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Abstract: Singular value decomposition (SVD) is a fundamental technique widely used in various
applications, such as recommendation systems and principal component analyses. In recent years, the
need for privacy-preserving computations has been increasing constantly, which concerns SVD as well.
Federated SVD has emerged as a promising approach that enables collaborative SVD computation
without sharing raw data. However, existing federated approaches still need improvements regarding
privacy guarantees and utility preservation. This paper moves a step further towards these directions:
we propose two enhanced federated SVD schemes focusing on utility and privacy, respectively.
Using a recommendation system use-case with real-world data, we demonstrate that our schemes
outperform the state-of-the-art federated SVD solution. Our utility-enhanced scheme (utilizing secure
aggregation) improves the final utility and the convergence speed by more than 2.5 times compared
with the existing state-of-the-art approach. In contrast, our privacy-enhancing scheme (utilizing
differential privacy) provides more robust privacy protection while improving the same aspect by
more than 25%.

Keywords: singular value decomposition; federated learning; secure aggregation; differential privacy

1. Introduction

Advances in networking and hardware technology have led to the rapid proliferation
of the Internet of Things (IoTs) and decentralized applications. These advancements,
including fog computing and edge computing technologies, enable data processing and
analysis to be performed at node devices, avoiding the need for data aggregation. This
naturally brings benefits such as efficiency and privacy, but on the other hand, it forces data
analysis tasks to be carried out in a distributed manner. To this end, federated learning
(FL) has emerged as a promising solution in this context, allowing multiple parties to
collaboratively train models without sharing raw data. Instead, only intermediate results
are exchanged with an aggregator server, ensuring privacy preservation and decentralized
data analysis [1].

With respect to machine learning tasks, research has shown that sensitive information
can be leaked from the models [2–5]. For example, in [3], Shokri et al. demonstrated
membership inference attacks against machine learning tasks. In such an attack, an attacker
can determine whether a data sample has been used in the model training. This will violate
privacy if the data sample is sensitive. Regardless of its privacy friendly status, FL suffers
similar privacy issues, as demonstrated by Nasr, Shokri and Houmansadr [5]. This makes
it necessary to incorporate additional privacy protection mechanisms into FL and to make
it rigorously privacy-preserving.

To mitigate information leakages, FL can be aided with other privacy-enhancing
technologies, such as secure aggregation (SA) [6] and differential privacy (DP) [7]. SA hides
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the individual contributions from the aggregator server in each intermediate step in a way
that does not affect the trained model’s utility. In other words, the standalone updates
are masked such that the masks cancel out during aggregation; therefore, the aggregated
results remain intact. The masks could be seen as temporary noise; hence, the privacy
protection does not extend to the aggregated data. In contrast, DP adds persistent noise to
the model, i.e., it provides broader privacy protection but with an inevitable utility loss (due
to the permanent noise). We differentiate between two DP settings depending on where
the noise is injected. In local DP (LDP), the participants add noise to their updates, while
in central DP (CDP), the server applies noise to the aggregate result. A comparison of LDP,
CDP and SA is summarized in Table 1. While there are many privacy protection mechanisms,
incorporating them into FL is not a trivial task and remains as open challenges [1].

Table 1. Comparing secure aggregation with local and central differential privacy.

Protects The Individual Updates The Aggregate
Secure Aggregation 3 7

Central DP 7 3

Local DP 3 3

Among many data analysis methods, this paper focuses on singular value decompo-
sition (SVD). Plainly, SVD factorizes a matrix into three new matrices. Originating from
linear algebra, SVD has several interesting properties and conveys crucial insights about the
underlying matrix. Hence, SVD has essential applications in data science, such as in recom-
mendation systems [8,9], principal component analysis [10], latent semantic analysis [11],
noise filtering [12,13], dimension reduction [14], clustering [15], matrix completion [16],
etc. Existing federated SVD solutions fall into two categories: SVD over horizontally and
vertically partitioned datasets [17]. In real-world applications, the former is much more
common [18,19]; therefore, in this paper, we choose the horizontal setting and focus on the
privacy protection challenges.

1.1. Related Work

The concept of privacy-preserving federated SVD has been studied in several works,
which are briefly summarized below.

In the literature, many anonymization techniques have been proposed to enable
privacy protection in federated machine learning and other tasks. Ref. [20] proposed
substitute vectors and length-based frequent pattern tree (LFP-tree) to achieve the data
anonymization. It focuses on what data can be published and how they can be published
without associating subjects or identities. With the concept of data anonymization in mind,
Ref. [21] proposed a strategy by decreasing the correlation between data and the identities.
However, the utility of the data will be affected. And, Ref. [22] focused on high-dimensional
dataset, which is divided into different subsets; then, each subset is generalized with a
novel heuristic method based on local re-coding. While these works contain interesting
techniques, they do not directly offer a solution for privacy-preserving federated SVD.
A more detailed analysis can be found in [1].

