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ABSTRACT
Machine Learning, and in particular Federated Machine Learning, 
opens new perspectives in terms of medical research and patient 
care. Although Federated Machine Learning improves over central-
ized Machine Learning in terms of privacy, it does not provide prov-
able privacy guarantees. Furthermore, Federated Machine Learning 
is quite expensive in term of bandwidth consumption as it requires 
participant nodes to regularly exchange large updates. This pa-
per proposes a bandwidth-efficient privacy-preserving Federated 
Learning that provides theoretical privacy guarantees based on 
Differential Privacy. We experimentally evaluate our proposal for 
in-hospital mortality prediction using a real dataset, containing 
Electronic Health Records of about one million patients. Our re-
sults suggest that strong and provable patient-level privacy can 
be enforced at the expense of only a moderate loss of prediction 
accuracy.

1 INTRODUCTION
An Electronic Health Record (EHR) is a digital version of the pa-
tient’s medical information. EHR data open new perspectives, espe-
cially with the development of machine learning. EHR data can be 
used to train predictive models in order to predict patient’s medical 
conditions and help medical doctors to develop appropriate care 
[18, 36].

However, medical data is considered as sensitive information that 
can lead to some real and serious damage to the patient if any 
leakage happens. For example, medical data can be exploited by 
insurance companies to adapt their insurance fees, by banks to deny 
loans, or by politicians to discredit their opponents. Therefore, the 
privacy of such kind of sensitive data must be guaranteed and 
privacy-preserving predictive models are needed.

Predictive models are typically built using machine learning al-
gorithms that are trained on centralized datasets. When a model is 
trained on multiple datasets, collected for example by several hospi-
tals, the centralization of all datasets on a single server introduces 
additional, and often unacceptable, privacy risks. To mitigate this 
problem, Federated learning (FL) was proposed as a new learning 
protocol. Federated Learning consists of distributing the learning 
process on the different entities providing data: instead of aggre-
gating the data on a single server, the training is performed locally 
by each participating entities and the models are then shared and 
aggregated [27, 38]. Although Federated Learning mitigates the 
privacy risks by design, recent results have shown that some at-
tacks, such as membership and property inference attacks, are still 
possible [29, 33]. Moreover, complete training samples can also be 
reconstructed purely from the captured gradients [43, 44].

Furthermore, since participating entities must collaborate by 
exchanging their model updates, the required bandwidth during 
the training phase is often significant and prohibitive [22].

Contribution. This paper proposes a bandwidth-efficient privacy-
preserving Federated Learning scheme that provides theoretical 
privacy guarantees. Our proposal guarantees Differential Privacy 
with practical utility even on highly imbalanced training data. This 
is challenging as imbalanced data increases the injected noise re-
quired by Differential Privacy and hence substantially degrades 
model quality. Our solution relies on the extreme quantization of 
the gradients in order to reduce communication costs as well as on 
downsampling of mini-batches to diminish the noise needed for 
Differential Privacy. We experimentally evaluate the performance 
of our solution for in-hospital mortality prediction using real EHR 
data, containing about one million records of patients. Our results 
suggest that patient-level privacy can be enforced at the expense 
of only a moderate loss of prediction accuracy.
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Outline. We describe the background in Section 2. We introduce 
our privacy-preserving scheme in Section 3. We report on experi-
ments with real-world data in Section 4. Finally we discuss related 
works in Section 5 before concluding in Section 7.

2 BACKGROUND
2.1 Federated Learning (FL-STANDARD)
In federated learning [27, 38], multiple parties (clients) build a 
common machine learning model on the union of their training data 
without sharing them with each other. At each round of the training, 
some clients retrieve the global model from the parameter server, 
update the global model based on their own training data, and 
send back their updated model to the server. The server aggregates 
the updated models of all clients to obtain a global model that is 
re-distributed to some selected parties in the next round.

In particular, a subset K of all 𝑁 clients are randomly selected 
at each round to update the global model, and 𝐶 = |K|/𝑁 denotes 
the fraction of selected clients. At round 𝑡 , a selected client 𝑘 ∈ K 
executes 𝑇gd local gradient descent iterations on the common model 
w𝑡−1 using its own training data 𝐷𝑘 (𝐷 = ∪𝑘 ∈K𝐷𝑘 ), and obtains 
the updated model w𝑡 , where the number of weights is denoted by 
𝑛 (i.e., |w𝑡 | = |Δw𝑡 | = 𝑛 for all 𝑘 and 𝑡 ). Each client 𝑘 submits the
update Δw𝑡 = w𝑡 − w

𝑡−1 to the server, which then updates the
common model as follows: w𝑡 = w𝑡−1 +

∑
𝑘∈K

|𝐷𝑘 |∑
𝑗 |𝐷 𝑗 |Δw

𝑘
𝑡 , where

|𝐷𝑘 | is known to the server for all 𝑘 (a client’s update is weighted

with the size of its training data). The server stops training after

a fixed number of rounds 𝑇cl, or when the performance of the

common model does not improve on a held-out data.

Note that each 𝐷𝑘 may be generated from different distributions

(i.e., Non-IID case), that is, any client’s local dataset may not be

representative of the population distribution [27]. This can happen,

for example, when not all output classes are represented in every

client’s training data. The federated learning of neural networks is

summarized in Alg. 1. In the sequel, each client is assumed to use

the same model architecture.

Algorithm 1: FL-STANDARD: Federated Learning

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients uniformly at random

5 for each client 𝑘 in K do
6 Δw𝑘

𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 +
∑

𝑘
|𝐷𝑘 |∑
𝑗 |𝐷 𝑗 | Δw

𝑘
𝑡

9 end
Output: Global model w𝑡

10

11 Client𝑘 (w𝑘
𝑡−1) :

12 w𝑘
𝑡 = SGD(𝐷𝑘 ,w𝑘

𝑡−1,𝑇gd)
Output: Model update (w𝑘

𝑡 −w𝑘
𝑡−1)

The motivation of federated learning is three-fold: first, it aims

to provide confidentiality of each participant’s training data by

Algorithm 2: Stochastic Gradient Descent
Input: 𝐷 : training data,𝑇gd : local epochs, w : weights

1 for 𝑡 = 1 to𝑇gd do
2 Select batch B from 𝐷 randomly

3 w = w − [∇𝑓 (B;w)
4 end
Output:Model w

sharing only model updates instead of potentially sensitive training

data. Second, in order to decrease communication costs, clients can

perform multiple local SGD iterations before sending their update

back to the server. Third, in each round, only a few clients are

required to perform local training of the common model, which

further diminishes communication costs and makes the approach

especially appealing with a large number of clients.

However, several prior works have demonstrated that model

updates do leak potentially sensitive information [29, 33]. Hence,

simply not sharing training data per se is not enough to guarantee

their confidentiality.

