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The ever-increasing volume of vehicular data has enabled different service providers to access and 
monetize in-vehicle network data of millions of drivers. However, such data often carry personal or even 
potentially sensitive information, and therefore service providers either need to ask for drivers’ consent 
or anonymize such data in order to comply with data protection regulations. In this paper, we show that 
both fine-grained consent control as well as the adequate anonymization of in-network vehicular data are 
very challenging. First, by exploiting that in-vehicle sensor measurements are inherently interdependent, 
we are able to effectively i) re-identify a driver even from the raw, unprocessed CAN data with 97% 
accuracy, and ii) reconstruct the vehicle’s complete location trajectory knowing only its speed and 
steering wheel position. Since such signal interdependencies are hard to identify even for data controllers, 
drivers’ consent will arguably not be informed and hence may become invalid. Second, we show that the 
non-systematic application of different standard anonymization techniques (e.g., aggregation, suppression, 
signal distortion) often results in volatile, empirical privacy guarantees to the population as a whole but 
fails to provide a strong, worst-case privacy guarantee to every single individual. Therefore, we advocate 
the application of principled privacy models (such as Differential Privacy) to anonymize data with strong 
worst-case guarantee.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The volume of data generated and collected by networked in-
formation systems is already staggering and ever-increasing. With 
the advent of data analytics and machine learning, this data in-
flow enables thousands of data-driven services which make our 
lives easier everyday. On one hand, the modern vehicle is such a 
networked information system, generating abundant data both on 
its in-vehicle network and, when V2X-enabled, towards other vehi-
cles and the smart infrastructure. On the other hand, a prominent 
service category is, e.g., location-based services which help us nav-
igate efficiently, hail a ride swiftly and cheaply, and get informed 
on potentially relevant businesses nearby. However, such services 
do not come for free: more often than not we pay for them with 
our personal data.

When service-enabling data is personal, the data controller (and 
data processors involved) must observe regional and national data 
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protection regulations; in Europe this points to the European Gen-
eral Data Protection Regulation or the GDPR [1]. While we do not 
intend to introduce GDPR fully in this paper, it is essential to out-
line three of its concepts to facilitate comprehension. First, GDPR 
demands legal basis for data controllers to use personal data: the 
primary way to achieve this is getting the informed consent of the 
data subject. Second, the term “personal data” is defined as “any 
information relating to an identified or identifiable natural per-
son; an identifiable natural person is one who can be identified, 
directly or indirectly.” Singling out is a fundamental method ex-
plicitly mentioned to identify a person in data; only data that do 
not allow singling out the record of any individual may be exempt 
from the GDPR [2]. Third, certain personal data is deemed sen-
sitive, and thus enjoy even stronger protection: personal data re-
vealing racial or ethnic origin, political opinions, religious or philo-
sophical beliefs; trade-union membership; genetic data, biometric 
data processed solely to identify a human being; health-related 
data; and data concerning a person’s sex life or sexual orienta-
tion.

Vehicular data often directly carries personal or even potentially 
sensitive information such as location data, heart rate, or driver 
fatigue among others. Indeed, four spatio-temporal data points 
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of an individual’s daily trajectory identify 95% of all individuals 
uniquely [3]; this facilitates singling out. Also, as evidenced by the 
publicly released NYC taxi dataset, individual trips might allow the 
inference of the driver’s (or the passenger’s) religious beliefs or 
health status1; these are sensitive personal attributes. Moreover, 
the Strava incident2 showed us that location data create patterns 
on the aggregate that can still give away an individual’s personal 
information.

Meanwhile, data collection through the in-vehicle network, no-
tably the CAN bus, is ongoing by OEMs (Original Equipment Man-
ufacturers) for maintenance, recall, and, increasingly, monetiza-
tion purposes. Therefore, even third-party service providers can 
get access to that data; vehicle data hubs collect and standardize 
such data and sell it for applications including insurance,3 traffic 
management, electric vehicle infrastructure planning, fleet man-
agement, advertising, mapping, city planning, and location intelli-
gence.4 The vehicle data market is predicted to be worth between 
300 billion and 800 billion USD by 2030.5 However, if CAN data i) 
reveals the trajectory and location of the vehicle and its passen-
gers and/or ii) enables singling out a specific driver, it should be 
treated as personal data; in this case the GDPR should be in full 
effect. Adding fuel to the fire, CAN data is often collected without 
the informed consent of the owner/driver and without even the al-
ternative of opting out. Such a hypothetical carries great weight: 
for handling private data, GDPR defines strict requirements for 
data controllers and processors (reasonable technical and organi-
zational security safeguards, Art. 24 and 32 GDPR, in some cases 
data protection impact assessment, Art. 35 GDPR) and rights for 
data subjects (right to access, right to erasure, right to object, as 
per Art. 12-23 GDPR). Satisfying these requirements carry a sub-
stantial cost and might even perturb the century-old process of 
how cars are sold. Moreover, not meeting these requirements can 
result in hefty fines, evidenced by much publicized cases in other 
domains.6

To avoid potential repercussions of data breaches and le-
gal non-compliance, data controllers and processors either ap-
ply anonymization, or ask drivers’ consent in order to process 
their data. However, since vehicle data are composed of the fine-
grained measurements of a multitude of vehicular sensors, they 
are inherently high-dimensional, potentially unique to a driver, 
and therefore challenging to anonymize without significant util-
ity loss. Standard pseudonymization techniques that remove only 
direct identifiers but keep the sensor measurements intact gener-
ally do not work, and vehicular data are no exception.7 Moreover, 
the “ad-hoc” application of different standard anonymization tech-
niques, such as the aggregation or removal of apparently sensitive 
measurements, often results in volatile, empirical privacy guaran-
tees to the population as a whole but fails to provide a strong, 
worst-case privacy guarantee to every single individual; a specific 
requirement of privacy regulations. Indeed, as the measurements 
of different sensors are strongly correlated, we demonstrate later 
that removing some apparently sensitive measurements (e.g., GPS 
coordinates) may still allow their inference from the data of other 

1 https://fpf .org /blog /implications -of -broad -data -collection -by-the -nyc -taxi -
limousine -commission/.

2 https://www.theguardian .com /world /2018 /jan /28 /fitness -tracking -app -gives -
away-location -of -secret -us -army-bases.

3 https://www.nationwide .com /personal /insurance /auto /discounts /smartride /
videos /overview5.

4 https://themarkup .org /the -breakdown /2022 /07 /27 /who -is -collecting -data -from -
your-car.

5 https://www.capgemini .com /insights /research -library /monetizing -vehicle -data/.
6 https://www.cnet .com /tech /gdpr-fines -the -biggest -privacy-sanctions -handed -

out -so -far/.
7 https://www.vice .com /en /article /4avagd /car-location -data -not -anonymous -

otonomo.

“proxy” sensors (e.g., steering wheel angle and speed), or the iden-
tification of the driver from the ensemble of all remaining sensors. 
This not only makes anonymization very difficult, but it also stifles 
fine-grained consent control which provides a common legal basis 
to process personal data if anonymization is not viable. However, 
data controllers (can) hardly explain the potential privacy implica-
tions of sharing such interdependent attributes which means that a 
driver’s consent will arguably not be informed and hence becomes 
invalid.

