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Abstract—Communication on the Controller Area Network
(CAN) in vehicles is notably lacking in security measures,
rendering it susceptible to remote attacks. These cyberattacks
can potentially compromise safety-critical vehicle subsystems,
and therefore endanger passengers and others around them.
Identifying these intrusions could be done by monitoring the CAN
traffic and detecting abnormalities in sensor measurements. To
achieve this, we propose integrating time-series forecasting and
signal correlation analysis to improve the detection accuracy of
an onboard intrusion detection system (IDS). We predict sets
of correlated signals collectively and report anomaly if their
combined prediction error surpasses a predefined threshold. We
show that this integrated approach enables the identification
of a broader spectrum of attacks and significantly outperforms
existing state-of-the-art solutions.
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I. INTRODUCTION

SECURING vehicular communication networks is becom-
ing crucial as the automotive industry rapidly evolves and

increasingly adopts connectivity. Applying Intrusion Detection
Systems (IDS) in specific domains is becoming essential for
identifying and mitigating threats to vehicular networks. One
such domain is the vehicles’ inner communication on the
Controller Area Network (CAN).

The CAN bus is a complex network of Electronic Control
Units (ECUs) that collaborate to provide the necessary func-
tions of the vehicle. Cyber attacks targeting these ECUs can
have dire consequences for safety-critical subsystems such as
brakes, the engine, or the steering wheel. A malfunctioning
vehicle not only endangers passengers and others around it
but also impacts the VANET (Vehicular Ad-hoc Network).
Compromising data used in Vehicle-to-Everything (V2X) com-
munication, an attacker could spread malicious information
and alter the behavior of others, which could cause congestion
or severe accidents in an urban environment. An attacker can
have financial motivation besides deteriorating reliability and
driving safety. Gaining control over the vehicle could allow
theft, stealing sensitive data, and sabotaging the system.

Since the CAN protocol does not implement any security
measures [1], an attacker can potentially attack the ECUs by
making communication inaccessible, injecting new malicious

messages, or even modifying valid messages. DoS (Denial-
of-Service) attacks disable the benign CAN communication
by flooding the network with the highest priority messages.
However, this attack can be easily detected because the net-
work load is significantly increased during the attack. Message
injection can also affect specific vehicle functions, but these
attacks are also easy to detect, with simple statistical methods,
as injected messages cause a recognizable change in the
regular arrival times.

The most challenging issue is message modification attacks
that do not introduce new messages to the network, only
the data contents are changed. This attack is the hardest
to detect due to the variability in traffic patterns, lack of
authentication or encryption, the existence of stealthy attack
techniques, and the lack of attack signatures. In general, only
the continuously changing message data can be used for
identifying anomalies that requires general, accurate methods
to differentiate between normal and malicious behavior.

After extracting signals from the message data, the de-
tection of malicious message modifications follow two main
approaches: time-series forecasting [2], [3], [4] and signal
correlation analysis [5], [6]. In time-series forecasting, a
machine learning model is trained per signal that predicts
the next, expected signal value. Anomaly is reported when
there is a substantial deviation between the prediction and
the actual value. Unfortunately, this method is incapable
of identifying modifications that fall within the usual, non-
anomalous range of signal values, even if they constitute
an attack. For instance, this limitation is evident when the
speed value is modified, causing it to marginally fall below
the speed limit. To overcome this shortcoming, the deviation
of the correlation between each pair of signals is checked,
where correlation is calculated based on the most recent few
minutes’ worth of signal data [5], [6]. Indeed, increasing the
speed should naturally result in a corresponding increase in
the RPM signal; otherwise their correlation would appear
anomalous. Consequently, to evade detection, an attacker
would need to maintain the original correlation intact and
simultaneously modify all correlated signals, which could be
prohibitively expensive in practice. Nonetheless, unlike time-
series forecasting, this purely correlation-driven approach is

Laboratory of Cryptography and System Security Department of Networked 
Systems and Services, Budapest University of Technology and Economics

E-mail: {bkoltai, agazdag, acs}@crysys.hu

Improving CAN anomaly detection with  
correlation-based signal clustering

Beatrix Koltai, András Gazdag, and Gergely Ács

Abstract—Communication on the Controller Area Network 
(CAN) in vehicles is notably lacking in security measures, 
rendering it susceptible to remote attacks. These cyberattacks 
can potentially compromise safety-critical vehicle subsystems, 
and therefore endanger passengers and others around them. 
Identifying these intrusions could be done by monitoring the CAN 
traffic and detecting abnormalities in sensor measurements. To 
achieve this, we propose integrating time-series forecasting and 
signal correlation analysis to improve the detection accuracy of 
an onboard intrusion detection system (IDS). We predict sets 
of correlated signals collectively and report anomaly if their 
combined prediction error surpasses a predefined threshold. 
We show that this integrated approach enables the identification 
of a broader spectrum of attacks and significantly outperforms 
existing state-of-the-art solutions.

Index Terms—CAN, Anomaly Detection, TCN, Correlation.

1

Improving CAN anomaly detection with
correlation-based signal clustering

Beatrix Koltai1, András Gazdag1, and Gergely Ács1
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unable to identify malicious alterations in signals that lack
any correlation between them.

Our proposal combines the merits of both time-series fore-
casting and correlation analysis. We simultaneously forecast
multiple correlated signals and flag an anomaly if the cumu-
lative difference between the predicted values and the actual
values of all correlated signals exceeds a specified threshold.
The underlying idea is that, as a single model forecasts
multiple highly correlated signals, any alteration in one signal
will inevitably influence the predictions of all other correlated
signals. In other words, we leverage signal correlation not only
for more accurate prediction, but also to induce detectable
deviation of the predicted signals from the actual ones even
if only one of them is maliciously modified. For example, the
larger the speed the larger the RPM value, which means that
increased speed with constant RPM is likely to produce a no-
ticeable cumulative prediction loss over both signals if they are
predicted jointly by a single model. Furthermore, unlike pure
correlation-based approaches, our method is capable of iden-
tifying malicious alterations in signals, even those that lack
correlation, when their predicted values deviate significantly
from their actual values. Additionally, it can detect attacks in
which the attacker modifies correlated signals simultaneously
without altering their correlation, yet still induces abnormal
behavior.

Our contributions in this work are as follows:

• We employ a combination of time-series forecasting and
signal correlation analysis to identify anomalies in the ve-
hicular CAN bus. Our unsupervised method relies solely
on unlabeled CAN traces for training and calibration prior
to deployment. It operates by simultaneously predicting
correlated signals that allows a more accurate detection
of abnormal behaviour.