Technically speaking, the algorithms utilized to compute SVD are mostly iterative,
such as the power iteration method [23]. Recently, these algorithms were adopted to a
distributed setting to solve large-scale problems [24,25]. While these works tackle important
issues and advance the field, they all disregard privacy issues: we are only aware of two
federated SVD solutions in the literature explicitly providing a privacy analysis [18,19].
Hartebrodt et al. [19] proposed a federated SVD algorithm with a star-like architecture for
high-dimensional data such that the aggregator cannot access the complete eigenvector
matrix of SVD results. Instead, each node device has access, but only to its shared part
of the eigenvector matrix. In addition to the lack of a rigorous privacy analysis, its aim is
different from most other federated SVD solutions where the aim is to jointly compute a
global feature space. In contrast, Guo et al. [18] proposed a federated SVD algorithm based
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on the distributed power method, where both the server and all the participants learn
the entire eigenvector matrix. Their solution incorporated additional privacy-preserving
features, such as participant and aggregator server noise injection, but without a rigorous
privacy analysis. We improve upon this solution by pointing out an error in its privacy
analysis and by providing a tighter privacy protection with less utilized noise. Overall,
these existing literature works do not provide a privacy-preserving federated SVD solution
with a rigorous analysis in our setting.

1.2. Contribution and Organization

This work focuses on a setting similar to Guo et al. [18], i.e., when the server and all the
participants are expected to learn the final eigenvector matrix. As our main contribution,
we improve the FedPower algorithm [18] from two perspectives, i.e., both from the privacy
and utility points of view. Our detailed contributions are summarized below.

• Firstly, we point out several inefficiencies and shortcomings of FedPower, such as the
avoidable double noise injection steps and the unclear and confusing privacy guarantee.

• Secondly, we propose a utility enhanced solution, where the added noise is reduced
due to the introduction of SA.

• Thirdly, we propose a privacy enhanced solution, which (in contrast to FedPower)
satisfies DP.

• Finally, we empirically validate our proposed algorithms by measuring the privacy-
utility trade-off using a real-world recommendation system use-case.

The rest of the paper is organized as follows. In Section 2, we list the fundamental
definitions of the relevant techniques used throughout the paper. In Section 3, we recap the
scheme proposed by Guo et al. [18], while in Sections 4 and 5, we propose two improved
schemes focusing on utility and privacy, respectively. In Section 6, we empirically compare
the proposed schemes with the original work. Finally, in Section 7, we conclude the paper.

2. Preliminary
2.1. Singular Value Decomposition

Let M be a s × d matrix with assumption of s ≤ d. As shown in Figure 1, the full
SVD of M is a factorization of the form UΣVT , where T means conjugate transpose.
The left-singular vectors are U = [u1, u2, . . . , us] ∈ Rs×s, the right-singular vectors are
V = [v1, v2, . . . , vd] ∈ Rd×d, and the diagonal matrix with the singular values in decreasing
order in its diagonal is Σ = diag{σ1, σ1, . . . , σd} ∈ Rs×d. The partial or truncated SVD [26,27]
is used to find the top k (k ≤ d) singular vectors U = [u1, u2, . . . , uk], V = [v1, v2, . . . , vk]
and singular values Σ = diag{σ1, σ1, . . . , σk} .

=

Singular Value

Figure 1. Singular value decomposition.

If M′ = 1
sM

TM ∈ Rd×d, then the Power Method [23] could be used to compute the
top k right singular vector of M and the top k eigenvectors of M′. It works by iterating
Y = M′Z and Z = orth(Y), where both Y and Z are d × k matrices and orth(·) is the
orthogonalization of the columns with QR factorization.

Moreover, if M is the composition of n matrices, then computation of the Power
Method can be distributed. So, if MT = [MT

1 ,MT
2 , . . . ,MT

n ] ∈ Rs×d with s = ∑n
i=1 si, where

Mi ∈ Rsi×d and M′i = 1
si
MT

i Mi, then Equation (1) holds. Thereby, Y can be written as
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Y = ∑n
i=1

si
s M
′
iZ ∈ Rd×k, which indicates that the Power Method can be processed in

parallel by each data holder [18,28].

M′ = 1
s
MTM =

n

∑
i=1

1
s
MT

i Mi =
n

∑
i=1

si
s
M′i =

d

∑
i=1

piM′i (1)

2.2. Secure Aggregation

In simple terms, with SA, the original data of each node device are locally masked
in a particular way and shared with the server, so when the masked data are aggregated
on the server, the masks are canceled and offset. In contrast, the server does not know all
individual node devices’ original unmasked intermediate results. In the FL literature, many
solutions have widely used the SA protocol of Bonawitz et al. [29]. We recap this protocol
in Appendix A and use it in Section 4 to benchmark our enhanced SVD solution.

2.3. Differential Privacy

Besides SA, DP is also exhaustively utilized in the FL literature. DP was introduced by
Dwork et al. [30], which ensures that the addition, removal, or modification of a single data
point does not substantially affect the outcome of the data-based analysis. One of the core
strengths of DP comes from its properties, called composition and post-processing, which
we also utilize in this paper. The former ensures that the output of two DP mechanisms
still satisfies DP but with a parameter change. The latter ensures that a transformation
of the results of a DP mechanism does not affect the corresponding privacy guarantees.
Typically, DP is enforced by injecting calibrated noise (e.g., Laplacian or Gaussian) into
the computation.

Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanismM : X → R with domain
X and rangeR satisfies ε-differential privacy if for any two adjacent inputs x, x′ ∈ X and for any
subset of output S ⊆ R it holds that

Pr(M(x) ∈ S) ≤ eε · Pr(M(x′) ∈ S) (2)

The variable ε is called the privacy budget, which measures the privacy loss. It captures
the trade-off between privacy and utility: the lower its value, the more noise is required
to satisfy Equation (2), resulting in higher utility loss. Another widely used DP notion is
approximate DP, where a small additive term δ is added to the right side of Equation (2).
Typically, we are interested in values of δ that are smaller than the inverse of the database
size. Although DP has been adopted to many domains [7] such as recommendation sys-
tems [31], we are not aware of any work besides [18] which adopts DP for SVD computation.
Thus, as we later show a flaw in that work, we are the first to provide a distributed SVD
computation with DP guarantees.