In this paper, we show exactly that indeed, analyzing CAN logs 
and using the combination of different sensor measurements make 
it possible to single out drivers and infer the trajectory of the ve-
hicle even if direct identifiers or precise GPS locations cannot be 
accessed. Specifically, our contribution is fourfold. First, we recon-
struct both short (microtracking) and long (macrotracking) driving 
routes (including destination) only from the speed, steering wheel 
position, and the starting location of the vehicle with high accu-
racy. Our approach is lightweight and provides larger reconstruc-
tion accuracy even for longer trajectories (above 1000 meters) than 
what has been reported before. Second, we re-identify the driver 
of a vehicle from the contents of recorded CAN logs, either via re-
constructing signals or even using only raw data, which has not 
been considered before. We achieve an average re-identification 
accuracy of 97% which is comparable to state-of-the-art solutions 
relying on manually extracted signals. Third, we demonstrate that 
intuitive but ad hoc de-identification methods providing empirical 
average-case privacy guarantees cannot be relied on to transform 
CAN logs into anonymous data exempt from the GDPR [1], while 
still preserving meaningful utility. Last, we show how differential 
privacy, providing formal, worst-case privacy guarantees to each 
individual irrespective of a priori knowledge, may be utilized to 
release aggregated data implementing a viable operating point in 
the privacy-utility trade-off curve if the data to be released are ad-
equately large.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview on related research works. Section 3.1 describes 
the CAN protocol, its message format and our efforts to collect ade-
quate datasets. Section 3.2 introduces our method to extract mean-
ingful signals from CAN messages, thus enabling the rest of our 
experiments. Section 4 describes out attacker models. Section 5
shows how we can reconstruct both the short- and long-term tra-
jectory of a vehicle based on its CAN log. Section 6 explains our 
machine learning model that is able to re-identify drivers from 
CAN logs with high accuracy. Section 7 investigates multiple naive 
signal processing and statistical methods meant to provide defense 
against tracking and re-identification efforts, shows that these are 
ineffective for CAN data, and advocates for using the differential 
privacy framework as a viable solution. At last, Section 8 concludes 
our paper.

2. Related work

2.1. Driver re-identification from CAN data

Driver characterization based on CAN data has gathered sig-
nificant research interest from both the automotive and the data 
privacy domain. The common trait in these works is the presumed 
familiarity with the CAN protocol stack and the manufacturer-
specific communication matrix that maps raw CAN messages to 
sensible sensor signal readings. The latter information is not pub-
lic; it is usually attained in the framework of some research coop-
eration with the respective OEM.

Miyajima et al. [4] investigated driver characteristics when fol-
lowing another vehicle, where pedal operation patterns were mod-
eled using speech recognition methods. Sensor signals were col-
lected in both a driving simulator and a real vehicle. Using car-
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following patterns and spectral features of pedal operation signals 
authors achieved an identification rate of 89.6% for the simulator 
(12 drivers). For the field test, by only applying cepstral analy-
sis on pedal signals, the identification rate was down to 76.8% 
(276 drivers). Fugiglando et al. [5] developed a new method-
ology for near-real-time classification of driver behavior in un-
controlled environments, where 64 people drove 10 cars for a 
total of over 2000 driving trips without any type of predeter-
mined driving instructions. Despite their advanced use of un-
supervised machine learning techniques, authors conclude that 
clustering drivers based on their behavior remains a challenging 
problem.

Hallac et al. [6] discovered that driving maneuvers during turn-
ing exhibit personal traits that are promising regarding driver re-
identification. Wowo et al. [7] showed that choosing the right 
sub-maneuver can improve driver identification performance. Us-
ing the same dataset from Audi and its affiliates, Fugiglando et 
al. [8] showed that four behavioral traits, namely braking, turning, 
speeding and fuel efficiency could characterize drivers adequately 
well. They provided a (mostly theoretical) methodology to trim the 
vast CAN dataset, focusing on these traits.

Enev et al. authored a seminal paper [9] which makes use of 
mostly statistical features as an input for binary (one-vs-one) clas-
sification with regard to driving behavior. Driving the same car in 
a constrained parking lot setting and a longer but fixed route, the 
authors re-identified their 15 drivers with 100% accuracy. The au-
thors had access to all available sensor signals and their scaling 
and offset parameters from the manufacturer’s documentation. In 
[10], the authors employed Residual Convolutional Neural Network 
(RCNN), albeit on manually extracted signals.

In [11], the authors use machine learning models to identify 
new drivers that are different from the drivers in the training 
phase. Their solution does not require model retraining in the 
deployment phase. Zheng et al. [12] show that, besides driving 
patterns, contextual information (driving condition, vehicle type) 
also helps re-identification because such contextual features can 
be unique to a driver. Li et. [13] train models only using data 
collected from onboard sensors without accessing CAN data and 
only from the driver of interest. Their proposal is somewhat less 
accurate than closed-world models which rely on CAN data from 
all drivers. In [14], similarly to our re-identification model, a con-
volutional neural network (CNN) is used to identify drivers. The 
authors manually extract around 30 features from CAN data, ar-
range them into a matrix, and apply two dimensional CNN on 
this matrix. By contrast, our approach automatically considers ev-
ery possible feature and leverage signal correlation only between 
the most identifying signals. In [15], authors re-identify drivers as 
well as their genders using different machine learning models. Un-
like in our setting, drivers drove the same route and the models 
are trained on already extracted signals.

In a paper targeted at anomaly detection in in-vehicle net-
works [16], authors developed a greedy algorithm to split the mes-
sages into fields and to classify the fields into categories: constant, 
multi-value, and counter/sensor. Note that the algorithm does not 
distinguish between counters and sensor signals, and the seman-
tics of the signals are not interpreted. Thus, their results cannot be 
directly used for inferring driver behavior. Finally, we emphasize 
that driver re-identification (and as a matter of fact, also vehi-
cle trajectory reconstruction) is an attack on the driver’s privacy; 
therefore even advanced vehicular security mechanisms such as 
CAN intrusion detection/prevention systems [17] cannot discover 
or mitigate them. We refer the reader to Section 7 for potential 
countermeasures.

2.2. Reconstructing vehicle trajectories

The automotive location privacy problem has been researched 
for well over a decade. A significant boost to this field was the 
emergence of vehicle usage-based services such as new insur-
ance constructions. These services offer a lower cost for users who 
shared their vehicular data while promising user privacy via only 
collecting driving behavior information and not location data. Un-
fortunately, Dewri et al. [18] already showed that the collection 
of vehicle parameters can reveal the driving destination without 
a GPS signal. In the following years multiple papers showed that 
various types of vehicular data can be used to reconstruct driving 
traces partially, or completely. Gao et al. [19] showed that based on 
a starting position and the speed signal, their elastic pathing algo-
rithm could predict destinations with an error smaller than 500 m 
for 26% of the cases. This is significantly less accurate than our 
approach which has an error of 5-100 meters for endpoint recon-
struction (see Table 2).