• We assess the effectiveness of our approach using a
dataset comprising eight distinct message modification
attack types. Our results demonstrate a substantial perfor-
mance improvement over the state-of-the-art: we achieve
a detection rate of 95% (compared to 68%) with a
precision of 80% (versus 30%). Additionally, our method
exhibits a minimal average detection delay of just 0.38
seconds.

• Finally, we show that in addition to modification attacks,
our solution also effectively identifies injection attacks,
allowing the identification of both types of attacks by a
single algorithm.

The rest of the paper is organized as follows: Section II
briefly covers prior research and developments in anomaly
detection in Controller Area Networks. Section III summa-
rizes the relevant background of the CAN bus and vehicular
intrusion detection solutions. The attacker model is introduced
in Section IV. Section V describes the proposed anomaly
detection mechanism, the training process, and the detection
process. Section VI evaluates the performance of the method
on real-world CAN data. Finally, in Section VII we conclude
our paper.

II. RELATED WORK

Intrusion detection systems used in in-vehicle networks
differ from those used on the Internet because there are
limited known attack signatures. Most research results are
based on unsupervised learning, as the available data can
only be used appropriately to describe the benign state of the
systems. Following this approach, papers have been published
on detecting message injection and modification attacks.

IDS systems often rely on measuring and monitoring the
timestamp of message arrivals to detect injection attacks. Due
to the periodical timing of CAN data messages in a benign
state, timing-based detection methods can effectively detect
message insertions and drops [7], [8].

Attackers, however, cannot only inject messages into the
bus, but it is also possible for them to modify messages, as
described in Section IV.

In [9], the proposed method can detect these modification
attacks by utilizing the transient state at the beginning of
a modification attack. For a short time missing messages
could indicate a suspension attack as a preparation step for
a modification attack. However, if this phase is not detected
in time, the rest of the attack will be successful.

In recent years, many papers have been published on iden-
tifying modification attacks based only on the message data
contents. Among others, researchers tackled the problem by
continuously measuring the relationship between data fields,
forecasting future data values and later identifying deviations
between the predictions and actual values.

CAN signal correlation analysis is proposed in [5] to
identify modification attacks. Even though this approach is
robust against attacks that target highly correlated signals, its
effectiveness is generally limited. In [6], the authors extend
correlation analysis with hierarchical clustering. Their results
are demonstrated on a dataset, but it is not compared to other
baseline results. As the presented framework can only handle
entire traffic logs, it is not applicable as a real-time detector
for the CAN bus but only as a forensics tool.

Time series forecasting is also used to predict future values
in CAN communication, either on message or signal level.
These predictive methods can identify possible modification
attacks by measuring deviations between predicted and actual
measured values.

Using a neural network for anomaly detection has been
proposed in CANet [2]. Although this approach exploits
relations between signals for detection, this information is not
directly used in the network structure. In [3], the INDRA
framework was proposed, which analyzes temporal patterns
and behavior of messages using Gated Recurrent Unit (GRU)
based recurrent autoencoders. The authors show that INDRA
outperforms CANet in accuracy and false positive rate. In
[4], the authors introduce a Temporal Convolutional Network
based detection system. Their approach separates CAN signals
and builds individual predictor models for each signal, similar
to CANet and INDRA. However, as TCN networks are smaller
and faster than previous neural networks, such as LSTMs, their
solution outperforms all previous results. In this paper, we
improve on the TCN-based approach by introducing signal
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clustering to improve detection results while reducing the
mechanism’s footprint.

III. BACKGROUND

This section provides an overview of the CAN network’s
operation within vehicles, and introduces the application of
Temporal Convolutional Neural Networks (TCNs) along with
signal correlation analysis as part of our proposed anomaly
detection approach.

A. CAN

Modern-day vehicles have a complex internal control sys-
tem comprised of ECUs, each assigned to manage a specific
function. These ECUs are interconnected via networks, the
most important being the Controller Area Network. While this
system has proven reliable over the years, external interfaces
have exposed it to potential attacks [10].

On the CAN bus information is transmitted in frames. A
CAN frame contains header, payload, and trailer segments.
The actual data to be transmitted is in the payload segment.

Within the data part, various digital and analog signals are
encoded. Manufacturers do not disclose how the signals are
encoded, but they can be reverse-engineered using methods
previously proposed in the literature [11].

B. Temporal Convolutional Networks

Convolutional Neural Networks (CNNs) and Temporal Con-
volutional Networks (TCNs) are deep learning architectures
widely used for various tasks, including image recognition and
natural language processing. They offer significant benefits
when applied to time series data, making them suitable for
detecting anomalies in the Controller Area Network (CAN)
[4].

CNNs are designed to process grid-like data, such as
images, by applying convolutional filters to extract spatial
features. In the case of time series data, 1-dimensional causal
convolutions can be used to identify local patterns and depen-
dencies within the data.

To process sequences in parallel, TCNs use dilated convolu-
tions, which enable them to capture long-range dependencies
efficiently. This ability is critical in identifying anomalies
that may occur over extended periods or exhibit complex
temporal behaviors. Additionally, TCNs stack multiple layers
for hierarchical feature extraction.

TCNs can handle large volumes of data, making them
suitable for analyzing extensive CAN message traffic. This ar-
chitecture can be optimized for real-time processing, allowing
immediate anomaly detection and response in safety-critical
CAN systems.

IV. ATTACKER MODEL

This section discusses the attacker model and the attack
surface of a CAN network. We describe the capabilities and
goals of an attacker and classify the potential attacks that an
attacker may perform on CAN messages.

We assume that the attacker can gain access to the vehicle
using the most common attack vectors [10]. The goal of
the attacker is to send forged data to an ECU, forcing it
into a corrupt state. This could cause problems anywhere
between showing invalid values on the dashboard to making
the vehicle completely unusable or stealing it1, depending
on the target ECU. This goal can be achieved in multiple
ways. For example, vehicles with wireless interfaces, such
as Bluetooth, WiFi, or a 3G/4G/5G connection, can also be
attacked remotely. Once an attacker has the capability to
interact with the CAN bus, there are multiple possible attack
strategies, including DoS, message injection, and message
modification. The latter two are also referred to as a fabrication
and a masquerade attack.