2.2 Differential Privacy
Differential privacy allows a party to privately release information

about a dataset: a function of an input dataset is perturbed, so that

any information which can differentiate a record from the rest of

the dataset is bounded [17].

Definition 2.1 (Privacy loss). Let A be a privacy mechanism

which assigns a value in Range(A) to a dataset 𝐷 . The privacy loss

of A with datasets 𝐷 and 𝐷 ′ at output 𝑂 ∈ Range(A) is a random
variable P(A, 𝐷, 𝐷 ′,𝑂) = log

Pr[A(𝐷)=𝑂 ]
Pr[A(𝐷′)=𝑂 ] where the probability

is taken on the randomness of A.

Definition 2.2 ((𝜖, 𝛿)-Differential Privacy [17]). A privacy

mechanism A guarantees (Y, 𝛿)-differential privacy if for

any database 𝐷 and 𝐷 ′, differing on at most one record,

Pr𝑂∼A(𝐷) [P(A, 𝐷, 𝐷 ′,𝑂) > Y] ≤ 𝛿 .

Intuitively, this guarantees that an adversary, provided with the

output of A, can draw almost the same conclusions (up to Y with

probability larger than 1 − 𝛿) about any record no matter if it is

included in the input ofA or not [17]. That is, for any record owner,

a privacy breach is unlikely to be due to its participation in the

dataset.

Moments Accountant. Differential privacy maintains composition;

the privacy guarantee of the 𝑘-fold adaptive composition of

A
1:𝑘 = A1, . . . ,A𝑘 can be computed using the moments accoun-

tant method [2]. In particular, it follows from Markov’s inequality

that Pr[P(A, 𝐷, 𝐷 ′,𝑂) ≥ Y] ≤ E[exp(_P(A, 𝐷, 𝐷 ′,𝑂))]/exp(_Y)
for any output 𝑂 ∈ Range(A) and _ > 0. This implies that A
is (Y, 𝛿)-DP with 𝛿 = min_ exp(𝛼A (_) − _Y), where 𝛼A (_) =

max𝐷,𝐷′ logE𝑂∼A(𝐷) [exp(_P(A, 𝐷, 𝐷 ′,𝑂))] is the log of the mo-

ment generating function of the privacy loss. The privacy guaran-

tee of the composite mechanism A
1:𝑘 can be computed using that

𝛼A1:𝑘
(_) ≤ ∑𝑘

𝑖=1 𝛼A𝑖
(_) [2].

Gaussian Mechanism. There are a few ways to achieve DP, including

the Gaussian mechanism [17]. A fundamental concept of all of them

is the global sensitivity of a function [17].
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Definition 2.3 (Global 𝐿𝑝 -sensitivity). For any function 𝑓 : D →
R𝑛 , the 𝐿𝑝 -sensitivity of 𝑓 is Δ𝑝 𝑓 = max𝐷,𝐷′ | |𝑓 (𝐷) − 𝑓 (𝐷 ′) | |𝑝 , for
all 𝐷,𝐷 ′ differing in at most one record, where | | · | |𝑝 denotes the

𝐿𝑝 -norm.

The Gaussian Mechanism [17] consists of adding Gaussian noise

to the true output of a function. In particular, for any function

𝑓 : D → R𝑛 , the Gaussian mechanism is defined as adding i.i.d

Gaussian noise with variance (Δ2 𝑓 ·𝜎)2 and zero mean to each coor-

dinate value of 𝑓 (𝐷). Recall that the pdf of the Gaussian distribution
with mean ` and variance b2 is

pdfG(`,b) (𝑥) =
1

√
2𝜋b

exp

(
− (𝑥 − `)

2

2b2

)
(1)

In fact, the Gaussian mechanism draws vector values from a

multivariate spherical (or isotropic) Gaussian distribution which

is described by random variable G(𝑓 (𝐷),Δ2 𝑓 · 𝜎I𝑛), where 𝑛 is

omitted if its unambiguous in the given context.

3 TOWARD FEDERATED LEARNING
RECORD-LEVEL PRIVACY

3.1 The FL-SIGN Protocol
In the FL-STANDARD scheme, presented in Section 2.1, each se-

lected client sends its updated model to the central server. As dis-

cussed previously, this scheme has several drawbacks in terms of

bandwidth and privacy. We propose to limit these drawbacks by

quantizing the model weights as in [9, 21]. More specifically, in the

new scheme, referred to as FL-SIGN in the rest of this paper, each

client sends only the sign of every coordinate value in its param-

eter update vector. The server takes the sign of the sum of signs

per coordinate and scales down the result with a fixed constant

𝛾 (which is in the order of 10
−3

in practice) in order to limit the

contribution of each client and adjust convergence. This scaled

aggregated updates are added to the global model.

Algorithm 3: FL-SIGN: Sign Federated Learning

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients uniformly at random

5 for each client 𝑘 in K do
6 s𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 + 𝛾sign
(∑

𝑘 s𝑘𝑡
)

9 end
Output: Global model w𝑡

10

11 Client𝑘 (w𝑖
𝑡−1) :

12 w𝑘
𝑡 = SGD(𝐷𝑘 ,w𝑘

𝑡−1,𝑇gd)
Output: Model update sign(w𝑘

𝑡 −w𝑘
𝑡−1)

More specifically, FL-SIGN (see Alg. 3) differs from the standard

federated scheme FL-STANDARD (see Alg. 1) as follows:

(1) Each client returns s𝑘𝑡 = sign(w − w𝑘
𝑡−1) instead of (w −

w𝑘
𝑡−1), where sign : R𝑛 → {−1, 1}𝑛 returns the sign of each

coordinate value of the input vector if it is non-zero and a

sign chosen uniformly at random otherwise.

(2) The server sums the sign vectors s𝑘𝑡 sent by each client 𝑘 and

computes the sign vector of this sum as sign
(∑

𝑘 s𝑘𝑡
)
. This

is equivalent to take the median of all clients’ signs at every

position of the update vectors. Unlike in Alg. 1, the update

s𝑘𝑡 is not weighted with client 𝑘’s data size |𝐷𝑘 |, since that
would require the client to send |𝐷𝑘 | to the server which

would enable the adversary to maliciously scale up its sign

vector by sending a fabricated size of its training data.

The extreme quantization performed by FL-SIGN reduces the

communication costs of federated learning by a factor of 32 (since

only one bit is sent per parameter instead of 32 bits). Note also

that, if the quantized update vector is sparse, other lossless or

lossy compression techniques can further improve communication

efficiency [22].

3.2 Privacy-Preserving FL-SIGN (FL-SIGN-DP)
In FL-SIGN, a participant only sends the signs of its updates, as

opposed to their actual values, hence it intuitively reveals less infor-

mation about the client’s dataset than the original FL-STANDARD

scheme. In order to experimentally validate this intuition, we imple-

mented the inference attack described in [29] on FL-STANDARD

and FL-SIGN
1
. Results showed that the attack accuracy dropped

from 92% for FL-STANDARD to 50% for FL-SIGN. While these re-

sults suggest that privacy could be preserved in practice, they do

not provide any strong guarantee.

