ACKNOWLEDGEMENTS

We would like to thank Priyanka Naik and Mythili Vutukuru
(libVNF), and Dmitrii Kuvaiskii (Graphene-SGX) for provid-
ing helpful guidance.

REFERENCES

[1] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[2] S. S. E. Guerbouj, H. Gharsellaoui, and S. Bouamama, “A
comprehensive survey on privacy and security issues in cloud
computing, internet of things and cloud of things,” Int. J. Serv. Sci.
Manag. Eng. Technol., vol. 10, no. 3, pp. 32–44, 2019. [Online].
Available: https://doi.org/10.4018/IJSSMET.2019070103

[3] N. Gruschka and M. Jensen, “Attack surfaces: A taxonomy for
attacks on cloud services,” in IEEE International Conference on
Cloud Computing, CLOUD 2010. IEEE Computer Society, 2010, pp.
276–279. [Online]. Available: https://doi.org/10.1109/CLOUD.2010.23

[4] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy, “Blindbox: Deep
packet inspection over encrypted traffic,” in ACM Conference on Special
Interest Group on Data Communication, SIGCOMM, 2015, pp. 213–226.

[5] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “SafeBricks:
Shielding network functions in the cloud,” in 15th USENIX Symposium
on Networked Systems Design and Implementation, 2018, pp. 201–216.

[6] M. Coughlin, E. Keller, and E. Wustrow, “Trusted click: Overcoming
security issues of NFV in the cloud,” in ACM International Workshop
on Security in Software Defined Networks & Network Function Virtual-
ization, SDN-NFVSec@CODASPY, 2017, pp. 31–36.

[7] M. Shih, M. Kumar, T. Kim, and A. Gavrilovska, “S-NFV: securing NFV
states by using SGX,” in ACM International Workshop on Security in
Software Defined Networks & Network Function Virtualization, SDN-
NFV@CODASPY 2016, 2016, pp. 45–48.

[8] J. Han, S. M. Kim, J. Ha, and D. Han, “SGX-Box: enabling visibility on
encrypted traffic using a secure middlebox module,” in First Asia-Pacific
Workshop on Networking, APNet 2017, 2017, pp. 99–105.

[9] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“ShieldBox: Secure middleboxes using shielded execution,” in Sympo-
sium on SDN Research, SOSR 2018, 2018, pp. 2:1–2:14.

[10] H. Duan, C. Wang, X. Yuan, Y. Zhou, Q. Wang, and K. Ren, “Light-
box: Full-stack protected stateful middlebox at lightning speed,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019. ACM, 2019, pp. 2351–2367.

[11] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC. ACM, 2009, pp. 169–178.

[12] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in HASP 2013, The Second
Workshop on Hardware and Architectural Support for Security and
Privacy, R. B. Lee and W. Shi, Eds. ACM, 2013, p. 10. [Online].
Available: https://doi.org/10.1145/2487726.2488368

[13] A. Nilsson, P. N. Bideh, and J. Brorsson, “A Survey of Published
Attacks on Intel SGX,” Tech. Rep., 2020. [Online]. Available:
https://portal.research.lu.se/portal/files/78016451/sgx attacks.pdf

[14] P. Naik, A. Kanase, T. Patel, and M. Vutukuru, “libVNF: building virtual
network functions made easy,” in ACM Symposium on Cloud Computing,
SoCC 2018, 2018, pp. 212–224.

[15] E. Jeong, S. Woo, M. A. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “mTCP: a highly scalable user-level TCP stack for
multicore systems,” in Symposium on Networked Systems Design and
Implementation, NSDI, R. Mahajan and I. Stoica, Eds. USENIX
Association, 2014, pp. 489–502. [Online]. Available: https://www.
usenix.org/conference/nsdi14/technical-sessions/presentation/jeong

[16] “Data plane development kit.” [Online]. Available: https://www.dpdk.
org/

[17] L. Rizzo, “netmap: A novel framework for fast packet I/O,” in 2012
USENIX Annual Technical Conference, 2012, pp. 101–112.

[18] C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library
OS for unmodified applications on SGX,” in 2017 USENIX Annual
Technical Conference, USENIX ATC 2017, D. D. Silva and B. Ford, Eds.
USENIX Association, 2017, pp. 645–658. [Online]. Available: https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/tsai

[19] S. Checkoway and H. Shacham, “Iago attacks: why the system call API
is a bad untrusted RPC interface,” in ASPLOS. ACM, 2013, pp. 253–
264.

[20] E. Marku, G. Biczók, and C. Boyd, “Towards protected VNFs for
multi-operator service delivery,” in 5th IEEE Conference on Network
Softwarization, NetSoft 2019, C. Jacquenet et al., Eds. IEEE, 2019,
pp. 19–23. [Online]. Available: https://doi.org/10.1109/NETSOFT.2019.
8806681

[21] ——, “Securing outsourced VNFs: Challenges, state of the art, and
future directions,” IEEE Commun. Mag., vol. 58, no. 7, pp. 72–77,
2020. [Online]. Available: https://doi.org/10.1109/MCOM.001.1900724

[22] A. Baumann, M. Peinado, and G. C. Hunt, “Shielding applications
from an untrusted cloud with haven,” ACM Trans. Comput.
Syst., vol. 33, no. 3, pp. 8:1–8:26, 2015. [Online]. Available:
https://doi.org/10.1145/2799647

[23] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’Keeffe, M. Stillwell, D. Goltzsche,
D. M. Eyers, R. Kapitza, P. R. Pietzuch, and C. Fetzer, “SCONE:
secure linux containers with Intel SGX,” in 12th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2016,
K. Keeton and T. Roscoe, Eds. USENIX Association, 2016,
pp. 689–703. [Online]. Available: https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/arnautov

[24] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “Panoply:
Low-TCB linux applications with SGX enclaves,” in 24th
Annual Network and Distributed System Security Symposium,
NDSS 2017. The Internet Society, 2017. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
panoply-low-tcb-linux-applications-sgx-enclaves/

[25] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
distributed sandbox for untrusted computation on secret data,” ACM
Trans. Comput. Syst., vol. 35, no. 4, pp. 13:1–13:32, 2018. [Online].
Available: https://doi.org/10.1145/3231594

[26] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
Exitless OS services for SGX enclaves,” in Proceedings of the Twelfth
European Conference on Computer Systems, EuroSys 2017, Belgrade,
Serbia, April 23-26, 2017, G. Alonso et al., Eds. ACM, 2017, pp.
238–253. [Online]. Available: https://doi.org/10.1145/3064176.3064219

[27] D. Kuvaiskii, S. Chakrabarti, and M. Vij, “Snort intrusion detection
system with Intel software guard extension (Intel SGX),” CoRR, vol.
abs/1802.00508, 2018. [Online]. Available: http://arxiv.org/abs/1802.
00508

[28] G. Biczók, M. Dramitinos, L. Toka, P. E. Heegaard, and H. Lønsethagen,
“Manufactured by software: SDN-enabled multi-operator composite
services with the 5G exchange,” IEEE Commun. Mag., vol. 55, no. 4,
pp. 80–86, 2017. [Online]. Available: https://doi.org/10.1109/MCOM.
2017.1600197

[29] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
J. Grid Comput., vol. 12, no. 4, pp. 559–592, 2014. [Online]. Available:
https://doi.org/10.1007/s10723-014-9314-7

[30] C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. R. Pietzuch, “SGX-LKL: securing the host OS interface
for trusted execution,” CoRR, vol. abs/1908.11143, 2019. [Online].
Available: http://arxiv.org/abs/1908.11143