We focus on the most challenging problem, which is the
message modification attack. During these attacks the repe-
tition times of the messages are unchanged, as there are no
new messages introduced to the network. Hence, messages
arrive at their expected time but with a modified data content.
Carrying out such an attack requires strong technical skills,
nevertheless, its feasibility has already been demonstrated in
[12]. A practical implementation of such an attack exploits the
error handling mechanism of the CAN protocol. If a device
detects an error during transmission, an error signal bit can be
used to inform the sender about the problem. Repeated error
signals can force an ECU into an error state. In this state
all further message transmissions are suspended, allowing an
attacker to take the place of the ECU in the communication and
send modified messages. Therefore, identifying modification
attacks based only on meta-data (e.g., the number or timing
of CAN messages) is not possible. In this paper, we present a
novel anomaly detection mechanism, designed to detect such
attacks.

V. PROPOSED SOLUTION

Our solution has three main components: after extracting
signals from the raw CAN traffic, (1) correlated signals are
grouped together using clustering, (2) a separate and indepen-
dent supervised forecasting model per group predicts the next
value of all correlated signals within a group, and finally (3) an
anomaly is reported if at least one of the forecasting model’s
predictions deviate significantly from the true, observed values
of the predicated signals. We detail the operation of each
component as follows.

A. Preprocessing of CAN Traffic

All signals from the available CAN messages are extracted
using the manufacturer’s specification or any state-of-the-art
automatic extraction tool [11]. As not all extracted signals
are equally useful for anomaly detection, a subset K of all
extracted signals are retained while the rest are dropped.
Indeed, useless signals are extracted from unused parts of the
CAN messages (i.e., there is no device in the vehicle that
uses that part of the message), or carry constant values with no

1https://arstechnica.com/information-technology/2023/04/crooks-are-
stealing-cars-using-previously-unknown-keyless-can-injection-attacks
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(a) Pearson correlation. (b) Spearman correlation. (c) Kendall’s Tau correlation.

Fig. 1: Heatmaps of different correlation metrics used to determine similarity between signals (Pearson, Spearman and Kendall
correlation form left to right). To better illustrate the magnitude of the correlation, we also varied the size of each point on the
heatmaps, which is proportional to the darkness of the color. The sign of the correlation is encoded in the hue of the color.

predictive power. This filtering process also helps minimize the
size of the forecasting model detailed in Section V-C. Finally,
all retained signals are normalized by dividing each signal
value by their theoretical maximum that is either specified by
the manufacturer, or computed as ⌈2s⌉ where s is the number
bits used to store the signal in the CAN message.

B. Grouping of Correlated Signals

All retained K signals are clustered into C groups based
on their pairwise correlation values. Although our approach is
not restricted to any specific similarity measure or clustering
technique, we show in this section that hierarchical clustering
with Pearson correlation is the most effective combination.
Specifically, each signal is first assigned to a separate cluster
and then the closest clusters are iteratively merged until the
number of clusters attains C. The distance of two clusters with
centroids ci,c j is measured by 1− |corr(ci,c j)|, where corr
denotes the Pearson correlation.

1) Correlation analysis: We have analyzed Pearson, Spear-
man, and Kendall correlation metrics.

Pearson’s correlation coefficient [13] measures the linear
relationship between two continuous variables, suitable for
typical analog signals on the CAN bus, such as speed, PRM,
etc. It is sensitive to outliers, which means that extreme values
can significantly influence the correlation value.

Spearman Rank Correlation [13] measures the strength and
direction of the monotonic relationship between two variables
by calculating the correlation based on the ranks of data points.
Other than a monotonic relationship, it does not assume lin-
earity or follow any specific distribution. The ranking property
of this metric makes it robust to outliers.

Like Spearman, Kendall’s Tau, also known as Kendall’s rank
correlation coefficient [13], does not assume linearity or follow
any specific distribution. Kendall’s Tau is often considered
more robust than Spearman’s.

A heatmap for each correlation method displaying the
pairwise correlation between signals is shown in Figure 1. This

visualization reveals that all three correlation methods exhibit
nearly identical dependencies. However, some significant dif-
ferences occur in the case of signals 0290_1, 0410_4, and
300_4, which correlate only with signals 0290_4 and 0290_2
according to their Pearson coefficients. As Figure 2 shows,
signal 0290_1, 0410_4, and 300_4 are indeed more similar,
even though their Spearman and Kendall correlation values are
significantly smaller.

2) Clustering of signals: We compared four distinct clus-
tering algorithms on our dataset - DBSCAN, Affinity Propa-
gation, Hierarchical Clustering, and Mean Shift Clustering2.
We chose only clustering techniques that do not require the
number of clusters to be specified in advance, as we do not
know the optimal number of groups.

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering algorithm that
groups data points based on their density within the dataset
[14]. It can discover clusters of arbitrary shapes and is robust
to outliers called noise points.

Affinity Propagation is an exemplar-based clustering algo-
rithm that selects a set of data points as exemplars and assigns
the rest of the points to the nearest exemplar [15]. Affinity
Propagation can be sensitive to the choice of similarity or
distance metric, and the number of exemplars can significantly
affect the results.

Hierarchical clustering builds a tree-like hierarchy of clus-
ters, often represented as a dendrogram [14]. It can be ag-
glomerative or divisive. Agglomerative clustering starts with
individual data points as clusters. It merges them iteratively,
while divisive clustering begins with a single set containing
all data points and splits them into smaller groups.

Mean Shift clustering is a mode-seeking clustering algo-
rithm that aims to find the modes or peaks of data density [16].
It is beneficial for finding clusters with non-uniform shapes or
densities. Mean Shift is sensitive to the bandwidth parameter,
which affects the size and shape of the groups.
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size of the forecasting model detailed in Section V-C. Finally,
all retained signals are normalized by dividing each signal
value by their theoretical maximum that is either specified by
the manufacturer, or computed as ⌈2s⌉ where s is the number
bits used to store the signal in the CAN message.

B. Grouping of Correlated Signals

All retained K signals are clustered into C groups based
on their pairwise correlation values. Although our approach is
not restricted to any specific similarity measure or clustering
technique, we show in this section that hierarchical clustering
with Pearson correlation is the most effective combination.
Specifically, each signal is first assigned to a separate cluster
and then the closest clusters are iteratively merged until the
number of clusters attains C. The distance of two clusters with
centroids ci,c j is measured by 1− |corr(ci,c j)|, where corr
denotes the Pearson correlation.

1) Correlation analysis: We have analyzed Pearson, Spear-
man, and Kendall correlation metrics.

Pearson’s correlation coefficient [13] measures the linear
relationship between two continuous variables, suitable for
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etc. It is sensitive to outliers, which means that extreme values
can significantly influence the correlation value.

