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Abstract—Protocol specifications describe the interaction be-
tween different entities by defining message formats and message
processing rules. Having access to such protocol specifications is
highly desirable for many tasks, including the analysis of botnets,
building honeypots, defining network intrusion detection rules,
and fuzz testing protocol implementations. Unfortunately, many
protocols of interest are proprietary, and their specifications
are not publicly available. Protocol reverse engineering is an
approach to reconstruct the specifications of such closed proto-
cols. Protocol reverse engineering can be tedious work if done
manually, so prior research focused on automating the reverse
engineering process as much as possible. Some approaches rely
on access to the protocol implementation, but in many cases, the
protocol implementation itself is not available or its license does
not permit its use for reverse engineering purposes. Hence, in
this paper, we focus on reverse engineering protocol specifications
based solely on recorded network traffic. More specifically, we
propose a method that can infer protocol message formats as
well as certain field semantics for binary protocols from network
traces. We demonstrate the usability of our approach by running
it on packet captures of two known protocols, Modbus and
MQTT, then comparing the inferred specifications to the known
specifications of these protocols.

Index Terms—protocol reverse engineering, message format,
field semantics, inference, binary protocols, network traffic,
Modbus, MQTT

I. INTRODUCTION

Protocols describe the formats, types, contents, and se-
quence of messages that are sent and received in order to
exchange data between the communicating parties, as well as
the rules according to which these messages must be pro-
cessed. The protocols themselves are defined in specifications,
which are not always available to the general public. This is
unfortunate, as having access to specifications is required for
the generation of models that serve as the basis of several
security-related applications, such as the development of in-
trusion detection systems (IDS) that understand the protocol
and can raise alarms when anomalous protocol messages are
detected [1], the creation of protocol-specific honeypots that
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simulate a device running said protocol for attacker behaviour
analysis [2], and fuzz testing protocol implementations for
programming errors or hidden features [3].

Protocol reverse engineering is an area of study that pro-
vides methods which aim to reconstruct the specifications for
protocols where these are not available. Given that manual
reverse engineering of protocols is rather time consuming, and
that new protocols appear frequently, it is generally recom-
mended that an automated approach be used. These aim to
provide at least partial information about protocols in at least
a semi-automated fashion, typically relying on the analysis of
captured network packets or existing protocol implementations
(binaries), or a combination of these [4]. However, protocol
implementations may not always be available, and licensing
restrictions or user agreements may forbid such reverse engi-
neering. For this reason, we focus on methods that only rely
on captured network traffic.

The reverse engineering process is usually comprised of
three main phases [5]. The first phase involves setting up
the environment in which the analysis will be conducted,
as well as performing the necessary preparation steps such
as generating and capturing network traffic, and instrument-
ing binaries. The second phase focuses on determining the
types of the possible messages (i.e. messages that result in
functionally distinct behaviour from the other party) along
with the semantics of the fields (groups of bytes) within the
messages. The third phase focuses on constructing a state
machine for the protocol, which describes the valid sequences
of the previously determined message types (i.e. the grammar
of the protocol). To measure the goodness of the inferred
specifications, typically three metrics are used: correctness,
conciseness, and coverage [4], where correctness measures
how many true messages are represented by one inferred
message, conciseness shows how many inferred messages
represent one true message, and coverage shows what portion
of the true messages were found.

Protocols can be classified into two groups: plain text
and binary. Plain text protocols such as Hypertext Transfer
Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP)
exchange human-readable messages where the fields are sep-
arated by delimiters such as spaces, colons, or new line
characters, and at least one field contains a keyword that



determines how the message should be interpreted. On the
other hand, binary protocols such as Server Message Block
(SMB) or Modbus exchange binary messages that are not
human-readable, lack field separators, and one or more groups
of bytes determine how the message should be interpreted.