To reason about the general privacy guarantee of FL-SIGN more

rigorously, consider the sign vector s𝑘𝑡 = sign(w𝑘
𝑡 −w𝑘

𝑡−1). Several
attacks have demonstrated [29, 33] that Δw𝑘

𝑡 = w𝑘
𝑡 −w𝑘

𝑡−1 can be

used to infer the membership of individual records in the training

data due to the strong memorization property of neural networks,

and overfitting in general. As taking the sign of Δw𝑘
𝑡 is a determin-

istic operation and depends on the value of s𝑘𝑡 , there is no guarantee
that s𝑘𝑡 does not leak any sensitive information.

In order to obtain theoretically private schemes, we extend FL-

SIGN with Differential Privacy. Our goal is to design a differentially

private scheme that is accurate and also bandwidth efficient (even

for small Y values).

3.2.1 Privacy and Adversarial Models. We consider an adversary,

or a set of colluding adversaries, who can access any update vector

sent by the server or any clients at each round of the protocol. The

adversary is computationally unbounded but passive (i.e., honest-
but-curious), that is, it follows the learning protocol faithfully and

does not modify any update vector. A plausible adversary is a

participating entity, i.e. a malicious client or server, that wants to

infer the training data used by other participants.

We aim at developing a solution that protects each record of the

clients’ training datasets. For example, in the scenario of collaborat-

ing hospitals we aim at protecting each individual patient record

of all hospital datasets.

1
A model was trained for gender classification on the LFW dataset. The adversary’s

goal is to infer from the model updates whether a specific group of individuals in a

client’s dataset are black.
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Algorithm 4: FL-SIGN-DP: Bandwidth-Efficient Federated Learn-

ing with Differential Privacy

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients randomly

5 for each client 𝑘 in K do
6 s𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 + 𝛾sign
(∑

𝑘 s𝑘𝑡
)

9 end
10 Client𝑘 (w𝑘

𝑡−1) :
11 w̃𝑘

𝑡 = DPSGD(𝐷𝑘 ,w𝑘
𝑡−1, 𝑆, 𝜎,𝑇gd)

Output: sign(w̃𝑘
𝑡 −w𝑘

𝑡−1)

The adversary should not be able to learn from the received

model or its updates whether any particular record was used to

train the model by any other participants.

We believe that this adversarial model is reasonable for the med-

ical application that we consider in this paper: it is very unlikely

that a participating hospital will take the risk of manipulating the

updates that it sends to the server. However, we want to make sure

that it can not infer any sensitive information from the models that

it receives from the server. In other words, we make the assumption

that hospitals may be "curious", but are "honest".

We use Differential Privacy (DP) because it was proposed to

achieve this goal. DP guarantees plausible deniability. Therefore,

any negative privacy impact on an individual, i.e. a patient in the

dataset, cannot be attributed to his involvement in the training

phase (up to Y and 𝛿). For example, if an insurance company accesses

the model updates or the common model and decides to increase

the price of a patient’s insurance fee, it cannot be because of the

patient’s data.

3.2.2 Operation. To guarantee differential privacy for any indi-

vidual record of a training data, we propose FL-SIGN-DP, depicted

in Alg. 4, which is a synergy of FL-SIGN and differentially private

gradient descent (DPSGD) from [2]. In particular, instead of run-

ning traditional SGD on its local training data, every client executes

DPSGD (depicted in Alg. 6), which guarantees that its output w̃𝑘
𝑡

does not leak any information that is specific to a single training

sample (up to Y and 𝛿) by clipping the 𝐿2-norm of the gradients

and perturbing the result with Gaussian noise. The noise scale is

calibrated to 𝑆 and 𝜎 , where the latter directly gives Y and 𝛿 as

shown below. Hence, any further computation which uses w̃𝑘
𝑡 is

also differentially private.

Notice that the batch is created using downsampling [19, 31] (see
Alg. 7) in order to overcome the imbalanced classes of the training

data. Downsampling guarantees that every batch contains identical

number of samples from every class, and therefore they have similar

magnitude of gradients on average.

Likewise FL-SIGN, FL-SIGN-DP also sends only signs for aggre-

gation, and hence is equally bandwidth efficient.

3.2.3 Privacy analysis. The privacy guarantee of FL-SIGN-DP is

quantified using the moments accountant method from [2]. Let

Algorithm 5: FL-STANDARD-DP: Federated Learning with Dif-

ferential Privacy

1 Server:
2 Initialize common model 𝑤0

3 for 𝑡 = 1 to𝑇cl do
4 Select K clients randomly

5 for each client 𝑘 in K do
6 s𝑘𝑡 = Client𝑘 (w𝑡−1)
7 end

8 w𝑡 = w𝑡−1 + 1

|K|

(∑
𝑘 s𝑘𝑡

)
9 end

10 Client𝑘 (w𝑘
𝑡−1) :

11 w̃𝑘
𝑡 = DPSGD(𝐷𝑘 ,w𝑘

𝑡−1, 𝑆, 𝜎,𝑇gd)
Output: w̃𝑘

𝑡 −w𝑘
𝑡−1

Algorithm 6: DPSGD(𝐷,w, 𝑆, 𝜎,𝑇gd)
Input: 𝐷 : training data,𝑇gd : number of iterations, w : weights, 𝑆 :

clipping threshold, 𝜎 : noise scale

1 for 𝑡 = 1 to𝑇gd do
2 Select batch B from 𝐷 randomly

3 B′ = Downsampling(B)
4 for each record 𝑟 in B′ do
5 ∇ ˆ𝑓 (𝑟,w) = ∇𝑓 (𝑟,w)/max

(
1,
| |∇𝑓 (𝑟,w) | |2

𝑆

)
6 end

7 w = w − ([/ |B′ |)
(∑

𝑟∈B′ ∇ ˆ𝑓 (𝑟 ;w) + G(0, 𝜎𝑆I)
)

8 end
Output:Model parameters w

Algorithm 7: Downsampling(B)
Input: Batch B with labels 𝐿1 and 𝐿2

1 Partition B into C1 and C2, where all samples in C1 has label 𝐿1 and

all samples in C2 has label 𝐿2
2 𝑠min = min( |C1 |, |C2 |)
3 B1 ← select 𝑠min samples from C1 uniformly at random