3. The FedPower Algorithm

Following Guo et al. [18], we assume there are n node devices, and each device i holds
an independent dataset, an si-by-d matrix Mi. Each row represents a record item, while the
columns of each matrix correspond to the same feature space. Moreover, M denotes the
composition of matrices Mi such that MT = [MT

1 ,MT
2 , . . . ,MT

n ] ∈ Rs×d, with s = ∑n
i=1 si.

The solution proposed by Guo et al. [18] is presented in Algorithm 1 with the following pa-
rameters.

• T: the number of local computations performed by each node device.
• I p

T : the rounds where the node devices and the server communicate,
i.e., I p

T = {0, p, 2p, . . . , pbT/pc}.
• (ε, δ): the privacy budget.
• (σ, σ′): the variance of noises added by the clients and the server, respectively:
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σ = bT/pc
ε·mini(si)

√
2 log

(
1.25bT/pc

δ

)
σ′ = bT/pcmaxi(pi)

ε·mini(si)

√
2 log

(
1.25bT/pc

δ

)
Algorithm 1 Full participation protocol of FedPower by Guo et al. [18].
Input: Datasets {Mi}n

i=1, target rank k, iteration rank r ≥ k, number of iteration T,
synchronous set I p

T , and the variance of noises (σ, σ′)

Output: Approximated eigenspace ZT

1: initialise Z(i)
0 = Z0 ∈ Rd×r ∼ N(0, 1)d×r

2: for t = 1 to T do
3: each node device i computes Y(i)

t = M′iZ
(i)
t−1, where M′i =

1
si
MT

i Mi

4: if t ∈ I p
T then

5: each node device i computes Ŷ(i)
t = Y(i)

t D(i)
t (orthogonal transformation)

6: each node device i adds the Gaussian noise:
Y′(i)t = Ŷ(i)

t +N(i) ∼ N(0, ||Z(i)
t−1||2maxσ2)d×r

7: each node device i sends Y′(i)t to the server
8: the server performs perturbed aggregation with an extra Gaussian noise:

Yt = ∑n
i=1

si
s Y

(i)
t +N ∼ N(0, maxi ||Z

(i)
t−1D

(i)
t ||2maxσ′2)d×r

9: the server broadcasts Yt to all node devices
10: each node device i sets Y(i)

t = Yt
11: end if
12: each node device i performs orthgonalization: Z(i)

t = orth(Y(i)
t )

13: end for
14: return approximated eigenspace

ZT =

{
∑n

i=1
si
s Z

(i)
T D(i)

T+1 if T /∈ I p
T

∑n
i=1

si
s Z

(i)
T otherwise.

In the proposed solution, each node device holds its raw data and processes the
SVD locally, its eigenvectors are aggregated on the server by the orthogonal procrustes
transformation (OPT) mechanism. The basic idea behind this is to find an orthogonal
transformation matrix that maps one set onto another while preserving their relative
characteristics. And, the aggregation result is sent back for further iterations. More details
(e.g., the computation of D(i)

t ) are given in [18].

4. Enhancing the Utility of FedPower

Adversary Model. Throughout this paper, we consider a semi-honest setup, i.e., where
the clients and the server are honest but curious. This means that they follow the protocol
truthfully, but in the meantime, they try to learn as much as possible about the dataset of
other participants. We also assume that the server and the clients cannot collude, so the
server cannot control node devices.

Utility Analysis of FedPower. It is not a surprise that adding Gaussian noise twice
(i.e., the local and the central noise in Step 6 and 8 in Algorithm 1) severely affects the
accuracy of the final result. A straightforward way to increase the utility is to eliminate
some of this noise. As highlighted in Table 1, the local noise protects the individual clients
from the server. Moreover, it also protects the aggregate from other clients and from
external attackers. On the other hand, the central noise merely covers the aggregate. Hence,
if the protection level against the server is sufficient against other clients and external
attackers, the central noise becomes obsolete.

Moreover, all the locally added noise accumulates during aggregation, which also
negatively affects the utility of the final result. Loosely speaking, as shown in Table 1, CDP
combined with SA could provide the same protection as LDP. Consequently, by utilizing
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cryptographic techniques with a single local noise, we can hide the individual updates
and protect the aggregate as well.

Utility Enhanced FedPower. We improve on FedPower [18] from two aspects: (1) we
apply an SA protocol to hide the individual intermediate results of the node devices from
the server, and (2) we use a secure multi-party computation (SMPC) protocol to enforce
the CDP in an oblivious manner to the server. In SMPC, multiple parties can jointly
compute a function over their private inputs without revealing those inputs to each other
or to the server. More details of this topic can be found in the book [32]. We supplement
the assumptions and the setup of Guo et al. [18] with a homomorphic encryption key
pair generated by the server. The server holds the private key and shares the public
key with all node devices. The remaining part of our solution is shown in Algorithm 2.
To ease understanding, the pseudo code is simplified. The actual implementation is more
optimized, e.g., the encrypted results are aggregated before decryption in Step 11, and in
Step 7, the ciphertexts are re-randomized rather than generated from scratch. We describe
all these tricks in Section 6.