Spearman Rank Correlation [13] measures the strength and
direction of the monotonic relationship between two variables
by calculating the correlation based on the ranks of data points.
Other than a monotonic relationship, it does not assume lin-
earity or follow any specific distribution. The ranking property
of this metric makes it robust to outliers.

Like Spearman, Kendall’s Tau, also known as Kendall’s rank
correlation coefficient [13], does not assume linearity or follow
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300_4, which correlate only with signals 0290_4 and 0290_2
according to their Pearson coefficients. As Figure 2 shows,
signal 0290_1, 0410_4, and 300_4 are indeed more similar,
even though their Spearman and Kendall correlation values are
significantly smaller.

2) Clustering of signals: We compared four distinct clus-
tering algorithms on our dataset - DBSCAN, Affinity Propa-
gation, Hierarchical Clustering, and Mean Shift Clustering2.
We chose only clustering techniques that do not require the
number of clusters to be specified in advance, as we do not
know the optimal number of groups.

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering algorithm that
groups data points based on their density within the dataset
[14]. It can discover clusters of arbitrary shapes and is robust
to outliers called noise points.

Affinity Propagation is an exemplar-based clustering algo-
rithm that selects a set of data points as exemplars and assigns
the rest of the points to the nearest exemplar [15]. Affinity
Propagation can be sensitive to the choice of similarity or
distance metric, and the number of exemplars can significantly
affect the results.

Hierarchical clustering builds a tree-like hierarchy of clus-
ters, often represented as a dendrogram [14]. It can be ag-
glomerative or divisive. Agglomerative clustering starts with
individual data points as clusters. It merges them iteratively,
while divisive clustering begins with a single set containing
all data points and splits them into smaller groups.

Mean Shift clustering is a mode-seeking clustering algo-
rithm that aims to find the modes or peaks of data density [16].
It is beneficial for finding clusters with non-uniform shapes or
densities. Mean Shift is sensitive to the bandwidth parameter,
which affects the size and shape of the groups.
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predictive power. This filtering process also helps minimize the
size of the forecasting model detailed in Section V-C. Finally,
all retained signals are normalized by dividing each signal
value by their theoretical maximum that is either specified by
the manufacturer, or computed as ⌈2s⌉ where s is the number
bits used to store the signal in the CAN message.

B. Grouping of Correlated Signals

All retained K signals are clustered into C groups based
on their pairwise correlation values. Although our approach is
not restricted to any specific similarity measure or clustering
technique, we show in this section that hierarchical clustering
with Pearson correlation is the most effective combination.
Specifically, each signal is first assigned to a separate cluster
and then the closest clusters are iteratively merged until the
number of clusters attains C. The distance of two clusters with
centroids ci,c j is measured by 1− |corr(ci,c j)|, where corr
denotes the Pearson correlation.

1) Correlation analysis: We have analyzed Pearson, Spear-
man, and Kendall correlation metrics.

Pearson’s correlation coefficient [13] measures the linear
relationship between two continuous variables, suitable for
typical analog signals on the CAN bus, such as speed, PRM,
etc. It is sensitive to outliers, which means that extreme values
can significantly influence the correlation value.

Spearman Rank Correlation [13] measures the strength and
direction of the monotonic relationship between two variables
by calculating the correlation based on the ranks of data points.
Other than a monotonic relationship, it does not assume lin-
earity or follow any specific distribution. The ranking property
of this metric makes it robust to outliers.

Like Spearman, Kendall’s Tau, also known as Kendall’s rank
correlation coefficient [13], does not assume linearity or follow
any specific distribution. Kendall’s Tau is often considered
more robust than Spearman’s.

A heatmap for each correlation method displaying the
pairwise correlation between signals is shown in Figure 1. This

visualization reveals that all three correlation methods exhibit
nearly identical dependencies. However, some significant dif-
ferences occur in the case of signals 0290_1, 0410_4, and
300_4, which correlate only with signals 0290_4 and 0290_2
according to their Pearson coefficients. As Figure 2 shows,
signal 0290_1, 0410_4, and 300_4 are indeed more similar,
even though their Spearman and Kendall correlation values are
significantly smaller.

2) Clustering of signals: We compared four distinct clus-
tering algorithms on our dataset - DBSCAN, Affinity Propa-
gation, Hierarchical Clustering, and Mean Shift Clustering2.
We chose only clustering techniques that do not require the
number of clusters to be specified in advance, as we do not
know the optimal number of groups.

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering algorithm that
groups data points based on their density within the dataset
[14]. It can discover clusters of arbitrary shapes and is robust
to outliers called noise points.

Affinity Propagation is an exemplar-based clustering algo-
rithm that selects a set of data points as exemplars and assigns
the rest of the points to the nearest exemplar [15]. Affinity
Propagation can be sensitive to the choice of similarity or
distance metric, and the number of exemplars can significantly
affect the results.

Hierarchical clustering builds a tree-like hierarchy of clus-
ters, often represented as a dendrogram [14]. It can be ag-
glomerative or divisive. Agglomerative clustering starts with
individual data points as clusters. It merges them iteratively,
while divisive clustering begins with a single set containing
all data points and splits them into smaller groups.

Mean Shift clustering is a mode-seeking clustering algo-
rithm that aims to find the modes or peaks of data density [16].
It is beneficial for finding clusters with non-uniform shapes or
densities. Mean Shift is sensitive to the bandwidth parameter,
which affects the size and shape of the groups.
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predictive power. This filtering process also helps minimize the
size of the forecasting model detailed in Section V-C. Finally,
all retained signals are normalized by dividing each signal
value by their theoretical maximum that is either specified by
the manufacturer, or computed as ⌈2s⌉ where s is the number
bits used to store the signal in the CAN message.

B. Grouping of Correlated Signals

All retained K signals are clustered into C groups based
on their pairwise correlation values. Although our approach is
not restricted to any specific similarity measure or clustering
technique, we show in this section that hierarchical clustering
with Pearson correlation is the most effective combination.
Specifically, each signal is first assigned to a separate cluster
and then the closest clusters are iteratively merged until the
number of clusters attains C. The distance of two clusters with
centroids ci,c j is measured by 1− |corr(ci,c j)|, where corr
denotes the Pearson correlation.

1) Correlation analysis: We have analyzed Pearson, Spear-
man, and Kendall correlation metrics.

Pearson’s correlation coefficient [13] measures the linear
relationship between two continuous variables, suitable for
typical analog signals on the CAN bus, such as speed, PRM,
etc. It is sensitive to outliers, which means that extreme values
can significantly influence the correlation value.