In this paper, we present a novel graph-based algorithm
which can infer not only the message types, but also some field
semantics of binary protocols, using nothing but the statistical
properties of recorded network traffic. We have implemented
and tested the algorithm on real-world captures of two com-
monly used binary protocols, Modbus and MQTT, achieving
perfect correctness and completeness scores as well as decent
conciseness scores that surpass those of existing state-of-the-
art methods. We do not currently aim to reconstruct the state
machine of the protocol.

The rest of the paper is structured as follows: in Section
II, we discuss related work. In Section III, we present our
algorithm in detail, along with additional possible optimization
steps. Next, in Section IV, we evaluate the previously pre-
sented algorithm on packet captures of two common protocols,
Modbus and MQTT. Then, in Section V, we briefly discuss the
possible limitations of our solution, followed by opportunities
for future work. Finally, Section VI concludes our paper.

II. RELATED WORK

Protocol reverse engineering dates back to the 1950s, where
it typically meant the analysis of finite state machines for
fault detection [6]. The first well-known project that aimed
at restoring the specifications of a computer protocol was the
Protocol Informatics Project by M. A. Beddoe [7] in 2004,
which used bioinformatical algorithms on network traces to
infer the message types of the text-based protocol HTTP.
It was later followed by Discoverer, Biprominer, ReverX,
ProDecoder, and AutoReEngine [8]–[12] that all relied only on
network traffic. Some explicitly targeted text-based protocols,
some targeted binary protocols, while others considered both.
Methods relying on reversing implementations appeared under
the names of Polyglot, AutoFormat, and ReFormat [13]–[15].
Solutions to reverse the protocol grammar have also been
proposed in the form of ScriptGen, Prospex, Veritas, and
MACE [16]–[19].

In this paper, we aim to compete with Discoverer,
Biprominer, and ProDecoder, three approaches for reversing
binary protocols. Their details, as given by their authors, can
be seen in Table I.

TABLE I
PERFORMANCE METRICS OF THE THREE APPROACHES

Approach Correctness Conciseness Coverage Tested on
# protocols

Discoverer 0.9 5 0.95 3
Biprominer 0.99 Unknown 0.967 3
ProDecoder 0.975 Unknown 0.975 2

III. OUR APPROACH

Our approach consists of four distinguishable phases. The
first phase is a preparation phase, in which data is gathered
and transformed such that it can be processed in the second
phase. The second phase is the core algorithm that constructs
an acyclic connected graph (tree) based on the input. In the
third phase, optional optimizations may be run on the tree.
These optimizations generally improve a certain metric at a
possible cost of a different metric. Finally, the tree is used to
enumerate the inferred message types and field semantics.

A. Preparations

In the preparation phase, the environment needs to be
planned and set up. In order to observe and record protocol
traffic, at least one client and at least one server application
instance (or in the case of peer-to-peer applications, two
instances) should be running. These instances may or may not
be running on the same device, and if multiple devices are
used, these need not be of the same type (e.g. one can be an
ordinary computer, while the other an industrial programmable
logic controller (PLC)). This approach needs no access to the
source code or the compiled application binaries, nor does
it need access to the memory of the devices where these
are running. The only requirement is that there has to be a
way to monitor and capture network traffic flowing between
the application instances. This is typically done by running
tcpdump or Wireshark on one of the devices.

Once the environment is set up and the capture is running,
traffic should be generated by invoking as many features of the
client with as many different options and in as many different
combinations as possible, all repeated a number of times. This
ensures that most of the message space is covered, which
is essential for near-complete and accurate recovery of the
protocol specification.

B. Constructing a Tree

Each captured packet is read into the memory. For each
packet, a pointer is assigned that initially points to the first byte
of the packet. This pointer is later used to keep track of how
many bytes have already been processed in that specific packet.
A separate pointer is needed for each packet as some steps of
the algorithm increment this pointer by different amounts for
different packets.

The algorithm maintains and builds a graph that initially
consists of one node, the root node (which also is a leaf
at this point). In each step, new nodes of different colours
are appended to one of previous leaves. The colours are used
to indicate the inferred field semantics, and are based on the
following decisions:

1) Constants - Check the next byte of each packet. If this
is the same for all packets, consider this byte a constant.
Append a green leaf to the current branch, advance all
pointers by one, then continue processing at 1).