Zhou et al. [20,21] used also only the starting position and the 
speed signal to reconstruct driving traces. Their approach combines 
these with additional knowledge about the environment, such as 
road conditions, real-time traffic, and even traffic regulations, to 
filter out the potential trace candidates. Results showed that the 
real route was in the top 10 candidate routes with 60% proba-
bility. Kaplun at al. [22] showed that without the detailed speed 
signal, it was also possible to reconstruct the trajectory with a high 
probability. They used cornering events, average speed, and total 
driving time for reconstructing trajectories. Waltereit et al. [23]
showed that based on the distance of each driving section and 
turning directions, it was possible to find the correct trajectory 
in a large area of a map without knowledge of starting point or 
destination. Our approach works with similar type of data, how-
ever, both the objective and the internal operation of our algorithm 
differ significantly. The authors in [23] assumed that the signals 
extracted from CAN messages are accurate and reconstructed route 
segments separately. However, as we show, signals are inherently 
erroneous which results in inaccurate reconstruction for longer tra-
jectories.

Pesé et al. proposed the RoCuMa algorithm for route identi-
fication based on only the steering wheel position in [24]. The 
algorithm first creates a road curvature database of the analyzed
city, and then tries to identify the curves during the trips. RoCuMa 
achieved over 70% accuracy in the most suitable regions, but was 
completely inefficient in others (e.g., Manhattan like grids). The 
problem RoCuMA tried to solve is similar to ours discussed in Sec-
tion 5.2, as the steering wheel position can be extracted from the 
CAN traffic in most cases. Even though the objective is similar to 
ours, our approach is robust, i.e., its correctness does not signif-
icantly depend on the selected region, and also more accurate. 
Sarker et al. [25] proposed Brake-Based Location Tracking (BBLT). 
Their approach extracts the break signal values from the CAN bus, 
which are then used to reconstruct the movement of the vehicle. 
The extracted signal values are processed in three steps. First, they 
categorize the signal sub-sequences into different driving maneu-
vers, then based on the maneuvers they estimate the parameters of 
the movement, such as the number of intersections or the speed 
profile. Finally, they search for trajectories on the regional map, 
that are the closest to the determined parameters. The goodness of 
a candidate edge is determined by a custom score function. Their 
evaluation showed that in 89% of the cases the reconstruction was 
successful.

Finally, the location privacy of a driver can also be violated via 
smart devices carried on board while driving. E.g., Han et al. [26]
described a location inference technique using smartphone ac-
celerometers to successfully locate drivers within a small radius 
of the true location.

3
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Table 1
Example of CAN messages and the extracted time series. The red, green, and blue time series are obtained by 
extracting the 1st, 4th and 7th byte of every time-ordered CAN message with ID 0x02c4, respectively.

In summary, prior works use different signals (only speed 
[18,22,19], speed and traffic information [20,21], only steering 
wheel position [24], braking [25], acceleration [26]) for reconstruc-
tion, while we rely on speed and steering wheel position extracted 
from CAN messages exclusively. Earlier approaches first partially, or 
completely reconstruct the trajectory from the signals, then fit the 
result to the map for correction. By contrast, we always predict the 
next location from only the previous one using speed and steering 
wheel position, and immediately correct the prediction with map 
data, that is, we do not let the error accumulate over successive 
predictions. As we show later, this approach provides larger recon-
struction accuracy even for longer trajectories than what has been 
reported before. Our technique is simple and efficient, and works 
even on resource-constrained devices as long as map data can be 
stored on the device.

3. Background

3.1. CAN: controller area network

The Controller Area Network (CAN) is a bus system providing 
in-vehicle communications for ECUs and other devices. The first 
CAN bus protocol was developed in 1986, and it was adopted as an 
international standard in 1993 (ISO 11898 [27]). A recent car can 
have anywhere from five to hundreds of ECUs, which are served by 
several CAN buses. Our point of focus in this paper is mainly the 
CAN bus serving the drive-train.

The CAN protocol, used on the CAN bus, defines a basic com-
munication format. Each message has an identifier and carries up 
to 8 data bytes. There are additional fields in the messages like 
flags for signaling special purpose messages and a checksum to de-
tect transmission errors; these are out of scope for us. There is no 
standard specification on how signals should be encoded into data 
fields, therefore each OEM has a custom solution for that. This lack 
of specification guarantees an added flexibility to the protocol, but 

also makes it harder for third parties to work with CAN messages. 
The encoding used for signals is kept as a trade secret by OEMs; 
however, there are some public projects available online aiming at 
democratizing access to this information.8

CAN is a broadcast protocol, therefore by accessing the network 
at any available point, all messages can be recorded. The simplest 
way to connect to the CAN bus is through the On-Board Diagnos-
tic port (OBD). This port was originally developed for maintenance 
and technical inspection purposes, and it is included in every new 
car since 1996.

Table 1 shows a simplified picture of a CAN message sequence 
with a 11-bit identifier, which is the usual format for passenger 
cars (trucks and buses usually use the extended 29-bit version). 
This example shows already stripped messages: we do not dis-
cuss end-of-frame or check bits and some other parts. In this 
example, the position of the brake pedal may be carried by the 
fourth byte of the message with ID 0x02c4. Therefore, extract-
ing the fourth byte of every consecutive instance of this message 
type (in the order of their arrival times) one can reconstruct the 
braking signal (i.e., position of the brake pedal over time, which is 
shown in green in Table 1). Due to the fact, that this encoding is 
not publicly available, extracting a signal from recorded CAN mes-
sages would require (partly) reverse-engineering the specific CAN 
communication matrix, which may be illegal under practical cir-
cumstances [28].

3.1.1. CAN message structure
• Timestamp: Unix timestamp of the message (This is not part 

of the original message, but the arrival time is necessary for 
proper processing of the message, therefore we store it for ev-
ery message upon capture.)

8 e.g., https://github .com /commaai /opendbc.

4
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• ID: contains the message identifier; lower value indicates higher 
priority

• Len: length of the Data field in bytes (0 to 8 bytes)
• Data: actual data values; multiple encoded signals per message 

are typical

3.1.2. Data collection
As CAN data logs are not widely available, we conducted a mea-

surement campaign. For this, we built the hardware and developed 
the accompanying software of a CAN logging device. The device 
connects to the CAN bus through the OBD port, and captures all 
CAN messages, owing to the broadcast nature of communication. 
Some OEMs limit access to the CAN bus only to diagnostics mes-
sages; in those cases, message capture is not possible through OBD. 
In this paper, we captured CAN traffic in multiple different scenar-
ios to cover a wide range of driving environments.

The dataset used for trajectory reconstruction (both micro- and 
macrotracking, see 5) contains CAN traffic logs captured from a sin-
gle mid-class vehicle on different routes. We captured short traces 
(<100 m) as well as longer traces (1000-2500 m) to test our al-
gorithms in multiple scenarios. In some traces (Fig. 4), we also 
deliberately drove with rapidly changing steering movements to 
test the robustness of our algorithms.

For the driver re-identification measurements, we used the 
dataset from our earlier work [29]. These CAN logs contain the 
driving logs of 33 drivers from a similar mid-class vehicle: 11 peo-
ple were between the age of 20-30, 8 of 25-30, 7 of 35-40 and 7 
above 40; there were 5 women and 28 men; 12 with little expe-
rience (less than 7000 km per year on average or novice driver), 
11 with average experience (8-20000 km per year), and 10 with 
above average experience (more than 20000 km per year). Most 
routes were driven inside or close to Budapest, Hungary; approxi-
mately 15-20% was recorded on a motorway. Drivers were free to 
choose their way, but still conforming to three practical require-
ments: (1) record at least 15 minutes of driving in total, (2) do 
not record data when driving up and down hills, (3) do not record 
data in extremely heavy traffic (short runs and idling). All drivers 
drove between 10am and 4pm on weekdays, and the average trace 
length is 29.81 minutes with a standard deviation of 13.48; the 
shortest trace is 17.71 minutes long, whereas the longest trace is 
85 minutes long.