Spearman Rank Correlation [13] measures the strength and
direction of the monotonic relationship between two variables
by calculating the correlation based on the ranks of data points.
Other than a monotonic relationship, it does not assume lin-
earity or follow any specific distribution. The ranking property
of this metric makes it robust to outliers.

Like Spearman, Kendall’s Tau, also known as Kendall’s rank
correlation coefficient [13], does not assume linearity or follow
any specific distribution. Kendall’s Tau is often considered
more robust than Spearman’s.

A heatmap for each correlation method displaying the
pairwise correlation between signals is shown in Figure 1. This

visualization reveals that all three correlation methods exhibit
nearly identical dependencies. However, some significant dif-
ferences occur in the case of signals 0290_1, 0410_4, and
300_4, which correlate only with signals 0290_4 and 0290_2
according to their Pearson coefficients. As Figure 2 shows,
signal 0290_1, 0410_4, and 300_4 are indeed more similar,
even though their Spearman and Kendall correlation values are
significantly smaller.

2) Clustering of signals: We compared four distinct clus-
tering algorithms on our dataset - DBSCAN, Affinity Propa-
gation, Hierarchical Clustering, and Mean Shift Clustering2.
We chose only clustering techniques that do not require the
number of clusters to be specified in advance, as we do not
know the optimal number of groups.

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering algorithm that
groups data points based on their density within the dataset
[14]. It can discover clusters of arbitrary shapes and is robust
to outliers called noise points.

Affinity Propagation is an exemplar-based clustering algo-
rithm that selects a set of data points as exemplars and assigns
the rest of the points to the nearest exemplar [15]. Affinity
Propagation can be sensitive to the choice of similarity or
distance metric, and the number of exemplars can significantly
affect the results.

Hierarchical clustering builds a tree-like hierarchy of clus-
ters, often represented as a dendrogram [14]. It can be ag-
glomerative or divisive. Agglomerative clustering starts with
individual data points as clusters. It merges them iteratively,
while divisive clustering begins with a single set containing
all data points and splits them into smaller groups.

Mean Shift clustering is a mode-seeking clustering algo-
rithm that aims to find the modes or peaks of data density [16].
It is beneficial for finding clusters with non-uniform shapes or
densities. Mean Shift is sensitive to the bandwidth parameter,
which affects the size and shape of the groups.
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(a) Clustering illustrated in a 2D representation, each point corresponds
to a signal.

(b) Result of the clustering, background color indicates the cluster.

Fig. 2: Hierarchical clustering with Pearson correlation.

We visually compared the combinations of all clustering
methods with each correlation metrics. In case of DBSCAN,
we noticed that some signals are assigned to separate groups,
even though they apparently belong together. Moreover, the
result was sensitive to the clustering parameters. We also found
Affinity Propagation method too sensitive to its parameters,
and even with the best settings, it grouped signals that did not
belong together. MeanShift and Hierarchical clustering essen-
tially gave the same results. We opted to use the Hierarchical
clustering algorithm with Pearson correlation for ease of use.
Figure 2 illustrates the result, where the signals are represented
in 2D space while preserving their pairwise similarities with
Multidimensional Scaling (MDS).

C. Signal Forecasting

We train C supervised models on the clustered CAN data in
order to predict the next upcoming signal value: all retained
K signals are divided into equally-sized overlapping segments
using a sliding window with size w, and each segment serves
as input to the forecasting model to predict the subsequent
signal value immediately following the segment.

More precisely, let a signal with ID s be represented as
a time series (T s

1 , . . . ,T
s

n ) after pre-processing, and OG =
[(T

g j
1 ,T

g j
2 , . . . ,T

g j
n )] ∈ R|G|×n denotes the time series of all

correlated signals in group G, where G = {g1, . . . ,g|G|} are
the set of signal IDs belonging to G. For any signal group
G, a forecasting model fG simultaneously predicts the next
element of each signal of the group: given the most recent
w signal values OG

t−w:t = [(T
g j

t−w,T
g j

t−w+1, . . . ,T
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t−1)]∈R|G|×w as
input, the forecasting model predicts the next value OG

t:t+1 =
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t )⊤ ∈ R|G| of every signal in G. Before
deployment, all forecasting models are trained on CAN data
that comes from the same or sufficiently similar distribution
as the actual CAN traffic after deployment.

D. Decision

We compare the prediction made by every forecasting model
with the actual, observed values of the signals, and report
anomaly if the deviation of the prediction is too large for any
group.

More precisely, let OG
t:t+1 denote the actual, observed value

of the signals at time t in group G after performing the pre-
processing steps detailed in Section V-A. The prediction error
for group G at time t is defined as

errG(t) =
1
|G|

|| fG(OG
t−w:t)−OG

t:t+1||22 (1)

which measures the mean squared error (MSE) between the
actual signal values and the values predicated by fG from the
last w observed values of the signal. Note that O denotes
the true value of the signal that is observed on-line after the
deployment of the trained forecasting model fG.

A naive method of detection is to directly compare the
prediction error with a threshold τ, and report anomaly if
errG(t) ≥ τ for any group G. However, since the variance
of errG(t) can be large depending on the accuracy of the
forecasting model fG, this approach can yield large detection
error: any value of τ would induce either too many false
positives (for smaller τ) or false negatives (for larger τ).
To mitigate such effect of forecasting inaccuracy, we rather
compare the mean of the last ℓ error values with the threshold,
that is, report anomaly if (1/ℓ)∑t−1

i=t−ℓ errG(i) ≥ τ for any
group G. This approach also more reliably detects stealthier
attacks that span multiple time slots and involve insignificant
modification of the signal value per slot, but surpass the
threshold when aggregated.

To adjust τ, we follow the standard three-sigma rule and set
τ to three times the standard deviation of (1/ℓ)∑t−1

i=t−ℓ errG(i)
plus its expected value on normal (attack-free) traffic [17]. The
underlying assumption is that, without adversarial manipula-
tion, the cumulative prediction error lies within three standard
deviations of its mean that has a probability of 0.9973 if it
is normally distributed (which is the case if ℓ is sufficiently
large). The three-sigma rule is applicable even without access
to attacked traffic before deployment, otherwise an optimal
calibration of τ follows from the Neyman-Pearson lemma.

We performed experiments to determine the value of ℓ. We
analyzed different values of ℓ ranging from 1 to 500, where
ℓ = 1 means that only the present error value is considered,
and 500 corresponds to the mean computed over roughly
0.8 seconds of data. Too large values of ℓ can smooth out
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predictive power. This filtering process also helps minimize the
size of the forecasting model detailed in Section V-C. Finally,
all retained signals are normalized by dividing each signal
value by their theoretical maximum that is either specified by
the manufacturer, or computed as ⌈2s⌉ where s is the number
bits used to store the signal in the CAN message.