2) Length-prefixed strings - Interpret the next byte as an
integer, then test whether this value is followed by this



Figure 1. Output of the tree builder algorithm showing the results of a run on a capture of responses of the Modbus protocol.

many printable characters. If this test succeeds, a length-
prefixed string was found. Append a cyan leaf to the
current branch, advance all pointers by one plus the
length of the string, then continue processing at 1).

3) Null-terminated strings - Starting from the next byte
in each packet, test whether the following bytes can
be interpreted as a sequence of printable characters
followed by a null byte. If this test succeeds, a null-
terminated string was found. Append a cyan leaf to the
current branch, advance all pointers past the next null
byte, then continue processing at 1).

4) Length fields - Interpret the next four bytes in each
packet as a single integer. Test whether this value
matches the length of packet (optionally with a given
offset). If the test succeeds, these four bytes indicate the
length of the packet. Append a blue leaf to the current
branch, advance all pointers by four, then continue pro-
cessing at 1). If the test fails, repeat the same procedure
but with the next two bytes only instead of four. If that
fails as well, repeat the procedure, this time just with
the next single byte.

5) Counters - Interpret the next four bytes in each packet
as a single integer. Test whether this value increases by
the same amount between packets. If the test succeeds,
these four bytes form a counter. Append a purple leaf
to the current branch, advance all pointers by four, then
continue processing at 1). If the test fails, repeat the
same procedure but with the next two bytes only instead
of four. If that fails as well, repeat the procedure, this
time just with the next single byte.

6) Enumerated types - Check the next byte of each packet.
Calculate how many distinct values occur. If this amount
is lower than a threshold, we have found an enumerated
type. For each distinct value that was seen, append an
orange leaf to the current branch, and tag it with one
of the previously unused distinct values. Split the list of
packets such that each packet is assigned to the branch
that is tagged with the value of the packet’s next byte.

From this point on, only process messages that were
assigned to the branch that is currently being processed.
Advance all pointers by one. Continue processing at 1)
for each of the newly created branches. Since branches
are not interdependent, if multiple CPU cores are avail-
able, processing may continue in parallel. As for the
threshold, based on empirical evidence, values between
8 and 20 seem to be ideal, or if the number of distinct
message types is suspected, that number should be used
instead.

7) Highly variable - If none of the previous classifiers
classified this byte as something else, then it takes on
many different values that follow no discernible pattern.
Append a black leaf to the current branch, advance all
pointers by one, then continue processing at 1).

When no packet on any of the branches has unprocessed
bytes left, no more nodes can be added to the tree, and the
algorithm ends, outputting the tree. An example of a result can
be seen on Figure 1. Note that the colours of the nodes may
be arbitrarily chosen as long as each field type is coloured
differently.

C. Optimizations
Assuming that the protocol being analysed only consists

of messages that only contain fields of the previously listed
detectable properties, and that the input is of high enough
quality (i.e. there are enough messages to analyse on each
branch), the tree construction algorithm yields a correct but not
necessarily concise result. The resulting tree may be further
optimized for one or more metrics, usually at a cost of others.

• Variable length messages - Certain message types, such
as write requests with payloads of varying length or
responses to read requests will get inferred multiple
times: once for each different message length. This
phenomenon may be detected by looking for branches
that end in a number of highly variable fields that are
preceded (not necessarily directly) by a length byte, and
are otherwise identical. Message types detected this way
may be merged to improve the conciseness score.



Figure 2. Message types of Modbus requests, as read from a graph. Each line represents a different message type.

• Falsely detected enumerated types - Protocols may con-
tain bytes that contain fields that have a limited range
of values (e.g. flags) but don’t change the rest of the
message structure. These will be inferred as enumerated
types, possibly resulting in the same message type(s)
getting recognized multiple times. This phenomenon may
be detected by looking for identical branches that are
preceded by the enumerated type in question. In this case,
the branches may be merged and the enumerated type
node may be replaced by a brown coloured (Flag) node.
This may improve the conciseness score, but may also
incorrectly merge truly different message types, resulting
in loss of correctness.