4 B2 ← select 𝑠min samples from C2 uniformly at random

Output: Balanced batch B1 ∪ B2

[0 (𝑥 |b, 𝑞) = pdfG(0,b) (𝑥) and [1 (𝑥 |b, 𝑞) = (1 − 𝑞)pdfG(0,b) (𝑥) +
𝑞pdfG(1,b) (𝑥) where 𝑞 is the sampling probability of a single record

in a single round. Let

𝛼G (_ |𝑞) = logmax(𝐸1 (_, b, 𝑞), 𝐸2 (_, b, 𝑞)) (2)

where

𝐸1 (_, b, 𝑞) =
∫
R
[0 (𝑥 |b, 𝑞) ·

(
[0 (𝑥 |b, 𝑞)
[1 (𝑥 |b, 𝑞)

)_
𝑑𝑥

and

𝐸2 (_, b, 𝑞) =
∫
R
[1 (𝑥 |b, 𝑞) ·

(
[1 (𝑥 |b, 𝑞)
[0 (𝑥 |b, 𝑞)

)_
𝑑𝑥

Theorem 3.1 (Privacy of FL-SIGN-DP). For any 𝛿 > 0, FL-SIGN-
DP is (min_ (𝑇cl ·𝛼G (_ |𝑞1)+𝑇cl · (𝑇gd−1) ·𝛼G (_ |𝑞2)−log𝛿)/_, 𝛿)-DP,
where 𝛼G is defined in Eq. (2), 𝑞1 =

𝐶 · |B |
min𝑘 |𝐷𝑘 | , and 𝑞2 =

|B |
min𝑘 |𝐷𝑘 | .



Privacy-Preserving and Bandwidth-Efficient Federated Learning: An Application to In-Hospital Mortality Prediction

FL-SIGN 𝑂

(
1√

𝑇cl𝐶𝑁

)
FL-SIGN-DP 𝑂

(
𝑛𝑆𝜎√
𝑇cl𝐶𝑁

)
Table 1: Convergence rates when 𝛾 = 𝑂 (1/

√
𝑇cl),𝑇gd = 1, |B| =

𝑇cl

The proof follows from Theorem 2 in [2] and the fact that a

record is sampled in the very first SGD iteration of every round

if (1) the corresponding client is sampled, which has a probability

of 𝐶 , and (2) the batch sampled locally at this client contains the

record, which has a probability of at most
|B |

min𝑘 |𝐷𝑘 | . However, the
adaptive composition of consecutive SGD iterations are considered

where the output of a single iteration depends on the output of

the previous iterations. Therefore, the sampling probability for the

very first batch is 𝑞1 =
𝐶 · |B |

min𝑘 |𝐷𝑘 | , while the sampling probability

for every subsequent SGD iteration within the same round is at

most 𝑞2 =
|B |

min𝑘 |𝐷𝑘 | conditioned on the result of the first iteration

(see the proof of Theorem 2 in [2]).

Given a fixed value of 𝛿 , Y is computed numerically as in [2, 30].

3.2.4 Convergence analysis. In Appendix A.1, we analytically com-

pute that FL-SIGN-DP has a convergence rate of 𝑂

(
𝑛𝑆𝜎√
𝑇cl𝐶𝑁

)
. Com-

pared to FL-SIGN (see Table 1), the convergence rate is increased

with a factor of 𝑛𝑆𝜎 which is attributed to the Gaussian noise and

can be considered as the “cost of privacy”.

4 EXPERIMENTAL RESULTS
The goal of this section is to evaluate the performance of our pro-

posed FL-SIGN-DP scheme on a realistic in-hospital mortality pre-

diction scenario. We aim at evaluating its performance with dif-

ferent levels of privacy (i.e. different values of 𝜖) and comparing it

with the performance of the following learning protocols:

• (Non-federated) CENTRALIZED training: The training data
of all hospitals are merged and a single model is trained on

this merged data without any privacy guarantee.

• FL-STANDARD is described in Section 2.1.

• FL-SIGN is described in Section 3.1.

• FL-STANDARD-DP is specified in Alg. 5. It has the same

privacy guarantee as FL-SIGN-DP
2
but is less bandwith effi-

cient. Specifically, unlike in FL-SIGN-DP, each client sends

the original (non-quantized) update vector s𝑘𝑡 = w𝑘
𝑡 −w𝑘

𝑡−1
to the server, which computes the model update as w𝑡 =

w𝑡−1 + 1

|K |

(∑
𝑘 s𝑘𝑡

)
. Both FL-SIGN-DP and FL-STANDARD-

DP use downsampling (in Alg. 7) to create batches.

In order to improve the reproducibility of our results, we pub-

lished all the code used in our experiments
3
.

2
the privacy analysis in Section 3.2.3 also applies to FL-STANDARD-DP

3
https://github.com/raouf-kerkouche/Privacy-preserving-and-Bandwith-Efficient-

Federated-Learning-An-Application-to-In-Hospital-Mortality

4.1 The In-hospital Mortality Prediction
Scenario

The ability to accurately predict the risks in the patient’s perspec-

tives of evolution is a crucial prerequisite in order to adapt the care

that certain patients receive [18].

We consider the scenario where several hospitals are collaborat-

ing to train models for in-hospital mortality prediction using our

Federated Learning schemes. This well-studied real-world problem

consists in trying to precisely identify the patients who are at risk

of dying from complications during their hospital stay [5, 18, 36].

As commonly found in the literature [18], for such predictions, we

focus on hospital admissions of adults hospitalized for at least 3

days, excluding elective admissions.

4.2 The Premier Healthcare Database
We used EHR data from the Premier healthcare database

4
which is

one of the largest clinical databases in the United States, collecting

information from millions of patients over a period of 12 months

from 415 hospitals in the USA [18]. These hospitals are supposedly

representative of the United States hospital experience [18]. Each

hospital in the database provides discharge files that are dated

records of all billable items (including therapeutic and diagnostic

procedures, medication, and laboratory usage) which are all linked

to a given patient’s admission [18, 24].

The initial snapshot of the database used in our work (before

pre-processing step) comprises the EHR data of 1,271,733 hospital

admissions. Electronic Health Record (EHR) is a digital version of a

patient’s paper chart readily available in hospitals. For developing

supervised learning and specifically deep learning models, we focus

on a specific set of features from EHR data. The features of interest

that capture the patients information are summarized in Table 2.

There is a total of 24,428 features per patient, mainly due to the

variety of drugs possibly served.

The Medication regimen complexity index (MRCI) [26] is an ag-

gregate score computed from a total of 65 items, whose purpose is

to indicate the complexity of the patient’s situation. The minimum

MRCI score for a patient is 1.5, which represents a single tablet or

capsule taken once a day as needed (single medication). However

the maximum is not defined since the number of medications in-

creases the score [26]. In our case, after statistical analysis of our

dataset, we consider the MRCI score as ranging from 2 to 60.

Most real datasets like ours are generally imbalanced with a

skewed distribution between the classes. In our case, the positive

cases (patients who die during their hospital stay) represent only

3% of all patients. Table 3 gives more details about this distribution

after the pre-processing step which is discussed in 4.3.1.