B. Grouping of Correlated Signals

All retained K signals are clustered into C groups based
on their pairwise correlation values. Although our approach is
not restricted to any specific similarity measure or clustering
technique, we show in this section that hierarchical clustering
with Pearson correlation is the most effective combination.
Specifically, each signal is first assigned to a separate cluster
and then the closest clusters are iteratively merged until the
number of clusters attains C. The distance of two clusters with
centroids ci,c j is measured by 1− |corr(ci,c j)|, where corr
denotes the Pearson correlation.

1) Correlation analysis: We have analyzed Pearson, Spear-
man, and Kendall correlation metrics.

Pearson’s correlation coefficient [13] measures the linear
relationship between two continuous variables, suitable for
typical analog signals on the CAN bus, such as speed, PRM,
etc. It is sensitive to outliers, which means that extreme values
can significantly influence the correlation value.

Spearman Rank Correlation [13] measures the strength and
direction of the monotonic relationship between two variables
by calculating the correlation based on the ranks of data points.
Other than a monotonic relationship, it does not assume lin-
earity or follow any specific distribution. The ranking property
of this metric makes it robust to outliers.

Like Spearman, Kendall’s Tau, also known as Kendall’s rank
correlation coefficient [13], does not assume linearity or follow
any specific distribution. Kendall’s Tau is often considered
more robust than Spearman’s.

A heatmap for each correlation method displaying the
pairwise correlation between signals is shown in Figure 1. This

visualization reveals that all three correlation methods exhibit
nearly identical dependencies. However, some significant dif-
ferences occur in the case of signals 0290_1, 0410_4, and
300_4, which correlate only with signals 0290_4 and 0290_2
according to their Pearson coefficients. As Figure 2 shows,
signal 0290_1, 0410_4, and 300_4 are indeed more similar,
even though their Spearman and Kendall correlation values are
significantly smaller.

2) Clustering of signals: We compared four distinct clus-
tering algorithms on our dataset - DBSCAN, Affinity Propa-
gation, Hierarchical Clustering, and Mean Shift Clustering2.
We chose only clustering techniques that do not require the
number of clusters to be specified in advance, as we do not
know the optimal number of groups.

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering algorithm that
groups data points based on their density within the dataset
[14]. It can discover clusters of arbitrary shapes and is robust
to outliers called noise points.

Affinity Propagation is an exemplar-based clustering algo-
rithm that selects a set of data points as exemplars and assigns
the rest of the points to the nearest exemplar [15]. Affinity
Propagation can be sensitive to the choice of similarity or
distance metric, and the number of exemplars can significantly
affect the results.

Hierarchical clustering builds a tree-like hierarchy of clus-
ters, often represented as a dendrogram [14]. It can be ag-
glomerative or divisive. Agglomerative clustering starts with
individual data points as clusters. It merges them iteratively,
while divisive clustering begins with a single set containing
all data points and splits them into smaller groups.

Mean Shift clustering is a mode-seeking clustering algo-
rithm that aims to find the modes or peaks of data density [16].
It is beneficial for finding clusters with non-uniform shapes or
densities. Mean Shift is sensitive to the bandwidth parameter,
which affects the size and shape of the groups.
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We visually compared the combinations of all clustering
methods with each correlation metrics. In case of DBSCAN,
we noticed that some signals are assigned to separate groups,
even though they apparently belong together. Moreover, the
result was sensitive to the clustering parameters. We also found
Affinity Propagation method too sensitive to its parameters,
and even with the best settings, it grouped signals that did not
belong together. MeanShift and Hierarchical clustering essen-
tially gave the same results. We opted to use the Hierarchical
clustering algorithm with Pearson correlation for ease of use.
Figure 2 illustrates the result, where the signals are represented
in 2D space while preserving their pairwise similarities with
Multidimensional Scaling (MDS).

C. Signal Forecasting

We train C supervised models on the clustered CAN data in
order to predict the next upcoming signal value: all retained
K signals are divided into equally-sized overlapping segments
using a sliding window with size w, and each segment serves
as input to the forecasting model to predict the subsequent
signal value immediately following the segment.

More precisely, let a signal with ID s be represented as
a time series (T s
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n ) after pre-processing, and OG =
[(T

g j
1 ,T

g j
2 , . . . ,T

g j
n )] ∈ R|G|×n denotes the time series of all
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t )⊤ ∈ R|G| of every signal in G. Before
deployment, all forecasting models are trained on CAN data
that comes from the same or sufficiently similar distribution
as the actual CAN traffic after deployment.

D. Decision

We compare the prediction made by every forecasting model
with the actual, observed values of the signals, and report
anomaly if the deviation of the prediction is too large for any
group.

More precisely, let OG
t:t+1 denote the actual, observed value

of the signals at time t in group G after performing the pre-
processing steps detailed in Section V-A. The prediction error
for group G at time t is defined as

errG(t) =
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which measures the mean squared error (MSE) between the
actual signal values and the values predicated by fG from the
last w observed values of the signal. Note that O denotes
the true value of the signal that is observed on-line after the
deployment of the trained forecasting model fG.

A naive method of detection is to directly compare the
prediction error with a threshold τ, and report anomaly if
errG(t) ≥ τ for any group G. However, since the variance
of errG(t) can be large depending on the accuracy of the
forecasting model fG, this approach can yield large detection
error: any value of τ would induce either too many false
positives (for smaller τ) or false negatives (for larger τ).
To mitigate such effect of forecasting inaccuracy, we rather
compare the mean of the last ℓ error values with the threshold,
that is, report anomaly if (1/ℓ)∑t−1

i=t−ℓ errG(i) ≥ τ for any
group G. This approach also more reliably detects stealthier
attacks that span multiple time slots and involve insignificant
modification of the signal value per slot, but surpass the
threshold when aggregated.

To adjust τ, we follow the standard three-sigma rule and set
τ to three times the standard deviation of (1/ℓ)∑t−1

i=t−ℓ errG(i)
plus its expected value on normal (attack-free) traffic [17]. The
underlying assumption is that, without adversarial manipula-
tion, the cumulative prediction error lies within three standard
deviations of its mean that has a probability of 0.9973 if it
is normally distributed (which is the case if ℓ is sufficiently
large). The three-sigma rule is applicable even without access
to attacked traffic before deployment, otherwise an optimal
calibration of τ follows from the Neyman-Pearson lemma.