3.2. Signal extraction

The adversary has to know the higher layer protocols of CAN 
in order to extract meaningful sensor readings. Since such mes-
sage and message flow specifications (above the data link layer) 
are usually proprietary and closely guarded industrial secrets, such 
adversarial background knowledge might not be reasonable. In this 
case, the research question changes: is it possible for the adversary 
to re-identify drivers based on raw CAN data without the knowl-
edge of protocols above the data link layer?

It has been shown in [9] that using only a single signal (the 
brake pedal) drivers can be re-identified even with 87.33% accu-
racy, while 100% accuracy can be reached using more than one 
signal. This means that the adversary does not need to reverse 
engineer all available signals on the CAN bus, only those which 
enable the differentiation between drivers. There have been several 
works [30], [31], [32], [33], [34] on identifying signals and signal 
boundaries with high efficiency. However, the adversary does not 
need such sophisticated methods in order to extract a few descrip-
tive signals. Indeed, relying exclusively on the intuition that the 
physical phenomenon represented by the signal has identical sta-
tistical features across different cars, it is possible to identify the 
same signal in all cars using the same classifier [35]. For example, 

the accelerator, brake and clutch pedal positions, as well as veloc-
ity and engine revolution (RPM) signals can be identified manually 
in one vehicle that the adversary can access using simple physical 
observations and expected cross-signal correlations, then the iden-
tified signals can be used to train a random forest model in order 
to more efficiently and accurately extract the same signals in any 
other, perhaps different type of target vehicle [35].

More specifically, suppose that the adversary can access and 
use a (test) vehicle and aims to extract signals in the captured 
CAN log of another (target) vehicle which in turn cannot be used. 
The signal (or time-series) of velocity can be identified in the test 
vehicle by matching every candidate series of raw bytes with the 
real time-series of the velocity (e.g., measured manually during a 
test drive), using the dynamic time warp (DTW) algorithm [36]. 
Since brake and accelerator pedal positions are usually not pressed 
at the same time, they can also be identified by searching for a 
pair of signals that are exclusive to each other. Furthermore, RPM 
drops and then suddenly rises upon gear change during acceler-
ation, hence it can also be found by its matching with velocity. 
Clutch pedal position can also be extracted by its cross-correlation 
with the already known velocity and RPM signals; when the clutch 
is released, there is a slight slip around the middle position of the 
pedal indicating that shafts are starting to connect. Hence, the ad-
versary can search for a pair of signals with one of them having a 
sharp spike (RPM) and the other a small plateau (slipping clutch) 
around the same time. Table 1 illustrates these signal characteris-
tics.

Finally, the adversary can train a classifier to learn such distin-
guishing characteristics of the extracted signals which tend to be 
universal in most vehicles, and therefore it can recognize the same 
signals in the captured CAN log of any target vehicle. In [35], 11 
statistical features were derived from the signals for this purpose, 
and finally the accelerator pedal position, the velocity and the RPM 
signals were identified in 7 different vehicles with a single classi-
fier trained on these features.

4. Adversary model

We consider two adversary models. The first adversary aims 
to reconstruct the trajectory of a specific individual’s vehicle from 
its CAN data as accurately as possible. The adversary may know 
the identity of this driver and can only access the vehicle’s CAN 
data, except its GPS trajectory, as well as the geographical map of 
the region R (e.g., a bounding box of the entire trajectory). This 
is the only background information the adversary has about the 
driver’s whereabouts. In particular, the GPS location is not present 
in the CAN data explicitly but can only be inferred indirectly from 
other signals extracted from the CAN log (see Section 3.2) such 
as speed, steering wheel position, as well as the start of the tra-
jectory which is presumably observable by the adversary. These 
are not far-fetched assumptions since the majority of available cars 
nowadays still do not have built-in GPS receiver, or if they do, it 
is unlikely that potentially sensitive location information is shared 
with third parties. The adversary aims to localize the trajectory 
within R with as little error as possible, which is measured as an 
average distance between the reconstructed and the original tra-
jectory. Although larger error implies stronger privacy preservation 
in general, more precise assessment of the potential privacy risks 
is difficult due to the varying contextual factors and therefore is 
beyond the scope of this paper. For example, an error within a few 
hundred meters may not be enough to decide if the driver visited 
a hospital or a church in a city, but is sufficient to infer which vil-
lage it traversed in the countryside.

Given a dataset D holding the CAN data of multiple individu-
als, the second adversary aims to single out the record of a specific 
(target) individual. Each record is composed of the raw CAN data 
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captured from the CAN bus of the driver’s vehicle without the 
driver’s real identity (i.e., the data is “pseudonymous”). The length 
of such a capture may span from a few seconds to a few min-
utes. As opposed to the first adversary, this adversary may not be 
able to extract any meaningful signal from any record. In order 
to localize the individual’s record in D , the adversary can access 
some other CAN data of this individual, which is different from 
the driver’s record in D (e.g., it is produced during a different trip), 
and also some CAN data of other drivers. The adversary attempts 
to learn the most distinguishing features of the target driver from 
this background knowledge, and then to identify the record in D
with these features. Although larger identification accuracy sug-
gests larger privacy risks, similarly to trajectory reconstruction and 
as per GDPR, a more precise assessment of privacy risks would re-
quire the consideration of other contextual factors which are not 
discussed in this paper.

5. Trajectory reconstruction

In this section we show that by releasing CAN data, vehicles 
and thus drivers become traceable. The tracing of the vehicle is 
achieved in two steps. First, we show how a vehicle can be traced 
accurately over short distances based exclusively on CAN messages. 
We refer to this concept as microtracking.9 Second, we show how 
to extend tracing for longer trips using additional, publicly avail-
able information. We refer to this second problem as macrotrack-
ing.10 Recall that positioning data (GPS) is not included in the CAN 
traffic.

5.1. Microtracking

The objective of microtracking is to reconstruct the trajectory of 
a given vehicle over a short distance (10-100 meters). If the initial 
position is of the vehicle is known, the next position at any time 
can always be predicted from the previous one using the speed 
and the direction of the movement. Fortunately, these values can 
be computed solely from the signals of speed and steering wheel 
position which are directly accessible in the vehicle’s CAN mes-
sages transmitted and recorded during the trip.

First, the speed and the steering wheel position signals are 
extracted from the CAN message stream. These can be relatively 
easily found even for an unknown vehicle based on the method 
described in Section 3.2. Next, the extracted signals together with 
the timestamps of the recorded CAN messages are used to calcu-
late small delta movements of the vehicle. If the vehicle is going 
along a straight line, then the calculation is straightforward (dis-
tance = velocity × elapsed time). If the steering wheel is not in 
the central position, then the radius of the path segment can be 
calculated based on the geometry of the vehicle as illustrated in 
Fig. 1. In particular, the radius R can be calculated from the sine 
of the angle β of the wheels as R = L/ sin(β), where L denotes 
the distance between the two axles. The wheel position is inferred 
from the steering wheel position, which is extracted from the CAN 
messages, through measurements. Finally, the small delta move-
ments are aggregated sequentially to uncover the trajectory of the 
vehicle. We validated our method successfully in different short 
but characteristic test scenarios like lane change or obstacle avoid-
ance.