4.3 Data pre-processing & experimental setup
This section describes the experimental setting which is used to

evaluate the accuracy and the privacy of our proposals.

4.3.1 Preprocessing.

(1) Features normalization: we extract from the dataset the

values of each feature represented in Table 2. For gender, we

4
https://www.premierinc.com/newsroom/education/premier-healthcare-database-

whitepaper

https://github.com/raouf-kerkouche/Privacy-preserving-and-Bandwith-Efficient-Federated-Learning-An-Application-to-In-Hospital-Mortality
https://github.com/raouf-kerkouche/Privacy-preserving-and-Bandwith-Efficient-Federated-Learning-An-Application-to-In-Hospital-Mortality
https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
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Table 2: Descriptions of features

Features Descriptions
Age Value in the range of 15 and 89

Gender Male, Female or Unknown

Admission type Emergency, Urgent, Trauma Center: visits to a trauma center/hospital or Unknown

MRCI Medication regimen complexity index score (ranging from 2 to 60)

Drugs and ICD9 codes

Drugs given to the patient on the 1
𝑠𝑡

day of hospitalization. The ICD9 codes [16] are composed

of procedures and diagnosis codes, the first gives details about the medical procedures performed

on the patient and the second about the doctor’s diagnosis of the patient. There is a total of 24,419

possible drugs and ICD9 codes.

Table 3: Number of instances for our case study.

Data Positive cases Negative cases Ratio Total

Train 30,775 947,152 3.15% 977,927

Test 7,891 236,736 3.23% 244,627

Table 4: Statistics on the size of the training and testing data
over all the clients

Data Min Max Mean Std

Train 804 12,447 3,114.42 1,913.39

Test 201 3,112 779.07 478.39

use one-hot encoding: Male, Female and Unknown. Similarly,

for admission type we use 4 features: Emergency, Urgent,

Trauma Center, and Unknown
5
. For drugs, we extract 24,419

features which correspond to the different drugs (name and

dosage). A given patient receives only a few of the possible

drugs served, resulting in a very sparse patient’s record. We

use a MinMax normalization for age and MRCI in order to

rescale the values of these features between 0 and 1 (using

MinMaxScaler class of scikit-learn
6
). The labels that we con-

sider are boolean: true means that the patient died during

his hospital stay while false means she survived.

(2) Hospitals filtering: The dataset contains 415 hospitals,

however, we choose to consider only hospitals with at least

1,000 patients, which results at the end in 314 hospitals. The

reason is to have enough data per hospital for both training

and testing. We split randomly the dataset of each hospital

into disjoint training and testing data (80% and 20% respec-

tively). We merge the test data of all hospitals for the evalu-

ation, which we consider fairer than averaging the metrics

over all the clients (hospitals). The final dataset for testing

contains 244,627 patients, with 7,891 deceased patients and

236,736 non-deceased patients (see Table 3). The statistics

on the size of the clients’ dataset are depicted in Table 4.

(3) Patients filtering: We consider patient and drug informa-

tion of the first day at the hospital so that we can make pre-

dictions 24 hours after admission (as commonly found in the

literature [18, 36]). We filter out the pregnant and new-born

5
https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-

ffs

6
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

patients because the medication types and admission ser-

vices are not the same for theses two categories of patients.

Our model prediction is built without patients’ historical

medical data. This has the advantage to require minimum

patient’s information and to work for new patients.

4.3.2 Imbalanced data. The dataset of each hospital is imbalanced

because the proportion of patients that leave the hospital alive is,

fortunately, much larger than in-hospital dead patients. To deal with

this well-known problem, a standard solution is to use theWeighted

loss function technique or different sampling techniques [19, 31].

In [25, 41] the authors compare empirically the performance of the

weighted loss technique and the sampling techniques, however, they

were not able to define a clear winner as the results differ for each

dataset. In our case, weighted loss
7
outperforms downsampling

8

technique with FL-STANDARD and FL-SIGN.

However, weighting the loss function results in very inaccurate

models with Differential Privacy. Indeed, the gradients of the under-

represented class (dead patients) are boosted and are therefore

larger than the gradients of the other class. The larger the gap

between the gradients of the two classes, themore difficult to choose

a single clipping threshold 𝑆 to guarantee Differential Privacy. In

particular, if 𝑆 is calibrated to large gradients (i.e., that of samples

from the under-represented class), the added Gaussian noise, whose

variance is 𝑆2𝜎2, will also be large yielding poor model accuracy.

On the other hand, if 𝑆 is calibrated to the small gradients (i.e., that

of samples from the over-represented class), then samples from the

under-represented class will have very small impact on the training

which eventually also results in weak model accuracy (the model

will be biased towards the majority class).

Instead, as it is described in Section 3.2, we use downsampling

[19, 31] which does not require re-weighting the loss and hence

overcomes the above artifact caused by clipping (see Alg. 7 for

more details). We used downsampling in our experiments with all

differentially private learning protocols (FL-STANDARD-DP and

FL-SIGN-DP) in Section 4.4
9
.

4.3.3 Model architecture. As in [5], we use a fully connected neural
network model with the following architecture: two hidden layers

of 200 units, which use a ReLU activation function followed by an

output layer of 1 unit with sigmoid activation function and a binary

7
https://scikit-learn.org/stable/modules/generated/sklearn.utils

.class_weight.compute_class_weight.html

8
oversampling is not considered because of the privacy constraint.

9
We report only the results of the best sampling technique for each scheme (see Table 5

for details).

https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
https://www.resdac.org/cms-data/variables/claim-inpatient-admission-type-code-ffs
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
https://scikit-learn.org/stable/modules/generated/sklearn.utils.class_weight.compute_class_weight.html
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Table 5: Parameter settings.𝑇cl is the number of federated runs,𝑇gd is the number of gradient descent iterations per federated

run. 𝑇gd = 𝐸𝑝𝑜𝑐ℎ𝑠 · |𝐷𝑘 |
|B | for client 𝑘 in federated learning, where 𝐸𝑝𝑜𝑐ℎ𝑠 is fixed for all clients.