By performing SA in Step 7, the server obtains the aggregated result with Gaussian
noises from all node devices. With the simple SMPC procedure (Steps 8–12), the server
receives all Gaussian noises apart from the one (i.e., node device j) is randomly selected
(which is hidden from the node devices). Then, in Step 13, it removes them from the output
of the SA protocol. Compared with FedPower [18], our intermediate aggregation result
only contains a single instance of Gaussian noise from the randomly chosen node device
instead of n. Consequently, via SA and SMPC, the proposed utility-enhancing protocol
reduced the locally added noise n-fold and completely eliminated the central noise.

Computational Complexity. Regarding computational complexity, we compare the
proposed scheme with the original solution in Table 2. The major difference is that we
have integrated SA to facilitate our new privacy protection strategy. Let SAe and SAs be
the asymptotic computational complexities of SA on each node device and server side,
respectively.

Table 2. Complexity comparison between FedPower [18] and Algorithm 2.

Addition Multiplication Noise Encryption Decryption Secure
Gen. Agg.

[18]
Node T × (k2 − k)+ T × k2 bT/pc×

bT/pc × k2 k2

Server (bT/pc+ 1)× (bT/pc+ 1)× d× k2 bT/pc×
k2 × (d− 1) + bT/pc +bT/pc × d + 1 k2

Ours
Node T × (k2 − k)+ T × k2+ bT/pc× bT/pc×

bT/pc × k2 bT/pc × k2 k2 SAe

Server bT/pc × k2 × d+ d× (k2 + 1) bT/pc× bT/pc× bT/pc×
k2 × (d− 1) k2 ×m k2 ×m SAs

Although we have added more operations, as seen in Table 2, we have distributed
some computations to individual node devices. Most importantly, we no longer add
secondary server-side Gaussian noise to the final aggregation result and only retain the
Gaussian noise from one node device.

Analysis. As we mentioned in our adversarial model, the semi-honest server cannot
collude with any of the node devices, which are also semi-honest. Thus, the server cannot
eliminate the remaining noise from the final result. In terms of the node device, since no
one except the server is aware of the random index in Step 8, apart from its data, a node
device only knows the aggregation result with the added noise, even if the retained noise
comes from itself.
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Algorithm 2 Utility-enhanced FedPower.
Input: Datasets {Mi}n

i=1, target rank k, iteration rank r, number of iteration T,
synchronous trigger p, the variance of noise σ, and key pair (skhm, pkhm)

Output: Approximated eigenspace ZT

1: initialise Z(i)
0 = Z0 ∈ Rd×r ∼ N(0, 1)d×r with orthonormal columns and

generate an r× r zero matrix P and another all-ones matrix P′ of the same size
2: for t = 1 to T do
3: each node device i computes Y(i)

t = M′iZ
(i)
t−1, where M′i =

1
si
MT

i Mi

4: if t ≡ 0 (mod p) then
5: each node device i computes Ŷ(i)

t = Y(i)
t D(i)

t (orthogonal transformation)

6: each node device i adds Gaussian noise: Y′(i)t = Ŷ(i)
t +N(i) ∼ N(0, σ)d×r

7: SA protocol is executed among the server and all node devices,
with inputs Y′(i)t and output Yt

8: the server chooses one random index j ∈ [1, n] and encrypts P′ and P′:
C(j) = Encpkh

(P) and C(j′) = Encpkh
(P′) for j′ ∈ [1, n] \ {j}

9: the server sends value C(j) and C(j′) to the appropriate node devices
10: each node device i computes C′(i) = N(i) ·C(i) which is

Encpkh
(N(i) · P′) if i = j and Encpkh

(N(i) · P) otherwise
11: each node device i sends C′(i) back to the server
12: for all i ∈ [1, n] \ {j}, the server decrypts the receiving messages C′(i)

to obtain N(i) ≡ N(i) · P′ = Decskh
(C′(i))

13: the server updates aggregation result as Y′′t = Y′t −∑i∈[1,n]\{j} N(i)

14: the server performs orthogonalization Zt = orth(Y′′t )
15: the server broadcasts Zt to all node devices
16: each node device i sets Z(i)

t = Zt
17: else
18: each node device i calculates the latest Z(i)

t = orth(Y(i)
t )

19: end if
20: end for
21: return approximated eigenspace

ZT =

{
∑n

i=1
si
s Z

(i)
T D(i)

T+1 if T /∈ I p
T

∑n
i=1

si
s Z

(i)
T otherwise.

Compared with the original solution by Guo et al. [18], we have improved the utility
of the aggregation result by keeping the added noise from one single node device. As a
side effect, the complexity has grown due to the SA protocol. This is a trade-off between
result accuracy and solution efficiency.

5. Differentially Private Federated SVD Solution

Privacy Analysis of FedPower. Algorithm 1 injects noise both at the local (Step 6) and
the global (Step 8) levels. Consequently, the claimed privacy protection of Algorithm 1 is
(2ε, 2δ)-DP, which originates from (ε, δ)-LDP and (ε, δ)-CDP [18]. Firstly, as we highlighted
in Table 1, LDP and CDP provide different privacy protections; hence, merely combining
them is inappropriate, so the claim must be more precise. Instead, Algorithm 1 seems
to provide (ε, δ)-DP for the clients from the server and stronger protection (due to the
additional central noise) from other clients and external attackers.