In general, this type of microtracking is reasonably accurate for 
short trajectories, but it can be quite inaccurate for longer trajec-
tories as the small approximation errors stemming from the noisy 
and often biased sensor measurements can add up over a longer 
trip.

9 https://github .com /CrySyS /MicroTracking.
10 https://github .com /CrySyS /MacroTracking.

Fig. 1. Computation of the radius as R = L/ sin(β), where L and β denote the vehicle 
length and wheel position, respectively.

5.2. Macrotracking

Next, we describe the reconstruction of the movement of a ve-
hicle from CAN traffic captures over longer trips (>100 meters). 
To achieve this goal, we use some auxiliary information in order 
to mitigate the problem of error accumulation. As for microtrack-
ing, the speed and steering wheel angle values extracted from the 
CAN messages are required for the reconstruction. Additionally, the 
starting position and the initial heading are also a prerequisite for 
our algorithm. Provided with these input data, we show that the 
trajectory of a vehicle can be effectively reconstructed revealing 
the destination of the drive, which constitutes a privacy breach 
with respect to the driver. This implies that CAN logs have to be 
handled or processed carefully to avoid this privacy issue and com-
ply with data protection regulations.

5.2.1. Cumulative errors in microtracking
Our microtracking can be considered as a dead reckoning pro-

cess which estimates the vehicle position from the previous one 
using inherently erroneous sensor measurements. Indeed, these 
measurements are (1) noisy (e.g., steering wheel position, wheel 
speed measurements are not always accurate due to random envi-
ronmental factors such as wheel slippage or surface irregularities), 
(2) potentially biased (e.g., deliberately higher velocity is reported 
for safety reasons), or (3) some parameters of the vehicle may not 
be known exactly (e.g., axle distance). Even if these errors result in 
a small deviation relatively to the previous position, they accumu-
late over successive predictions making the recovery of longer tra-
jectories very inaccurate. To mitigate this error accumulation, we 
first performed a thorough calibration by multiplying the extracted 
values of speed and steering wheel position by a correction factor 
so that they match the manually measured ground truth values. 
Although this improves the results, the problem of error accumu-
lation still persists, which is also illustrated by Fig. 2a; some parts 
of the trajectory are off the road and still far from the original 
path. In fact, as long as location is predicted only from inaccurate 
internal parameters and measurements of the vehicle, it remains 
subject to cumulative errors.

In engineering practice, this problem is generally solved by pe-
riodically performing external measurements to correct the pre-
diction and thus reduce the accumulated errors. Similar solutions 
are used, e.g., for the guidance of spacecraft systems [37]. Next we 
show how map data can be used to perform periodical measure-
ments to improve the prediction of our model.

5.2.2. Measurements based on map data
The state of a vehicle at any time is characterized by its head-

ing and position. Following our prediction model in microtracking, 
the state is predicted only from potentially inaccurate internal pa-
rameters (axle distance) and sensor readings (speed and steering 
wheel position), referred to as model-based prediction in the sequel. 
However, using a map allows us to regularly correct the predicted 
state of the vehicle, i.e., reducing the accumulated errors. In par-
ticular, if the vehicle should always be on a road, then a predicted 
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Fig. 2. C1 test trajectories. Map-corrected trajectories (right) follow the roads more faithfully than only model-based trajectories produced by microtracking (left).

position which is off the road can be corrected. Similarly, the direc-
tion of movement should also be aligned with the road, allowing 
corrections for the heading as well.

Starting from the position predicted by our microtracking 
model only from internal measurements as described in Sec-
tion 5.1, we calculate a new position on the map by projecting 
this model-predicted position on the nearest road segment. This 
gives us a new, corrected position and heading value aligned 
with the road that we use in our improved algorithm as a pre-
cise external measurement. Along roads without intersections, this 
approach works smoothly and prevents error accumulation. How-
ever, near intersections, it might be unclear which the correct road 
segment is for the projection. To address this duality in our al-
gorithm, we use a simple linear estimation of the next state as 
properly weighing both the model-predicted and map-corrected 
states based on the nearby conditions: the model-predicted states 
have larger weight near intersections, while map-corrected states 
have larger weight away from the intersections.

More specifically, given the model-predicted and map-corrected 
position and heading values, denoted by statemodel = [posmodel,

headmodel] and statemap = [posmap, headmap], respectively, the next 
state of the vehicle is computed as their linear combination: 
w · statemap + (1 − w) · statemodel , where w = min(dmodel, γ )/γ is 
the map weight, and dmodel denotes the distance from posmodel to 
the nearest intersection. In other words, if the model-predicted 
position is within a distance of γ to the nearest intersection, 
then its weight is inversely proportional to the distance, otherwise 
mainly map-corrected position and heading are used for predic-
tion.

Our linear estimation is a simple instantiation of the Kalman 
filter [38], which is a powerful tool to estimate past, present or 
future states of a system with uncertainties. It needs to have a 
dynamic model of the target system and multiple sequential mea-
surements to form its estimations. A weighted average is calculated 
over the output of the dynamic model and measurement results, 
taking into account the uncertainty of said measurement. In our 
algorithm, the dynamic model is the movement reconstruction of 
the vehicle in microtracking when only internal parameters and 
sensor readings are utilized. The measurements are the projected 
positions on the map, and the uncertainty of the measurement 
can be approximated with the distance to the closest intersec-
tion.

The pseudo code to reconstruct the movement of a vehicle 
is presented in Algorithm 1. First, the next state is always pre-
dicted from the previous state with model-based prediction as in 
microtracking (Line 5-8), and then map-based correction (Line 9-
14) is only performed if the distance from the last correction is 
sufficiently large (Line 10 in Algorithm 1). Executing map-based 
correction after capturing every single CAN message with a speed 
or steering wheel position value is unnecessary and would prolong 
reconstruction significantly.

The result of a successful reconstruction of our C1 test is shown 
in Fig. 2b. Although a slight deviation from the road can be ob-
served near intersections due to model-based prediction, these er-
rors are corrected and hence do not accumulate as moving away 
from the intersection due to the increasing weight of map-based 
correction (γ is set to 150 meters).

Algorithm 1: Macrotracking for CAN logs.

Input: starting position and heading value, CAN log
Output: Reconstructed trajectory T

1 initialize current state to starting position and heading;
2 load data from CAN log;
3 filter relevant messages;
4 while there is message to process do
5 Model-based prediction:
6 extract speed and steering wheel position from messages;
7 compute heading from axle distance and steering wheel 

position;
8 calculate next state from current state using heading and 

speed;

9 Map-based correction:
10 if distance from last correction > minimum required then
11 find nearest road segment on map;
12 project current position and heading to selected road 

segment;
13 update map weight w based on distance from closest 

intersection;
14 update next state using the projected state with map 

weight w;

15 append next state to reconstructed trajectory T ;
16 update current state to next state;

7
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Table 2
Summary of macrotracking test cases.

Test case Average trajectory 
reconstruction 
error (meter)

Std. deviation 
of error 
(meter)

Endpoint 
reconstruction 
error (meter)

Total distance 
travelled 
(meter)

Number of 
decision points 
in map

C1
without map 
(Fig. 2a)

30.2 25.13 9.3 2025.17 20

C1
with map 
(Fig. 2b)

9.37 8.99 4.2 2039.11 20

C2
without map 
(Fig. 3a)

39.37 34.02 35.58 2139.03 18

C2
with map 
(Fig. 3b)

9.13 8.74 41.12 2158.48 18

C3
without map 
(Fig. 4a)

55.04 36.07 82.17 1751.07 19

C3
with map 
(Fig. 4b)

7.45 6.05 6.05 1817.81 19

Fig. 3. C2 test trajectories.