Algorithms Parameters

FL-SIGN-DP 𝑁 = 314; 𝐶 = 3/314; |B| = 300; 𝐷𝑃𝑆𝐺𝐷 ([ = 0.05); 𝑆 = 2; 𝑇cl = 300; 𝑇gd = 1; 𝛾 = 0.005; with downsampling

FL-STANDARD-DP 𝑁 = 314; 𝐶 = 3/314; |B| = 300; 𝐷𝑃𝑆𝐺𝐷 ([ = 0.05); 𝑆 = 2; 𝑇cl = 300; 𝑇gd = 1; with downsampling

FL-STANDARD 𝑁 = 314; 𝐶 = 3/314; |B| = 100; 𝑆𝐺𝐷 ([ = 0.01); 𝐸𝑝𝑜𝑐ℎ𝑠 = 5; 𝑇cl = 300; with weighted loss function

FL-SIGN 𝑁 = 314; 𝐶 = 3/314; |B| = |𝐷𝑘 |; 𝑆𝐺𝐷 ([ = 0.01); 𝐸𝑝𝑜𝑐ℎ𝑠 = 5; 𝑇cl = 300; 𝑇gd = 5; 𝛾 = 0.001; with weighted loss function

CENRALIZED |𝐷 | = 977927; |B| = 100; 𝑆𝐺𝐷 ([ = 0.01); 𝐸𝑝𝑜𝑐ℎ𝑠 = 300; with weighted loss function

cross entropy loss function. This results in 4,926,201 parameters in

total. The hyperparameters used by each of the considered schemes

are summarized in Table 5.

4.3.4 Computational environment. Our experiments were per-

formed on a server running Ubuntu 18.04 LTS equipped with a

Intel(R) Xeon(R) Silver 4114 CPU@ 2.20GHz, 192GB RAM, and two

NVIDIA Quadro P5000 GPU card of 16 Go each. We use Keras 2.2.0

[13] with a TensorFlow backend 1.12.0 [1] and NumPy 1.14.3 [34] to

implement our models and experiments. We use Python 3.6.5 and

our code runs on a Docker container to simplify reproducibility.

4.3.5 Performance Metrics. We use the following metrics:

• Balanced accuracy [10] [7] is computed as 1/2 · ( TPP +
TN
N ) =

TPR +TNR
2

and is mainly used with imbalanced data. Here,

TPR is the True Positive Rate and TNR is the True Negative
Rate; which is calculated as: TPR = TP

P and TNR = TN
N ,

where P and N are the number of positive and negative

instances, respectively, and TP and TN are the number of

true positive and true negative instances. We note that tradi-

tional (“non-balanced”) accuracy metrics such as
TP +TN
P +N can

be misleading for very imbalanced data [3]: in our dataset,

the minority class has only 3% of all the training samples

(see Table 3), which means that a biased (and totally useless)

model always predicting the majority class would have a

(non-balanced) accuracy of 97%.

• The Area under the receiver operating characteristic curve [32]
(AuROC ) is also a frequently used accuracy metric [6, 18,

35]. The ROC curve is calculated by varying the prediction

threshold from 1 to 0, when TPR and FPR are calculated at

each threshold. The area under this curve is then used to

measure the quality of the predictions. A random guess has

an AuROC value of 0.5, whereas a perfect prediction has the

largest AuROC value of 1.

4.3.6 Hyperparameters selection. For each scheme, [ was tuned

from 0.01 to 0.09 with an increment value of 0.01.

The batch |B| is selected from [50,100,400,800,|𝐷𝑘 |], where
client 𝑘’s data size |𝐷𝑘 | differs for each client; the number of

epochs 𝐸𝑝𝑜𝑐ℎ𝑠 is selected from [1,5,10,15,20] for each federated

scheme, and from [100,150,200,250,300,350,400] for the centralized

case. For the federated schemes, we have an additional parameter

which is the number of global rounds 𝑇cl, which is selected from

[100,150,200,250,300,350,400]. The sensitivity 𝑆 was selected from

the reasonable set of [0.5,1,1.5,2,2.5,3]. As in [21], we set 𝛾 to 0.001

for the non-private scheme FL-SIGN, and we increase it to 0.005 for

the private extension FL-SIGN-DP.

The number of hospitals used in the federated schemes are se-

lected from [1,2,3,4,5]. We have to choose one which is large enough

to not slow down the convergence and at the same time small

enough in order to not deteriorate privacy by increasing the sam-

pling probability, which is one of the principal parameter used in

the moments accountant method [2, 30] to compute 𝜖 .

The values of 𝜎 can be 1.08, 0.81, 0.63, such that we can reach

an 𝜖 budget of 1, 2, 4 respectively, after 𝑇cl = 300 rounds, which is

needed for convergence.

We reported for each scheme in Table 5 the best parameters and

also the best technique used to handle the imbalanced data problem.

4.3.7 Evaluation Method. We perform 𝑘-fold cross validation with

𝑘 = 5; first, we split randomly the dataset of each hospital into

disjoint training and testing data (80% and 20% respectively). An

entire federated run is executed with this split, and all the metrics

are evaluated in every round on the union of all clients’ testing

data. All metric values of the round with the best balanced metric

are recorded. The whole run is repeated 4 times each with a new

random split of training and testing data, and the minimum and

maximum of the recorded performance metrics over all the 5 runs

are reported.

4.4 Results
The results are summarized in Table 6. A single federated run is

composed of 300 rounds, and the best and the worst value of each

performance metric over the 5 federated runs are reported. In each

round, 3 hospitals are selected randomly for aggregation. Three

privacy levels are consideredwith FL-SIGN-DP and FL-STANDARD-

DP: Y = 1, 2, 4 each with 𝛿 = 1/max𝑗 |𝐷 𝑗 | ≤ 1.3 · 10−5. These
values of Y requires to add Gaussian noise to the gradients with

𝜎 = 1.08, 0.81, 0.63, respectively10.

We make several observations:

• As mentioned in [14], the performance of FL-STANDARD

and CENTRALIZED are close: the balanced accuracy is 0.74
and 0.77, respectively, which confirms experimentally that

Federated Learning is a viable approach for our medical

application. These results are consistent with the results re-

ported in [18], which uses the same dataset with the same

features to train a logistic regression model in a centralized

manner (see results of 𝐷1, Table II, in [18]). For example, Au-
ROC is 77.2% − 77.7% in [18], whereas we get an AuROC of

10
computed numerically based on [2, 30]
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Privacy Algorithms

Performance
AuROC Balanced Accuracy

Y = 1

FL-SIGN-DP (0.67,0.68) (0.63,0.64)

FL-STANDARD-DP (0.65,0.68) (0.61,0.63)

Y = 2

FL-SIGN-DP (0.68,0.71) (0.64,0.66)

FL-STANDARD-DP (0.68,0.69) (0.62,0.64)

Y = 4

FL-SIGN-DP (0.71,0.72) (0.65,0.66)

FL-STANDARD-DP (0.70,0.72) (0.64,0.66)

N/A

FL-SIGN (0.76,0.77) (0.68,0.70)

FL-STANDARD (0.79,0.81) (0.73,0.74)

CENTRALIZED (0.82,0.84) (0.76,0.77)

Table 6: Summary of results. The worst and best value of each metric over 5 federated runs are reported.

82% − 84%, 79% − 81% and 76% − 77% with CENTRALIZED,

FL-STANDARD and FL-SIGN, respectively.