Yet, this is still not entirely sound, as not all computations were included in the sensi-
tivity calculation; hence, the noise scaling is incorrect. Indeed, the authors only considered
the sensitivity of the multiplication with Z in Step 3 when determining the variance of the
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Gaussian noise in Step 6; however, the noise is only added after the multiplication with D
in Step 5. Thus, the sensitivity of the orthogonalization is discarded.

Privacy-Enhanced FedPower. We improve on FedPower [18] from two aspects: (1) we
incorporate clipping in the protocol to bound the sensitivity of the local operations per-
formed by the clients and (2) we use SA with DP to obtain a strong privacy guaran-
tee. For this reason, similar to FedPower [18], we assume that for all i the elements of
M′i =

1
si
MT

i Mi are bounded with m̂. In Algorithm 1, the computations the nodes undertake
(besides noise injection at Step 6) are in Steps 3, 5 and 12, where the last two could be either
discarded for the sensitivity computation or completely removed, as explained below.

• Step 12: Orthogonalization is intricate, so its sensitivity is not necessarily traceable.
To tackle this, we propose applying the noise before, in which case it would not affect
the privacy guarantee, as it would count as post-processing.

• Step 5: We remove this client-side operation from our privacy-enhanced solution, as it
is not essential; only the convergence speed would be affected slightly.

The FedPower protocol with enhanced privacy is present in Algorithm 3, where
besides the orthogonalization, clipping is also performed with ẑ. The only client operation
which must be considered for the sensitivity computation (i.e., before noise injection) is
Step 3. We calculate its sensitivity in Theorem 1.

Theorem 1. If we assume |m′ij| ≤ m̂ for all i, j ∈ [1, d], then the sensitivity (calculated via
the Euclidean distance) of the client-side operations (i.e., Step 3 in Algorithm 3 is bounded by
2 ·
√

r · m̂ · ẑ.

Proof. To make the proof easier to follow, we remove the subscript round counter from the
notation. Let us define M′ and M̃′ such that they are equal except at position 1 ≤ i, j ≤ d. Now,
multiply these with Z from the left results in Y and Ỹ, respectively, which are the same
except in row i:

[m′i1 · z11 + · · ·

abs(·)≤m̂·ẑ︷ ︸︸ ︷
+m′ij · zj1+ · · ·+ m′id · zd1, . . . , m′i1 · z1r + · · ·

abs(·)≤m̂·ẑ︷ ︸︸ ︷
+m′ij · zjr+ · · ·+ m′id · zdr] for Y′

[m′i1 · z11 + · · ·+m̃′ij · zj1+︸ ︷︷ ︸
abs(·)≤m̂·ẑ

· · ·+ m′id · zd1, . . . , m′i1 · z1r + · · ·+m̃′ij · zjr+︸ ︷︷ ︸
abs(·)≤m̂·ẑ

· · ·+ m′id · zdr] for Ỹ′

Hence, the Euclidean distance of Y and Ỹ boils down to this row i:

dist(Y, Ỹ) =

√√√√ d

∑
k=1

r

∑
l=1

(ykl − ỹkl)
2 =

√
r

∑
l=1

(yil − ỹil)
2 =

√
r

∑
l=1

(
m′ij · zjl − m̃′ij · zjl

)2

As a direct corollary of abs(m · z) ≤ m̂ · ẑ, we know that each of the r squared elements
is bounded by 2 · m̂ · ẑ. Therefore, dist(Y, Ỹ) ≤

√
r · 4 · m̂2 · ẑ2.

It is known that adding Gaussian noise with σ2 =
2·s2 log (1.25/δ)

ε2 (where s is the
sensitivity) results in (ε, δ)-DP. As a corollary, we can state in Theorem 2 that a single
round in Algorithm 3 is differentially private. An even tighter result was presented in [33];
we leave the exploration of this as future work. The best practice is to set δ as the inverse of
the size of the underlying dataset, so there is a direct connection between the variance σ
and the privacy parameter ε.

Theorem 2. If T = 1, then Algorithm 3 provides (ε, δ)-DP, where

ε =

√
8 · r · log (1.25/δ) · m̂ · ẑ

σ

Proof. Can be verified by combining the provided formula with the appropriate sensitivity.
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Algorithm 3 Privacy-enhanced FedPower.
Input: Datasets {Mi}n

i=1, target rank k, iteration rank r, number of iteration T,
the clipping bound ẑ, the variance of noise σ

Output: Approximated eigenspace ZT

1: initialise Z(i)
0 = Z0 ∈ Rd×r ∼ N(0, 1)d×r with orthonormal columns

2: for t = 1 to T do
3: each node device i computes Y(i)

t = M′iZ
(i)
t−1, where M′i =

1
si
MT

i Mi

4: each node device i adds Gaussian noise: Y′(i)t = Y(i)
t +N(i) ∼ N(0, σ)d×r

5: if t ≡ 0 (mod p) then
6: SA protocol is executed among the server and all node devices,

with inputs Y′(i)t and output Yt
7: the server performs orthogonalization and clipping Zt = clip(orth(Y′t), ẑ)
8: the server broadcasts Zt to all node devices
9: each node device i sets Z(i)

t = Zt
10: else
11: each node device i calculates the latest Z(i)

t = clip(orth(Y′(i)t ), ẑ)
12: end if
13: end for
14: return approximated eigenspace

ZT =

{
∑n

i=1
si
s Z

(i)
T D(i)

T+1 if T /∈ I p
T

∑n
i=1

si
s Z

(i)
T otherwise.