D. Interpreting the Results

Once the tree construction is done, and the optional opti-
mization steps are run, the distinct message types may be read
from the graph by considering the walks from the root to each
leaf node. An example of results can be seen on Figure 2.

IV. EVALUATION

The algorithm was evaluated on two commonly used binary
protocols, Modbus and MQTT. The goodness of message
type inference was measured by the three standard metrics
(correctness, conciseness, coverage). To measure the accuracy
of semantics inference, we defined two metrics: accuracy and
adjusted accuracy. Accuracy measures what percentage of field
semantics were inferred correctly, while adjusted accuracy
considers miscategorizations correct where the miscategoriza-
tion was a result of the input not being rich enough. For
example, consider a two-byte counter that was classified as a
one-byte constant followed by a one-byte counter. The accu-
racy metric considers this incorrect, since this does not strictly
match the specification. However, it is considered correct for
the adjusted accuracy metric, since this miscategorization was
the result of the upper byte never changing values (thus the
input not being rich enough).

A. Evaluation with Modbus Traffic

Modbus is a communication protocol originally designed
in 1979 for use with PLCs. Today, it is still frequently used
with industrial control systems (ICS). Modbus’ specification
is openly available. Although the specification defines 21
functions (pairs of requests and responses), some of these are
only to be implemented for use over serial lines, and a typical
implementation only contains 8 of these: 4 kinds of reads and
4 kinds of writes [20].

For the evaluation, we have recorded approximately 20
000 Modbus request-response pairs on an ICS testbed. This
includes Modbus traffic from normal operation as well as
several thousands of repeated manual read and write requests
with a wide variety of legal parameter values. The source ports
of the requests and the destination ports of the responses were
edited to be the same with editcap, one of the tools from the
Wireshark package. This editing was needed to make sure that
the packets are recognized to belong to the same message flow.
The Modbus payloads were not altered in any manner.

Next, we built models of the Modbus requests and responses
based on the true specification. An example of a model is
shown on Figure 3). These were then used to calculate the
performance metrics for the algorithm (see Table II for results).
It can be seen that the algorithm reached maximum correctness
and coverage, no matter what optimizations were enabled.
Enabling both optimizations also maximized conciseness. The
differences between accuracy and adjusted accuracy can be
explained by the top bytes of length fields and highly variable
fields getting detected as constants due to the input packet
dump not being of high enough quality.

B. Evaluation with MQTT Traffic

MQTT, or Message Queueing Telemetry Transport is a
standard messaging protocol that follows the publish-subscribe
pattern. MQTT is fully open, and is typically used in Internet-
of-Things (IoT) solutions. The specification defines a total of
14 message types, 5 of which may only be sent by the client,
4 of which may only be sent by the server, and 5 of which
may be sent by either party [21].



Figure 3. A model of Modbus requests, based on the true specification. Each line represents a different message type.

TABLE II
PERFORMANCE METRICS OF THE ALGORITHM ON THE MODBUS PROTOCOL

Algorithm Message Type Correctness Conciseness Coverage Accuracy Adjusted Accuracy
Tree construction with no optimizations Request 1 2.375 1 0.72 0.99
Tree construction with optimization #1 Request 1 1.125 1 0.72 0.99
Tree construction with optimizations #1 and #2 Request 1 1 1 0.73 1
Tree construction with no optimizations Response 1 4.875 1 0.75 0.9886
Tree construction with optimization #1 Response 1 1.125 1 0.75 0.9886
Tree construction with optimizations #1 and #2 Response 1 1 1 0.7613 1
Tree construction with no optimizations Average 1 3.625 1 0.735 0.9893
Tree construction with optimization #1 Average 1 1.125 1 0.735 0.9893
Tree construction with optimizations #1 and #2 Average 1 1 1 0.7457 1

For the evaluation, we set up an environment with Eclipse
Mosquitto [22], an open source MQTT server, then used the
HiveMQ Websocket Client [23] to perform as many opera-
tions and with as many different parameter combinations as
possible. Traffic was captured on the server using Wireshark,
resulting in approximately 1 200 packets. The packets did not
need to be altered in any way before analysis.