• The performance of FL-SIGN is slightly worse than the

performance of FL-STANDARD; the balanced accuracy is

0.70 for FL-SIGN and 0.74 for FL-STANDARD. However,

FL-SIGN and FL-SIGN-DP reduce the bandwidth consump-

tion by a factor of 32. Table 7 shows that each client sends

only 1.76 Megabytes with FL-SIGN and FL-SIGN-DP, while

56.48 Megabytes are sent with FL-STANDARD and FL-

STANDARD-DP. The bandwidth consumption is calculated

by measuring the average number of bits sent by a client to

the server over the rounds when the client is selected for

aggregation. This is computed as (𝐶 · 𝑇cl · model_size) for
FL-SIGN and FL-SIGN-DP, and (32 ·𝐶 ·𝑇cl ·model_size) for
FL-STANDARD and FL-STANDARD-DP, where model_size
is the number of model parameters (i.e., 4,926,201).

• FL-SIGN-DP performs very similarly to FL-STANDARD-DP,

which means that bandwidth efficiency has no real cost

when Differential Privacy is also applied. In fact, the perfor-

mance gap between FL-STANDARD and FL-STANDARD-DP

is larger than between FL-SIGN and FL-SIGN-DP especially

with stronger privacy guarantee (i.e., smaller Y). This shows

that taking the sign of the noisy update and then the median

of the noisy signs over all clients on the server (in Line 8

of Alg.4) is more robust against perturbation than taking

the simple average of the noisy update vectors (in Line 8 of

Alg. 5).

• The results show in general that strong privacy protection

can be provided at the cost of a relatively small performance

degradation. In fact, the balanced accuracy drops by only 10%

when Y = 1with FL-SIGN-DP. Furthermore, the performance

degrades very smoothly as the value of Y decreases (i.e. as

the privacy guarantee gets stronger): the balanced accuracy

of FL-SIGN-DP is 0.66 for Y = 4, and only drops to 0.64when
Y = 1.

5 RELATED WORK
This section describes the related work to our proposal. We start

by presenting the work related to the use of machine learning

in medical applications. We then summarize the work related to

differentially private federated learning. Finally, we consider the

Table 7: Average bandwidth consumption from a client to
the server.

Scheme Bandwidth consumption (Megabytes)

FL-SIGN and

FL-SIGN-DP

1.76

FL-STANDARD and

FL-STANDARD-DP

56.48

work related to the problem of bandwidth reduction in Federated

Learning.

5.1 Medical prediction
The paper [5] investigates possibilities offered by the use of Deep

Learning and Electronic Health Record (EHR) in order to provide

and improve the quality of end-of-life care for hospitalized patients.

Having the information about the patients one year before the date

of the prediction, the authors define four uneven slices windows.

The information collected during the slices windows are used as

features to train a model. The model is then used to predict all

causes of mortality within a period 3–12 month after the date of the

prediction. The authors of [36] also use predictive deep learning

models with EHR data (provided by two hospitals) for tasks such

as predicting inhospital mortality, 30-day unplanned readmission,

prolonged length of stay and all of a patient’s final discharge diag-

noses. The EHR data of each hospital are used separately, and two

personalized models are trained. The EHR data include the data of

adult patients who are hospitalized for at least 24 hours.

In [28], a binary logistic regression analysis is performed in order

to predict which patients will need Palliative Care Needs (PCNs)

based on six risk factors which are: cancer, metastases, age, absence

of relatives, liver cirrhosis, and high level of care at admission.

During the discharge, the treating physician had to report if the

patient had PCNs or not.

The paper [18] develops interpretable models for predicting the

risk of complications during hospital stays. The predictive models

are based on stacked logistic regressions specifically designed to

leverage the evolution of the drugs served during hospital stays.

The models can scale with very large volumes of EHR data but they

do not consider privacy-related issues.
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The paper [14] proposes to use Federated learning with DP,

more precisely, it uses objective perturbation [11][12]. An empiri-

cal evaluation using two real-world health datasets is performed.

However, using objective perturbation implies to deal with convex

optimization problems. Hence, logistic regression, perceptron and

SVM models are used for the learning tasks. The paper highlights

also that the performance of FL without DP are close to the perfor-

mance of the traditional learning protocol, where the data is shared

and centralized in the same place for the training.

5.2 Bandwidth Optimization in Federated
Learning

Different quantization methods have been proposed to save the

bandwidth and reduce the communication costs in federated learn-

ing. They can be divided into two main groups: unbiased and biased

methods. The unbiased approximation techniques use probabilistic

quantization schemes to compress the stochastic gradient and at-

tempt to approximate the true gradient value as much as possible

[4][42][40][22]. However, biased approximations of the stochastic

gradient can still guarantee convergence both in theory and prac-

tice [8, 23, 37]. In signSGD [8], all the clients calculate the stochastic

gradient based on a single mini-batch and then send the sign vector

of this gradient to the server. The server calculates the aggregated

sign vector by taking the median (majority vote) and sends the

signs of the aggregated signs back to each client.

The main differences between our scheme (FL-SIGN) and

signSGD are as follows:

• FL-SIGN aims to train a common model that is distributed

to a random subset of all clients in every round. However, in

signSGD, all clients start with the same initialized common

model and the server sends the same aggregated model up-

date to every client at each round. Selecting only a random

subset of clients in each round has at least three benefits.

First, FL-SIGN becomes more robust against temporary node

failures. Second, FL-SIGN reduces the communication costs

upstream to the server. Finally, sampling boosts privacy due

to the uncertainty that a specific user’s or client’s data is

used for training or not.

• In FL-SIGN, each client can perform multiple SGD iterations

locally using multiple mini-batches before computing the

model update. In contrast, signSGD always performs one

local SGD iteration with a single mini-batch at every client.

• As all the clients participate at each round in signSGD, the

server only transfers the sign of the aggregated signs to

the clients in every round. Therefore, only a single bit is

transferred per parameter downstream to the clients. In FL-

SIGN, the whole model is transferred but only to a random

subset of clients.

5.3 Differentially Private Federated Learning
Similarly to our FL-SIGN-DP algorithm, another approach [39]

also uses DPSGD [2] in order to hide the record of each client’s

dataset, but the noise is generated in a distributed manner, that is,

untrusted server is assumed. Indeed, the noise is added by each

client during the training, and then the noisy update is sent to the

server. The sum of these noisy updates is sufficiently noised to

provide differential privacy. To protect individual updates which

are not differentially private, homomorphic encryption is used to

guarantee that the adversary can only access the aggregated update

which is sufficiently noised. Notice that the noise can be generated

distributively, because each client performs only a single mini-

batch to compute their model update (i.e.,𝑇gd = 1). By contrast, our

approach (FL-SIGN-DP) works even if𝑇gd > 1 at the cost of adding

larger magnitude of noise and sends only signs for aggregation.

The paper [20] proposed a solution which faithfully follows the

SignSGD protocol but is not based on federated learning protocol.