One can easily extend this result for T ≥ 1 with the composition property of DP:
Algorithm 3 satisfies (T · ε, T · δ)-DP. Besides this basic loose composition, one can obtain
better results by utilizing more involved composition theorems such as in [34]. We leave
this for future work.

Analysis. Similarly to Section 4, we protect the individual intermediate results with
SA. On the other hand, it is equivalent to generate n Gaussian noise with variance σ
and select one, or to generate n Gaussian noise with variance σ

n and sum them all up.
Consequently, instead of relying on an SMPC protocol to eliminate most of the local noise,
we could merely scale them down. combining SA with such a downsized local noise is,
in fact, a common practice in FL: this is what distributed differential privacy (DDP) [35]
does, i.e., DDP combined with SA provides LDP but with n times smaller noise, where n is
the number of participants.

6. Empirical Comparison

In order to compare our proposed schemes with FedPower, we implement the schemes
in Python [36]. As we only encrypt 0 and 1 in Section 4, we optimize the performance and
take advantage of the utilized Paillier cryptosystem. More specifically, we re-randomize the
corresponding ciphertexts to obtain new ciphertexts. In addition, we also exploit the homo-
morphic property, and instead of decrypting each value (d× r× |number o f node devices|
times), we first calculate the product of all the ciphertexts (elementary matrix multiplica-
tion) and then perform the decryption on a signal matrix. In this way, we obtain the sum of
all Gaussian noises more efficiently. The decryption result is the sum of noise which will be
canceled in Algorithm 2. Furthermore, we prepare the M′i =

1
si
MT

i Mi, Z
(i)
0 and all keys of

SA offline for each node device i.
Metric. We use Euclidean distance to represent the similarity of two m× n matrix

A = (aij) and B = (bij), i.e., dist(A,B) =
√

∑m
i=1 ∑n

j=1
(
aij − bij

)2. Let Z denote the true
eigenspace computed without any noise, let Zg(σ, σ′) denote the eigenspace generated
with Algorithm 1, let Zu(σ) denote the eigenspace generated with Algorithm 2, and let
Zp(σ) denote the eigenspace generated with Algorithm 3.
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Setup. For our experiments, we used the well-known NETFLIX rating dataset [37],
and we pre-process it similarly to [38] (instead of 10, we removed users and movies with
less than 50 ratings). It consists of 96.310.835 ratings corresponding to 17.711 movies
from 324.468 users. We split them horizontally into 100 random blocks to simulate node
devices. Moreover, we set the security parameter to 128; thus, we adopt 3072 bits for N
in Paillier cryptosystem (this is equivalent to RSA-3072, which provides a 128-bit security
level [39]). The number of iteration rank and top eigenvectors is set to r = k = 10, and
we keep the same synchronous trigger p = 4 as [18]. To compare FedPower with our
enhanced solutions, we set the noise size for these algorithms as σ = σ′ = 0.1. Moreover,
for Algorithm 3 we bounded M′i with 0.05 and Z(i)

t with 0.2 for all possible i and t. Using
Theorem 2, we can calculate that a single round corresponds to privacy budget ε = 30.6
with δ = 10−5.

In order to determine the number of global rounds T, we set up a small experiment.
We built a data matrix M of size 3000× 100 filled with integers in [0, 5], and randomly
divided it for 100 node devices (each has at least 10 rows). We executed Algorithm 1
for 200 rounds and compared the distance between the aggregation result Z and the real
singular values of M. From the result in Figure 2, we can see that convergence occurs
around the round 92, since the subsequent results vary only slightly (<1%). Thus, we set
T = 92 for our experiments.

Figure 2. Experiment to determining T (with Algorithm 1).

The experiment is implemented in a Docker container of 40-core Intel(R) Xeon(R)
Silver 4210 CPU @ 2.20GHz and 755G RAM. We run our experiments 10-fold and take the
average execution time.

Results. Firstly, we compare the efficiency of our enhanced schemes and the original
algorithm. The computation times are presented in Table 3. Compared with FedPower,
the overall computation burden of the devices increased by a factor of ×39.68 for the
utility-enhanced solution in Section 4 and only ×1.74 and the privacy-enhanced solution in
Section 5. Concerning the server, the increase is ×6.97 and ×1.17, respectively.

Table 3. Runtime comparison of Algorithms 1–3 in milliseconds.

Name Device
Computation Time Running

Aggr. SMPC Rest Time 1

FedPower
Node 164 - 18,768

2.698× 106

Server 37 - 127,449

Utility Enhanced
Node 15,829 7.182× 105 17,259

9.203× 107

Server 20,647 7.247× 105 143,145

Privacy Enhanced
Node 15,742 - 17,291

4.477× 106

Server 20,581 - 128,903
1 Due to the large volume of memory required for matrix calculations, we had to access data by reading and
writing local files, which caused the longer overall execution time.
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The rise in computational demand comes with benefits. Concerning Algorithm 2,
significant progress is achieved in the utility while it offers a similar privacy guarantee as
FedPower. Concerning Algorithm 3, the privacy guarantee is more robust, as it provides a
formal DDP protection (while FedPower fails to satisfy DP). Moreover, it obtains a higher
utility, which could make this solution preferable despite its computational appeal. We
compare the distance between the results of each algorithm and the real eigenvalues, as
shown in Figure 3, and the utility is improved (i.e., the distances are lower) with both
Algorithms 2 and 3.