We built our algorithm on OpenStreetMap,11 which we ac-
cessed using the OSMnx library [39]. This service allowed us to 
get access to precise position and shape information of road seg-
ments. We projected the map and all coordinate data in OSMnx 
from the World Geodetic System 1984 (WGS84)12 (used in maps 
and GPS systems) to a Spherical Mercator projection coordinate 
system (EPSG:3857)13 to be able to perform more precise distance 
calculations in 2D.

5.2.3. Validation
The accuracy of our algorithm depends on the correctness of 

model-based prediction and the density of the road network. On 
one hand, areas with many intersections do not allow the map 
based corrections to improve the model prediction as much, there-
fore the reconstruction error will dominate over longer distances. 
On the other hand, if the trajectory of the drive follows long sec-
tions without intersections, our algorithm will hardly suffer from 
any errors.

11 https://www.openstreetmap .org.
12 https://epsg .io /4326.
13 https://epsg .io /3857.

We defined two metrics to evaluate the accuracy of our algo-
rithm as follows:

1. Endpoint reconstruction error: we measure the distance (in me-
ters) between the actual endpoint of the movement and the 
destination predicted by the algorithm.

2. Average trajectory reconstruction error: along the actual move-
ment of the vehicle (the ground truth trajectory) we calculate 
test points every 15 meters. At each test point we find the 
closest point in the reconstructed trajectory and measure the 
distance to the test point. Finally, we calculate an average of 
the measured distances.

Table 2 shows data about our test cases. In these tests, we drove 
along different circular trajectories to be able to visually show the 
result of our first metric as well. We also counted the number of 
decision points (intersections), where the algorithm had to make 
a correct decision. In the C3 test case, we drove with frequent 
movements of the steering wheel even on straight road segments 
to make the reconstruction harder. The table shows that our al-
gorithm was able to reconstruct the trajectories with only small 
errors. Furthermore, the corresponding Figs. 2-4 show that the re-
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Fig. 4. C3 test trajectories.

constructed trajectories follow along the roads actually used, with 
small deviations only around intersections.

5.2.4. Privacy implications for CAN logs
In this section we showed that it is possible to reconstruct the 

movement of a vehicle for both short and long distances from CAN 
messages. This can be a valuable forensics tool, e.g., in case of acci-
dent reconstruction; but it can also cause a privacy breach if CAN 
logs are not handled with proper care and/or they fall into the 
wrong hands. If the starting position and heading is known, then 
our algorithm can effectively reconstruct a vehicle’ trajectory, re-
vealing private information about the driver. Given that personal 
location information is categorized as sensitive data in the GDPR, 
data controllers, whether OEMs or third-party companies, manag-
ing such data have to comply with strict requirements. This comes 
with added cost and operation complexity; yet, non-compliance 
could result in prohibitively large fines.

6. Driver re-identification

Given a set of already extracted signals from the CAN messages 
(see Section 3.2), a supervised machine learning model (classifier) 
can be trained on these signals in order to distinguish every driver. 
For example, in [35], the accelerator pedal position, the velocity 
and the RPM signals were extracted and used to re-identify drivers 
with the average precision of 77%, and reached a top precision of 
87% [35]. As described in Section 3.2, most existing driver identi-
fication techniques rely on known signals already extracted from 
CAN data. However, unless the specification of the CAN protocol is 
known, the adversary needs to reverse engineer the CAN protocol 
for this purpose, which is often considered to be illegal [28] and 
tedious.

Fortunately, there is no need to reverse engineer the CAN pro-
tocol to re-identify drivers. Indeed, as we show next, drivers can 
be re-identified directly from CAN messages without interpreting 
their content utilizing artificial deep neural networks. As demon-
strated in the last decade, such models are capable of automatically 
learning higher-level features from the raw, uninterpreted input 
data with limited or no manual feature engineering. Therefore, 
even a weaker adversary, who does not know the potentially pro-
prietary CAN protocol, could distinguish a driver from the rest with 
large enough accuracy.

We present a machine learning model from [29] specifically 
designed to distinguish drivers only from CAN data without any 
explicit signal extraction. In [29], the model takes the sequences of 
bytes extracted from identical positions of CAN messages with the 
same type as an input time series, and outputs which driver these 

Table 3
Re-identification accuracy: One-vs-all with sample length of 120 sec.

Sample 
len

One-vs-all Accuracy

Mean Std. dev. Min Max

Original approach (w/o [40]) 120 s 85% 0.025 0.47 1.00
Our approach (with [40]) 120 s 97% 0.07 0.81 1.00

time series belong to. Importantly, the semantic meaning of each 
byte and, in particular, the interdependence of bytes within a CAN 
message (i.e., which bytes belong to the same signal) are unknown 
to the adversary. In our current work, we use exactly the same 
model for re-identification, but improve on data pre-processing.

6.1. Overview

In the original paper [29], every byte from a CAN message is ex-
tracted, then the same bytes of every CAN message with identical 
message ID are concatenated (such as in Table 1) to build the time 
series from which the ones with the most predictive power are 
identified. Although results show that even such a simple approach 
results in high re-identification accuracy (see first row in Table 3), 
this is an overly naive approach that does not consider real sig-
nal boundaries (that often differs from byte boundaries) nor the 
endianness of the byte (that can differ between CAN messages). 
We have improved on this approach and identified potential sig-
nal boundaries by applying [40] to find the correct bit positions 
of a signal in a message considering endianness.14 We stress that 
this technique [40] only identifies signal boundaries, the seman-
tic meaning of the extracted time-series is still unknown and not 
required for our re-identification model.

The model is a convolution-based neural network, where fea-
tures from individual time series are learnt automatically by con-
volutional layers, which are then combined in a mixture model in 
order to perform the final classification. This mixture model has 
two main components: (1) the Individual time series (ITS) model is 
specialized to the classification of a single time series. One ITS 
model per time series is built, hence K different ITS models are 
obtained, where K is the number of all time series. (2) The Mixture 
model is combined with the already trained ITS models into a sin-
gle fully connected decision/output layer which provides the final 
classification result. ITS models are trained individually and sepa-

14 This method is considered state-of-the-art for signal extraction. Code pub-
lished by the authors is available at https://github .com /brent -stone /CAN _Reverse _
Engineering.
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rately from the mixture model. The model can be seen on Fig. 11
in Appendix B.

6.2. Pre-processing

A signal is first divided into equally-sized segments, from here 
on referred to as samples. Given a single sample as input, the 
model attempts to classify it into its correct class (driver). A slid-
ing window is used over the whole time series to create samples. 
Specifically, let T = (t1, t2, . . . , t|T |) denote a time series, and let 
Ti: j = (ti, ti+1, . . . , t j) be a window of T between positions i and 
j (1 ≤ i ≤ j ≤ |T |). Then, the set of all n samples created from T
is given by {T1,n, T1+�,n+�, . . . , T |T |−�+1,|T |}, that is, all consecutive 
windows shifted by � time slots.