The authors use local DP to guarantee client-level-DP. However,

it is widely accepted that the large noise needed for local DP de-

creases accuracy significantly, as the aggregation of the DP updates

increases the noise variance. The paper [21] adapts the SignSGD

protocol to federated learning for a client-level-DP guarantee. The

proposed scheme adds noise in a distributed manner such that the

final noise after the aggregation corresponds to the minimum noise

needed to ensure DP. However, their proposal, that uses a discrete

Gaussian mechanism and needs several bits per parameter, is less

bandwidth efficient than [20] that only sends one bit per parameter.

Our solution is based on [21] but considers record-level guar-

antee instead of client-level guarantee. It therefore requires less

perturbations and reduces bandwidth by sending only one bit per

parameter.

Differential Private Federated Machine Learning has been stud-

ied in the context of medical applications to provide client-level

privacy guarantee [35] or record-level privacy guarantee [6, 15].

Our solution improves the state of the art as it provides record-level

privacy guarantee and optimizes bandwidth efficiency by sending

only one bit per parameter. Furthermore, as opposed to most pub-

lished papers that use public, often synthetic, datasets with limited

size, we evaluated our scheme using a large cohort of real-world

data.

6 ETHICAL CONSIDERATIONS
Our study was approved by our Institutional Review Board (IRB)

process before any research activity began. The EHR dataset is

stored on a server whose security was audited by Inria security

teams.

7 CONCLUSIONS
Real-world data are generally highly imbalanced, our solution aims

to handle this well-known problem while it provides both band-

width efficiency and differentially private guarantee. We experi-

mentally evaluate the performance of our solution for in-hospital

mortality prediction using the Premier Healthcare database, con-

taining about onemillion records of patients.We consider a scenario

where 314 hospitals are collaborating to train, using our Federated

Learning scheme, a prediction model without exchanging any of

their patients’ data. Our scheme guarantees that no internal or

external adversary that has access to the final model, intermediate

updates or even all the messages that are exchanged during the

training phase can infer any information about any of the patient

data that were used by each hospital.

The accuracy performance results are very encouraging. They

show in general that strong privacy protection can be provided at
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the cost of a relatively small performance degradation. Furthermore, 
our scheme reduces the bandwidth consumption by a factor of 32 
compared to standard federated learning schemes, reducing it from 
56.48 to 1.76 Megabytes.

We believe that this paper reports the first large-scale experi-
mental assessment in favor of using privacy-preserving federated 
learning for the purpose of in-hospital mortality prediction. We 
demonstrate that it is possible to benefit from the power of machine 
learning without sacrificing the privacy of patients. Hospitals, and 
other medical institutions, are reluctant to collaborate because they 
often consider their patient medical records as their own intellec-
tual properties. Our scheme protects these intellectual properties 
of participating entities on record-level.
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A APPENDIX
A.1 Convergence Proofs
The convergence proof of FL-SIGN can be found in [9], whereas

the proof of FL-SIGN-DP is a simple adaptation of Theorem 2 from

[9]. Here we outline only the main deviations from the proof of

that theorem.

Assumptions:
(1) Lower bound: For all 𝑥 and some constant 𝑓 ∗, 𝑓 (𝑥) ≥ 𝑓 ∗,

where 𝑓 denotes the loss/objective function.

(2) Smoothness: Let 𝑔(𝑥) denote the gradient of the objective

function 𝑓 evaluated at 𝑥 . Then, for all 𝑥,𝑦 and some non-

negative constant L = (𝐿1, 𝐿2, . . . , 𝐿𝑛),

|𝑓 (𝑦) − [𝑓 (𝑥) + 𝑔(𝑥)T (𝑦 − 𝑥)] | ≤ 1/2
∑
𝑖

𝐿𝑖 (𝑦𝑖 − 𝑥𝑖 )2

(3) Variance bound: Upon receiving query 𝑥 ∈ R𝑛 , the stochastic
gradient oracle gives us an independent, unbiased estimate

𝑔 that has bounded variance per coordinate: E[𝑔(𝑥)] = 𝑔(𝑥),
E[(𝑔(𝑥)𝑖 − 𝑔(𝑥)𝑖 )2] ≤ 𝜏2

𝑖
for a vector of non-negative con-

stants 𝝉 = (𝜏1, 𝜏2, . . . , 𝜏𝑛).
(4) Unimodal, symmetric gradient noise: At any given point 𝑥 ,

each component of the stochastic gradient vector 𝑔(𝑥) has
unimodal distribution that is also symmetric about the mean.

Note that adding extra Gaussian noise to each gradient compo-

nent for the purpose of differential privacy will not violate Assump-

tion 4.

Theorem A.1. If |B| = 𝑇cl, 𝑇gd = 1, and 𝛾 =

√
𝑓0−𝑓∗
| |L | |1𝑇cl , then

1

𝑇cl

𝑇cl−1∑
𝑡=0

E | |𝑔𝑡 | |1 ≤
2

√
𝑇cl

(
| |𝝉 | |1 + 𝑛𝑆𝜎√

𝐶𝑁
+
√
| |L | |1 (𝑓0 − 𝑓 ∗)

)
Proof. The primary focus of the proof is to bound the probabil-

ity that a client computes the sign of a parameter update correctly.

Let𝑀 = 𝐶𝑁 . As in [9], let 𝑍𝑖 ∈ [0, 𝑀] denote the number of correct

sign bits received by the aggregator for parameter 𝑖 , and 𝑝 denotes

the probability that a honest client computes the correct bit. Let

𝜔 = 𝑝 − 1

2
. According to Theorem 2 in [9],

P [𝑍𝑖 ≤ 𝑀/2] ≤
√
E[(𝑔𝑖 − 𝑔𝑖 )2]√

𝑀 |𝑔𝑖 |
where 𝑔 is the noisy stochastic gradient. Observe that 𝑔 has two

sources of randomness; (1) the stochasticity of the sampling mech-

anism which is modelled by the stochastic gradient oracle (see

Assumption 3), and (2) the Gaussian noise that is introduced in

order to guarantee DP. Importantly, these are independent sources

of randomness. Therefore, the probability that a vote fails for the

𝑖𝑡ℎ parameter is bounded as

P [𝑍𝑖 ≤ 𝑀/2] ≤
√
E[(𝑔𝑖 − 𝑔𝑖 )2]√

𝑀 |𝑔𝑖 |

≤

√
𝜏2
𝑖
+ 𝑆2𝜎2

√
𝑀 |𝑔𝑖 |

(by independence)

≤ 𝜏𝑖 + 𝑆𝜎√
𝑀 |𝑔𝑖 |

where the second inequality follows from Assumption 3 and the

fact that the variance of the Gaussian noise is 𝑆2𝜎 . The rest of the

derivation is identical to the proof of Theorem 2 in [9].
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