Figure 3. Comparison of Eigenspaces calculated using Algorithms 1–3 with different settings.

Our utility-enhanced solution significantly outperforms FedPower: after 92 rounds,
the obtained error of our scheme is almost three times (2.74×) smaller than that for Fed-
Power. The final error of Algorithm 2 is dist(Z,Zu(σ)) = 6.72, while this value for
Algorithm 1 is dist(Z,Zg(σ, σ′)) = 18.42. Note that this level of accuracy (∼18.5) was
obtained using our method in the 32nd round, i.e., almost three times (2.88×) faster. Hence,
the superior convergence speed can compensate for most of the computational increase
caused by SA and SMPC.

Let us shift our attention to our privacy-enhanced solution. In that case, we can see that
besides more robust privacy protection, our solution offers better utility: Algorithms 1 and 3
obtains dist(Z,Zg(σ, σ′)) = 18.42 and dist(Z,Zp(σ)) = 13.94 RMSE values, respectively,
i.e., we acquired a 24% error reduction. Our method (with actual DP guarantees) achieved
the same level of accuracy (∼18.5) only after 65 rounds, which is a 29% convergence
speed increase.

We also compare our two proposed schemes, in a way, that the size of the accumulated
noises is equal. Besides the nature of noise injection (many small vs. one large), the only
factor that differentiates the results is the clipping bounds. As expected, the error is 1.65×
larger with clipping, i.e., dist(Z,Zp(

σ
10 )) = 11.11 compared with dist(Z,Zu(σ)) = 6.72.

Concerning the convergence speed, the utility enhanced solution is 1.7× faster, reaching
similar accuracy (∼11) in round 54. Note though that this result still vastly outperforms
FedPower: the accuracy and the convergence speed are increased by 40% and 43%, respectively.

Finally, we study the effect of different levels of privacy protection on the accuracy
of each algorithm. As we noticed in Figure 3, after the 60th round, the error ratios of the
algorithms are reasonably stable, so for this experiment, we set T = 60. Since the clipping
rate ẑ and the noise variance σ both contributed to the privacy parameter ε (as seen in
Theorem 2), we varied each independently. Our results are presented in Figure 4. It is
visible that the previously seen trends hold with other levels of privacy protection, making
our proposed schemes favorable for a wide range of settings.
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Figure 4. The effect of various privacy parameters on the accuracy for Algorithms 1–3.

7. Conclusions

Motivated by Guo et al.’s distributed privacy-preserving SVD algorithm based on the
federated power method [18], we have proposed two enhanced federated SVD schemes,
focusing on utility and privacy, respectively. Both use secure aggregation to reduce the
added noise, which reverts to the initial design intent and interest. Yet, the added cryp-
tographic operations trade efficiency for superior performance (×10 better results) while
providing either similar or superior privacy guarantee. Our work leaves several future
research topics. One is to further investigate the computational complexity, particularly
the secure aggregation, to achieve more efficient solutions. Another is to investigate the
scalability of the proposed solutions, regarding larger datasets and different datasets in
applications other than recommendation systems. In addition, scalability also concerns the
number of node devices. Yet, another topic is to look further into the security assumptions.
For example, the security assumptions can be weaker so that the server can be allowed to
collude with one or more node devices.

Author Contributions: Conceptualization, Q.T.; methodology, Q.T., B.L. and B.P.; software, B.L.;
validation, Q.T., B.L. and B.P.; formal analysis, Q.T., B.L. and B.P.; investigation, Q.T., B.L. and B.P.;
resources, Q.T.; data curation, B.L.; writing—original draft preparation, Q.T. and B.L.; writing—
review and editing, Q.T., B.L. and B.P.; visualization, Q.T., B.L. and B.P.; supervision, Q.T.; project
administration, Q.T.; funding acquisition, Q.T., B.L. and B.P. All authors have read and agreed to the
published version of the manuscript.

Funding: Bowen Liu and Qiang Tang are supported by the 5G-INSIGHT bi-lateral project (ANR-
20-CE25-0015-16) funded by the Luxembourg National Research Fund (FNR) and by the French
National Research Agency (ANR). Balázs Pejó is supported by Project no. 138903, which has been
implemented with the support provided by the Ministry of Innovation and Technology from the
NRDI Fund and financed under the FK_21 funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Practical Secure Aggregation

The practical secure aggregation by Bonawitz et al. [29] is summarized below. First
and foremost, the following parameters are generated during the setup phase and sent to
relevant node devices.

• Pseudorandom Generator (PRG) [40,41]: PRG takes a fixed length seed as the input
and outputs in space [0, R), where R is a prefixed value.

• Secret Sharing [42]: SS.share(s, t,U )→ {(u, su)}u∈U takes a secret s, a set of user IDs
(e.g. integers), and a threshold s ≤ |U| as the input and outputs a set of shares su
associated with the user u ∈ U ; a reconstruction algorithm SS.recon({(u, su)}v∈V , t)→
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s takes threshold t as an input and shares the corresponding inputs to a user subset
V ⊆ U such that |V| ≥ t, and outputs a field element s.