As with Modbus, we built models based on the true specifi-
cation, to which we then compared our inferred specification.
Results are shown in Table III. Perfect correctness and cov-
erage are achieved in addition to decent conciseness. In the
majority of cases, the low (unadjusted) accuracy scores can be
attributed to the fact that several messages of the protocol are
of fixed length, which results in the algorithm misclassifying
length fields as constants.

V. LIMITATIONS AND FUTURE WORK

During evaluation, we have found that the solution presented
herein has two limitations that may not be possible to over-
come:

• Handling encrypted traffic - Like any other approach that
relies on nothing else but network traces, reconstruction
fails if the protocol messages are encrypted or are oth-
erwise obfuscated. If the encryption is weak or badly
implemented, it may be cracked, or a man-in-the-middle
attack may be used against the communicating parties.
Failing that, a binary analysis based (or hybrid) approach
may still work.

• Poor results for poor inputs - If certain message types
were not seen during the capture process, those will be
missing from the reconstructed specification, resulting in
suboptimal coverage metrics. In addition, if messages for
a given type were low in count or variance, then field
semantics inference may fail, resulting in low accuracy
scores.

We have also identified areas where the solution could be
further improved:

• Detection of unicode strings - Currently, only ASCII
strings can be detected, but newer protocols may contain
messages having unicode strings. We expect that it is pos-
sible to detect these strings, however, extensive testing is
needed to ensure that this functionality does not introduce
false detections.

• Split-byte fields - Some protocols, including MQTT, don’t
always use whole bytes to store information (e.g. the top
four bits of a byte might be flags, while the lower four
could be a counter). The algorithm could be reworked to
try to detect and handle these cases.

• Model merging - It should be possible to merge two
inferred models of the same protocol in order to improve
the resulting specification. The details still need to be
worked out.

• Leaving room for error - It is currently assumed that
no packets are lost, duplicated or corrupted during trans-
mission and capture. One of these events occurring may
result in most types not being detected correctly. This



TABLE III
PERFORMANCE METRICS OF THE ALGORITHM ON THE MQTT PROTOCOL

Algorithm Message Type Correctness Conciseness Coverage Accuracy Adjusted Accuracy
Tree construction (any optimization settings) Client 1 1.2 1 0.5483 0.9677
Tree construction without optimization #2 Server 1 1 1 0.7333 1
Tree construction with optimization #2 Server 1 1 1 0.8 1
Tree construction without optimization #2 Shared 1 2 1 0.7391 0.9565
Tree construction with optimization #2 Shared 1 1 1 0.7391 0.9565
Tree construction without optimization #2 Average 1 1.4 1 0.6735 0.9747
Tree construction with optimization #2 Average 1 1.06 1 0.6958 0.9747

issue could be worked around by allowing a small amount
of corrupted or out-of-sequence packets. However, this
could also result in false detections, thus should be a
subject of further research.

With these improvements done, it would be possible to gen-
erate protocol specifications that are accurate enough to be
used directly as a basis of fuzz testing, honeypots or firewall
rules, among others. Furthermore, we plan to investigate how
the results of the tree building algorithm could be used as
inputs to other algorithms that aim to infer protocol grammar
or otherwise try to find correlations between fields in requests
and responses.

VI. CONCLUSION

In this paper, we have presented a novel method to infer
message types and field semantics for binary protocols. Our
method relies exclusively on network traces, and works by
constructing and optimizing an acyclic graph based on the
contents of the packets in the trace. We have presented a
methodology to evaluate the performance of the algorithm,
then performed evaluations against the known specifications
of two commonly used protocols. Based on the results, we
conclude that the approach is already viable, but may be
further improved in the future.
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