We performed experiments to determine the value of ℓ. We
analyzed different values of ℓ ranging from 1 to 500, where
ℓ = 1 means that only the present error value is considered,
and 500 corresponds to the mean computed over roughly
0.8 seconds of data. Too large values of ℓ can smooth out
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shorter attacks potentially increasing false negative rate after
deployment. On the other hand, too small values of ℓ yields
larger variance of (1/ℓ)∑t−1

i=t−ℓ errG(i) which can increase false
positive rate.

Since attacked traces are usually not available during train-
ing, the value of ℓ is adjusted to minimize false positives only
on benign signals. This is what we will do to evaluate our
proposal in Section VI, and set the value of ℓ to 200.

In general, the values of τ and ℓ would depend on the
manufacturer’s priorities. For instance, a manufacturer may
prefer to minimize false positives to detect and respond to
attacks quickly or to investigate all suspicious cases. However,
this can lead to missing some stealthy and short-duration
attacks.

E. Discussion

1) Why Grouping Correlated Signals: The joint forecasting
of correlated signals offers several advantages for anomaly
detection. First, it allows a single model per group to lever-
age the inherent interdependencies among group members,
resulting in more accurate forecasts for each signal within
the group. Second, any malicious modification of a signal
is likely to impact the predictions of all group members,
thereby increasing the cumulative prediction error as described
in Eq. (1). This enhances the detectability of attacks com-
pared to prior methods in the literature, as demonstrated in
Section VI. Finally, instead of creating a stand-alone model
for each individual signal as in [4], our approach requires the
construction of only K forecasting models, rendering it a more
appealing choice in resource-constrained environments.

2) Cost Analysis: The cost of our approach is dominated
by that of the forecasting models. Apart from the C forecasting
models, K ·w signal values are stored for forecasting and K ·ℓ
error values for decision purposes. The forecasting models are
trained off-line in parallel, and the trained models are deployed
in the vehicle. Therefore, the computational cost is dominated
by the inference time of the forecasting models, where the
inference processes of models are parallelizable.

VI. EVALUATION

A. Dataset

We use two CAN datasets for evaluation: Dataset-1 intro-
duced in [4], and Dataset-2 introduced in [18].

Dataset-1 contains seven short (<1 minute) traces of specific
driving and traffic scenarios, and a longer trace (∼25 minutes).
Dataset-2 contains nine short traces and eleven longer traces.

As the datasets originate from the same vehicle type, both
have 20 message IDs and 1-6 signals per ID. Similarly, both
datasets contain message injection and message modification
attacks. As our main objective is to detect modification attacks,
first we only use the corresponding traces.

We evaluate our mechanism on Dataset-1 to compare its
performance to the chosen baseline described in Section VI-C.
Since the two datasets are based on very similar CAN traffic
from the same vehicle type, and most attacks follow the same
strategy (only the RANDOM and DELTA attacks are not
included in both), we present only the joint results.

The attacks have been performed using 6 different signal
modification strategies:

• ADD-DECR - Modify with decrement value: a decrease
per message is subtracted from the original value.

• ADD-INCR - Modify with increment: increases the orig-
inal value by one increment per message.

• CONST - Change to constant: constant value replaces the
original value.

• NEG-OFFSET - Modify with delta: a given value is
subtracted from the original data value.

• POS-OFFSET - Modify with delta: a given value is added
to the original data value.

• REPLAY - Replace the original data value with a previous
value.

• DELTA - An attacker chosen value is added to the original
value.

• RANDOM - The original value is replaced by a new
random value in every attacked message.

B. Model Architecture and Parameters

For evaluation, we instantiate our proposal described in
Section V. We create two datasets for training and testing
purposes. A total number of 3.2 million CAN messages were
used to create a training dataset for signal forecasting and
calibrating all parameters of our approach (i.e., K, C, w, ℓ). Our
calibrated model is tested on 1.3 million benign and malicious
test messages (67 attacked traces and 9 benign traces), each
containing one attacked signal. Both datasets undergo the
same pre-processing steps with the same parameters that were
computed exclusively on the training data.

a) Pre-processing: We use a signal mask based on the
bit flip rate to extract relevant signals. We retain K = 20 of
the N = 77 extracted signals that describe the state of the
vehicle and likely to have sufficient predictive power for signal
forecasting3. The retained signals are normalized as described
in Section V-A.

b) Signal grouping: We conduct a correlation analysis
on the signals and identify groups of correlated signals.
We utilize hierarchical clustering with Pearson correlation as
a similarity measure, and group linearly dependent signals
together accordingly. We identify C = 9 clusters of the 20
signals in our dataset.

c) Signal forecasting: For forecasting, we use multi-
channel Temporal Convolutional Networks (TCN). We apply
an input sliding window of size w = 1750, equivalent to
roughly 3 seconds, and each TCN has a receptive field with
the same size w. Each channel of the multi-channel model
corresponds to an individual signal in the group. The output
of the TCN layers is then forwarded to a fully connected
linear layer which generates the prediction of the upcoming
signal values. Each multichannel TCN layer has four dilatation
layers with a logarithmic offset of 2 (1,2,4,8). The kernel size
is fixed at 16. We train each forecasting model with Adam
optimizer and MSE loss using early stopping.

3Note that this information is already known to a car manufacturer3 Note that this information is already known to a car manufacturer
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The total size of all forecasting models, capable of handling
all message IDs together in groups, is approximately 15 MB
and contains 4.157 million parameters.

d) Decision: We average the last ℓ= 200 prediction error
values of our forecasting models and compare with threshold
τ which is calibrated according to the three-sigma rule on the
training data as described in Section V-D. In other words, we
do not use the attacked traces in our dataset to adjust τ because
it is unlikely to have sufficiently representative data about all
possible attacks in practice.

C. Comparison with Baselines

The most relevant related works are CANet [2], INDRA [3],
and the single TCN (S-TCN) anomaly detector architecture
from [4]. To avoid confusion, from now on, we will refer to
the Single TCN method (S-TCN), and refer to our proposed
solution described in Section VI-B as Correlation-based TCN
(C-TCN).

The INDRA framework has been shown to outperform other
relevant unsupervised approaches including CANet regarding
false positives and detection accuracy. Moreover, according to
numerical experiments on two datasets, the SynCAN dataset
[2] and Dataset-1, the S-TCN approach has larger accuracy
with a significantly lower false positive rate than INDRA.
Therefore, it is sufficient to show that our solution outperforms
the S-TCN approach, because it has demonstrated superior
performance compared to CANet and INDRA [4].