• Key Agreement [43]: KA.param(k) → pp takes a security parameter k and returns
some public parameters; KA.gen(pp)→ (sSK, sPK) generates a secret/public key pair;
KA.agree(sSK

u , sPK
v ) → su,v allows a user u to combine its private key with the public

key of another user v into a private shared key between them.
• Authenticated Encryption [44]: AE.enc and AE.dec are algorithms for encrypting a

plaintext with a public key and for decrypting a ciphertext with a secret key.
• Signature Scheme [45]: SIG.gen takes a security parameter k and outputs a secret/public

key pair; SIG.sign signs a message with a secret key and returns the relevant signature;
and SIG.ver verifies the signature of the relevant message and returns a boolean bit
indicating whether the signature is valid.

• Number of node devices m.
• Security parameter k.
• Public parameter of key agreement pp← KA.param(k).
• Threshold value t, where t < n and n is the number of node devices.
• Input space ZR.
• Secrets sharing field F.
• Signature key pairs (dSK

u , dPK
u ) of each node device, where u ∈ [1, m].

The complete execution of the protocol between node devices and the server is pro-
vided in the following.

• Round 0 (AdvertiseKeys):

0.1. Each node device u generates secret/public key pairs of encryption and sharing
algorithms (cSK

u , cPK
u ) and (sSK

u , sPK
u ).

0.2. Each node device u signs cPK
u and sPK

u into σu ← SIG.sign(dSK
u , cPK

u ||sPK
u ).

0.3. The two public keys and all n signatures (cPK
u ||sPK

u ||σu) are sent to the server.
0.4. If the server receives at least t messages from individual node devices (denote

by U1 this set of node devices), then broadcast {(v, cPK
v , sPK

v , σv)}v∈U1 to all node
devices in U1.

• Round 1 (ShareKeys):

1.1. Once a node device u in U1 receives the messages from the server, it verifies if
all signatures are valid with SIG.ver(dPK

u , cPK
u ||sPK

u , σu), where u ∈ U1.
1.2. The node device u samples a random element bu ← F as a seed for a PRG.
1.3. The node device u generates two t-out-of-|U1| shares of sSK

u : {(v, sSK
u,v)}v∈U1 ←

SS.share(sSK
u , t,U1) and bu : {(v, bu,v)}v∈U1 ← SS.share(bu, t,U1).

1.4. For each node device v ∈ U1 \ {u}, u computes eu,v ←
AE.enc(KA.agree(cSK

u , cPK
v ), u||v||sSK

u,v||bu,v) and sends them to the server.
1.5. If the server receives at least t messages from individual node devices (denoted

by U2 ⊆ U1 this set of node devices), then it shares to each node device u ∈ U2
all ciphertexts for it {eu,v}v∈U2 .

• Round 2 (MaskedInputCollection):

2.1. For the node device u ∈ U2, once the ciphertexts are received, it computes
su,v ← KA.agree(sSK

u , sPK
v ), where v ∈ U2 \ {u}.

2.2. su,v is expanded using PRG into a random vector pu,v = ∆u,v ·PRG(su,v), where
∆u,v = 1 when u > v and ∆u,v = −1 when u < v; moreover, define pu,u = 0.

2.3. The node device u computes its own private mask vector pu = PRG(bu) and
the masked input vector xu into yu ← xu + pu + ∑v∈U2

pu,v (mod R); then, yu
is sent to the server.

2.4. If the server receives at least t messages (denote with U3 ⊆ U2 this set of node
devices), share the node device set U3 with all node devices in U3.

• Round 3 (ConsistencyCheck):
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3.1. Once the node device u ∈ U3 receives the message, it returns the signature
σ′u ← SIG.sign(dSK

u ,U3).
3.2. If the server receives at least t messages (denote by U4 ⊆ U3 this set of node

devices), share the set {u′, σ′u′}u′∈U4
.

• Round 4 (Unmasking):

4.1. Each node device u verifies SIG.ver(dPK
v ,U3, σ′v) for all v ∈ U4

4.2. For each node device v ∈ U2 \ {u}, u decrypts the ciphertext (re-
ceived in the MaskedInputCollection round) v′||u′||sv,u||bv,u ←
AE.dec(KA.agree(cSK

u , cPK
v ), ev,u) and asserts that u′ = u ∧ v′ = v.

4.3. Each node device u sends the shares sSK
v,u for node devices v ∈ U2 \ U3 and bv,u

for node devices in v ∈ U3 to the server.
4.4. If the server receives at least t messages (denote with U5 this set of node devices),

it re-constructs, for each node device u ∈ U2 \ U3, sSK
u ← SS.recon({sSK

u,v}v∈U5 , t)
and re-computes pv,u using PRG for all v ∈ U3.

4.5. The server also re-constructs, for all node devices u ∈ U3, bu ←
SS.recon({bu,v}v∈U5 , t) and re-computes pv,u using the PRG.

4.6. Finally, the server outputs z = ∑u∈U3
xu = ∑u∈U3

yu − ∑u∈U3
pu +

∑u∈U3,v∈U2\U3
pv,u.

We summarize the asymptotic computational complexity of each node device and the
server in Table A1. For simplicity of description, we assume that all devices participate
in the protocol, that is, t = m. Since some operations can be considered as offline pre-
configuration, we focus on online operations starting from masking messages in Step 2.3.

Table A1. Asymptotic computational complexity of online operations.

Vector Add SIG.sign SIG.vef KA.agree AE.dec SS.recon PRG

Node m + 1 1 m− 1 m− 1 m− 1 1

Server 2m− 1 m m
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