6.3. Individual time series model (ITS)

As the ITS model is applied on each segment of the sample in-
dependently, it can model local features of a segment, the sequen-
tial information along the sequence of segments and any global 
features of the whole sample. In particular, a single CNN model 
is used to extract features from every segment si . The sequence 
of these representations are further processed by a Long-Short 
Term Memory model (LSTM), which computes time-dependent 
features by transforming the input sequence into another sequence 
h1, h2, . . . , hk composed of the hidden states of the LSTM. Specifi-
cally, for input segment si , hi = LSTM(CNN(si), hi−1). The sequence 
of h1, h2, . . . , hk is fed into an attention layer in order to select 
those parts of the sequence which represent distinctive driver fea-
tures. In particular, a sample may contain only a few segments 
with clear distinctive features of the drivers such as a unique pat-
tern of speeding, steering, or braking, while the rest may lack any 
unique driving pattern and hence bearing less importance in dis-
tinguishing drivers.

6.4. Mixture model

Finally the ITS models are combined into a single Mixture 
model by connecting all ITS models to the same fully-connected 
neural layer, called mixture layer, whose output provides the final 
prediction. Only the top-K best performing ITS models are used in 
the mixture. This mixture model is a sort of committee machine, 
where multiple neural networks, called as experts, are combined 
to provide the final classification. Indeed, each ITS model is an ex-
pert which is specialized to extract a high-level representation of a 
single time-series. The mixture model is trained to distinguish one 
driver from all the rest (1-vs-all), and hence it is output is binary.

6.5. Results

Since a mixture model distinguishes one specific driver from 
all the rest, we train one model per driver, and report different 
statistics of accuracy over all models in Table 3. To measure per-
formance on the test set, the (test) accuracy is computed as the 
number of all correct classifications divided by all classifications. 
The average re-identification accuracy over all the 33 drivers is 
85% for the original approach [29] (first row in Table 3), when ev-
ery consecutive one- and two-bytes in all CAN message are blindly 
fed into the mixture model. However, when potential signals are 
first extracted by applying [40], re-identification results improved 
significantly with a 12% increase in average accuracy, and the min-
imum accuracy (for the driver whose model has the smallest accu-
racy) grew by an immense margin of 34% (second row in Table 3). 
Interestingly, we found 255 potential signals using [40], where only 
80 were on the exact same position among all drivers and 120 
were “close”, i.e. only 1-2 bit apart. The results in the second row 

of Table 3 were computed only on these 80 common signals. This 
also prevented the model from identifying a driver based on the 
occurrence of a signal unique to the driver (e.g., windshield-wiper 
signal if only one driver drove in rainy weather conditions).

Recall that the adversary aims to single out the record (i.e., CAN 
data) of a specific (target) individual among several others in a 
“pseudonymous” dataset. To do that, the adversary trains a mix-
ture model to distinguish the CAN data of the target from all the 
rest (1-vs-all), and applies the trained model on each record of the 
dataset. Finally, it randomly chooses one from the records that are 
classified as the target. To compute the success probability of this 
attack, we need additional performance metrics of the model: test 
sensitivity TP/P (the ratio of correctly classified positive samples) 
and test specificity TN/N (the ratio of correctly classified negative 
samples), where a sample is positive if it belongs to the target, 
otherwise negative. In case there is one record from the target and 
n −1 from others, the success probability of the singling out attack 
is approximated as

Pr(Success)

≈
n−1∑
k=0

(
n − 1

k

)[
TP

P
·
(

FP

N

)k

·
(

TN

N

)n−1−k

· 1

1 + k

]
=

=
n−1∑
k=0

(
n − 1

k

)[
Sensitivity · (1 − Specificity)k

· Specificityn−1−k · 1

1 + k

]
(1)

where TP is the number of true positives, TN is the true negatives, 
FP is the false positives, FN is the false negatives, P = TP + FN is 
the number of all positive samples and N = TN + FP is the number 
of all negative samples.

To see why Eq. (1) holds, recall that N = n − 1 since there is 
exactly one positive sample (out of n), and the probability that 
the target is positively classified by the model can be estimated 
by the sensitivity ratio. Moreover, the model produces exactly k
false positives with a probability of (1 − Specificity)k and n − 1 − k
true negatives with the probability of Specificityn−1−k , finally the 
probability that the attacker randomly chooses the target among 
all positively classified samples is 1

1+k . Furthermore, since each 
false positive belongs to a different driver, we need to sum over 
all possible combinations of k drivers from k = 0 till k = n − 1. We 
calculated the specificity and sensitivity values on the test set and 
report them in the next section with each defense technique.

7. Defenses

In this section, we describe and evaluate different defense tech-
niques against location reconstruction (macrotracking) and driver 
re-identification described in Section 5.2 and 6, respectively. First, 
we consider some well established signal processing techniques in-
cluding low pass filtering and smoothing which might be tempting 
to employ by a data controller or processor in order to distort CAN 
data so that unique features of drivers are no longer recognizable. 
However, as we show, such techniques fail to provide strong pri-
vacy guarantees, or introduce so much distortion to counter our 
attacks that renders the anonymized data practically useless. As a 
result, we consider anonymization techniques with more rigorous 
privacy guarantees in Section 7.4.

7.1. Smoothing

Smoothing is a type of downsampling technique, it is used to 
smooth short-term fluctuations and highlight longer-term trends 
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Table 4
Accuracy of one-vs-all re-identification depending on smoothing window size in 
seconds.

Smoothing 
window

One-vs-all Accuracy

Mean Std.dev. Min Max

0.1 0.97 0.07 0.81 1.00
0.2 0.96 0.03 0.84 1.00
0.4 0.95 0.04 0.79 1.00
0.8 0.92 0.11 0.48 1.00
1.6 0.77 0.17 0.50 1.00
3.2 0.86 0.14 0.46 1.00
6.4 0.71 0.17 0.43 1.00

in the signal (or time-series). It has many variations, the main idea 
is to shift a moving window of a fixed size through the signal and 
apply a transformation on each window, then publish the trans-
formed signal. We apply a moving window by passed time and 
not by data points, i.e. the average of the data points that is in 
a fixed time frame (called smoothing window), whose size in time 
is given as a parameter w , is calculated and used as a single re-
placement of all points within the given time frame. As the mean 
is reported per window, consecutive windows do not overlap. This 
technique is expected to smooth out local variations of every sig-
nal within w seconds. Therefore, as long as such local variations 
correspond to unique features of a driver, the transformed signal 
should mitigate re-identification and tracking.

7.1.1. Evaluation
We evaluate our re-identification model on the smoothed data 

produced with different values of smoothing window size w . 
The goal is to find a window size where the accuracy of re-
identification and macrotracking are sufficiently small but the ac-
curacy of the transformed data is still meaningful.

Driver re-identification We applied smoothing with different win-
dow lengths (shown in seconds), then we used the re-identification 
algorithm from Section 6 on the smoothed signals. Table 4 shows 

that, by increasing the window size, the re-identification accuracy 
drops only until 0.71, but the worst case success probability of sin-
gling out (the maximum value of Eq. (1) over all drivers) is 100% 
in all cases, that is, there is always a driver whose record can be 
singled out. The first line corresponds to the same window size 
that was used in [29], that is the lowest frequency used by any 
signal in the CAN bus. The window size is doubled in consecutive 
lines of the table. At smaller window sizes, the re-identification 
even improves, which is probably due to the de-noising feature of 
smoothing. However, increasing the window size further, the aver-
age accuracy drops as expected. Importantly, some drivers remain 
perfectly re-identifiable even with the largest window size. This 
could be due to some very specific signals which appear only in 
a particular driver’s CAN data (e.g., windshield wiper is used only 
by a single driver), or a driver could have a unique global fea-
ture across multiple smoothing windows or multiple signals (e.g., 
the average speed over the whole trip) which is not removed by 
smoothing out only local variations of a signal.