To properly compare the two results, we adapt the S-TCN
approach by training one TCN model per signal but keeping
the rest of the process, i.e., the data pre-processing, the same as
our C-TCN solution. As expected, this adapted approach can
reconstruct the expected behavior of CAN signals individually.

D. Evaluation Metrics

We evaluate both the baseline S-TCN and our proposed C-
TCN method using standard performance metrics: accuracy,
false positive rate, precision, and recall.

Precision and recall are particularly important metrics in this
context, since the testing dataset is often imbalanced; attacks
on the CAN bus are often short, which means that the number
of benign instances significantly exceeds the number of attack
instances.

In addition, we also measure the time it takes to detect
attacks (denoted by TD), and the fraction of attacked traces
that are successfully detected (denoted by RD):

TD =
∑Nt

n=1(tdetection − tattack)

Nt
(2)

RD =
∑Nt

n=1 {trace n is detected as anomalous}
Nt

(3)

where Nt is the number of attacked traces, tdetection is the time
of detection (time of the first message whose signal values
trigger anomaly), tattack is the starting time of the attack (time
of first attacked message) and is the indicator function.
Note that, while recall measures the detection performance on
individual messages, detection rate measures the recall with

respect to the traces. Indeed, both datasets used for evaluation
includes short driving scenarios affected by various types of
attacks, as described in Section VI-A, and an attacked trace is
successfully detected if at least one message belonging to the
attacked section of the trace triggers detection.

E. Results

All experiments were done using the TCN implementation
in Keras [19].

Table I shows the accuracy and false positive rate for
benign and malicious test sets, as well as the precision, recall,
detection rate, and detection delay for attacked traces for both
message modification and message injection attacks. These
metrics are calculated across multiple traces and averaged to
provide the overall results shown in the table.

To investigate the use of only one IDS system in a vehicle,
we also tested our solution against message injection attacks.
Although we do not focus on detecting these attacks, we
demonstrate that the solution can be applied to detect message
injections as well.

After experimenting, we conclude that correlation-based C-
TCN can effectively detect attacks on CAN bus data. Our
major findings are as follows:

1) Grouping of CAN signals based on correlation improves
the detection performance from 68% to 95% which
means that our proposed C-TCN method can detect 95%
of all the modification attack scenarios. These attacks are
detected with a delay of 0.38 seconds on average.

2) Correlation-based C-TCN significantly outperforms S-
TCN on all evaluated metrics, especially regarding preci-
sion and recall, where C-TCN achieves 80-83% average
performance.

3) In addition to modification attacks, C-TCN also effec-
tively identifies injection attacks, allowing the identifi-
cation of both types of attacks by a single algorithm.

As Figure 3 shows, S-TCN fails to detect the stealthier
ADD-DECR attack, which slowly modifies the original signal
message-by-message. It is only detected when the attack
abruptly stops, and the signal returns to its original value. In
contrast, our C-TCN model can detect the attack earlier when
the modification induces a detectable change in the cumulative
prediction error.

VII. CONCLUSION

This paper presented a novel approach to intrusion detection
on the CAN bus. We mainly aimed at detecting message

TABLE I: Comparing overall results of evaluating the baseline
S-TCN and the proposed correlation-based C-TCN on benign
and malicious test traces from both dataset.

Benign Message Message
Modification Injection

S-TCN C-TCN S-TCN C-TCN S-TCN C-TCN
Acc. 0.98 0.99 0.93 0.98 0.96 0.99
FPR 0.03 0.02 0.05 0.04 0.01 0.01
Prec. - - 0.30 0.80 0.67 0.88
Recall - - 0.24 0.83 0.28 0.70
RD - - 0.68 0.95 0.79 0.94
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Fig. 3: Comparative evaluation of S-TCN vs. C-TCN on the same attacked trace, containing an ADD-DECR attack. The
figure shows the attacked region marked by grey vertical lines and detections marked by yellow to red vertical lines, with the
magnitude of the cumulative prediction error indicated by the darkness of the color.

modification attacks, the most complex attack type possible on
the CAN bus. We showed that a correlation-based TCN model
can efficiently predict the subsequent values of the vehicle
signals, which can be used for anomaly detection. Finally, we
also presented measurements demonstrating that our approach
outperforms the state-of-the-art.

Our main contribution is to combine correlation analysis
with time-series forecasting to improve detection accuracy. By
grouping signals first based on their correlation, we create
models that can predict future values with a high accuracy.
During an attack, the forecasting of a group of correlated
signals is significantly less accurate, allowing the detection
of the anomaly. Furthermore, by grouping the signals, we can
use fewer models resulting in a smaller footprint, which is an
important factor for embedded systems.

In case an attacker knows which signals are clustered
together and understands how the signals usually behave, it
may be able to modify all the signals in the group without
being detected. This requires maintaining the normal signal
behavior including the inter-dependencies between different
signals. However, it is unlikely that the attacker have all
these capabilities in practice, especially if the groups are
sufficiently large and the device running our integrated solution
is adequately protected.

In our future work, we plan to analyze correlations in
different traffic situations to improve our solution.
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Fig. 3: Comparative evaluation of S-TCN vs. C-TCN on the same attacked trace, containing an ADD-DECR attack. The
figure shows the attacked region marked by grey vertical lines and detections marked by yellow to red vertical lines, with the
magnitude of the cumulative prediction error indicated by the darkness of the color.

modification attacks, the most complex attack type possible on
the CAN bus. We showed that a correlation-based TCN model
can efficiently predict the subsequent values of the vehicle
signals, which can be used for anomaly detection. Finally, we
also presented measurements demonstrating that our approach
outperforms the state-of-the-art.

Our main contribution is to combine correlation analysis
with time-series forecasting to improve detection accuracy. By
grouping signals first based on their correlation, we create
models that can predict future values with a high accuracy.
During an attack, the forecasting of a group of correlated
signals is significantly less accurate, allowing the detection
of the anomaly. Furthermore, by grouping the signals, we can
use fewer models resulting in a smaller footprint, which is an
important factor for embedded systems.

In case an attacker knows which signals are clustered
together and understands how the signals usually behave, it
may be able to modify all the signals in the group without
being detected. This requires maintaining the normal signal
behavior including the inter-dependencies between different
signals. However, it is unlikely that the attacker have all
these capabilities in practice, especially if the groups are
sufficiently large and the device running our integrated solution
is adequately protected.

In our future work, we plan to analyze correlations in
different traffic situations to improve our solution.
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