Obviously, a data controller/processor cannot account for all po-
tential idiosyncrasies of a driver’s CAN data. Smoothing reduces 
the mean accuracy, the mean specificity and the mean sensitiv-
ity of re-identification, but some drivers still remain 100% iden-
tifiable which is also shown in Table 4. Moreover, the average 
re-identification accuracy, specificity and sensitivity only drops to 
0.66-0.71 at a window size of 6.4 seconds, which means that 
only a single datapoint is retained over during 6.4 seconds that 
is the average of 60-600 measurements (Table 5). This resolution 
is clearly too coarse-grained for many applications (e.g., for foren-
sics if accidents can happen in less than one second).

Location tracking Fig. 5 shows the effect of smoothing on the 
model-based trajectory reconstruction without map correction (i.e., 
microtracking). Although smoothing negatively impacts reconstruc-
tion, applying smoothing even with the largest window size still 
allows relatively accurate reconstruction many parts of the tra-
jectory. Interestingly, due to the special encoding of the steering 

Table 5
Worst case success probability of singling out attack (by Eq. (1)), specificity and sensitivity of one-vs-all re-identification depending on smoothing window size in seconds. 
The length of the smoothing window is in seconds.

Smoothing 
window

Singling out 
success

Specificity Sensitivity

Mean Std.dev. Min Max Mean Std.dev. Min Max

0.1 1.00 0.99 0.02 0.91 1.00 0.96 0.15 0.71 1.00
0.2 1.00 0.98 0.04 0.90 1.00 0.98 0.05 0.66 1.00
0.4 1.00 0.93 0.05 0.79 1.00 0.98 0.07 0.57 1.00
0.8 1.00 0.86 0.18 0.32 1.00 0.95 0.19 0.00 1.00
1.6 1.00 0.81 0.24 0.13 1.00 0.76 0.41 0.00 1.00
3.2 1.00 0.79 0.23 0.07 1.00 0.87 0.28 0.00 1.00
6.4 1.00 0.66 0.28 0.00 1.00 0.69 0.34 0.00 1.00

Fig. 5. C1 test case macrotracking result on smoothed data without map.
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Fig. 6. C1 test case macrotracking result on smoothed data with map.

Table 6
Effects of smoothing on our location tracking algorithm.

Test case Smoothing 
windows size 
(second)

Average trajectory 
reconstruction 
error (meter)

Std. deviation 
of error 
(meter)

Endpoint 
reconstruction 
error (meter)

C1 (Fig. 6a) 0.201 32.2 26.4 22.76
C1 (Fig. 6b) 1.608 33.51 26.97 33.02
C1 (Fig. 6c) 6.4 38.58 27.97 132.94
C2 (Fig. 13a) 0.201 37.75 28.68 75.74
C2 (Fig. 13b) 1.608 38.92 32.83 76.72
C2 (Fig. 13c) 6.4 42.22 32.47 126.84
C3 (Fig. 15a) 0.201 50.78 32.74 64.71
C3 (Fig. 15b) 1.608 47.53 29.6 66.52
C3 (Fig. 15c) 6.4 20.47 18.15 70.09

wheel value, applying smoothing on this signal results in sharper 
turns than in the original trace.

Our macrotracking algorithm with map correction is signifi-
cantly more accurate than only model-based reconstruction and 
can successfully reconstruct the original traces in all cases (see 
Figs. 13 vs. 12 for C2 and Figs. 15 vs. 14 for C3 in Appendix C, 
respectively). In the C1 (Fig. 6) and C2 (Fig. 13) cases, increasing 
the window size also increases the reconstruction error, but all re-
sults can still be considered as successful reconstructions. Although 
the C3 test case is driven with frequent steering wheel changes (as 
described in Section 5.2.3), the effect of these changes is reduced 
by smoothing, and therefore the reconstruction results are actu-
ally improved with a larger window size (Fig. 15). Table 6 contains 
the trajectory reconstruction errors with their standard deviation 
and the endpoint reconstruction error for all test cases with three 
different window sizes.

7.2. Low pass filtering

Low pass filtering is a common technique not only to compress 
signals, but to reduce noise, eliminate aliasing, or attenuate reso-
nances [41] without heavily degrading utility. Moreover, with the 
growing need for data privacy, low pass filtering has been used 
for signal anonymization as well [42]. Low-pass filters attenuate 
or eliminate all signal components above a specified frequency. 
By deleting these high frequency components, one can get rid of 
the idiosyncrasies of the signal and end up with the more gen-
eral parts. For example, by using the brake pedal signal only (this 
contains the angle the pedal is pushed in by), a driver can be 
re-identified with an accuracy of 87% [9]. In this signal the high 
frequency parts represent small changes, and the overall tendency 
is determined by the lower frequencies (e.g., small frequencies can 
represent the unevenness of the movement of pedal pushing). For 
this reason it is hypothesized that the high frequency components 
of a signal identify a driver. Such components correspond to sub-

tle and small changes in the signal that differ most significantly 
among drivers, thus by eliminating some of these high frequency 
components one could also remove a drivers’ identifying features 
in a signal. Unlike smoothing, low pass filtering is expected to pro-
vide a finer-grained control over utility loss, and the mean squared 
error is precisely quantifiable since the transformation is orthonor-
mal and therefore preserves the L2-norm of the signal.

In this section, we show that low pass filtering still implies 
mostly unsatisfactory privacy guarantee in practice. Below we ex-
plain how we applied a low-pass filter on CAN bus signals with 
different degrees of utility, then we evaluate the resulting filtered 
signals both with our re-identification (Section 6) and macrotrack-
ing attacks (Section 5.2).

We apply low-pass filtering as follows. First, the signal is trans-
formed to its frequency domain using orthonormal Discrete Cosine 
Transform (DCT) which has better energy compaction property 
than other Fourier-related transforms. After DCT transformation, 
the number of removed high frequency components is determined. 
In general, the more components are dropped from the signal the 
lower the utility becomes. The resulting utility is measured by cal-
culating the normalized euclidean distance between the original 
and the low passed signal, i.e. we delete as many of the highest 
frequency components as many needed to reach a predefined er-
ror distance (aka., reconstruction error) from the original signal. As 
orthonormal DCT preserves the L2-norm of the original signal, the 
transformed signal has the same L2-norm as the original one. For 
example, in order to have a reconstruction error of 10% at most, 
the maximum number of the highest frequencies of the trans-
formed signal are removed such that the L2-norm of the removed 
components is not greater than the 10% of the total L2-norm of the 
whole signal. A naive algorithm would start deleting components 
one-by-one starting from higher to lower frequencies, instead we 
apply logarithmic search and calculate the resulting error after 
each iteration. Once the desired error rate is reached, the filtered 
signal is transformed back to the time domain and published.
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7.2.1. Evaluation
Driver re-identification We applied low-pass filtering with differ-
ent error rates, then we used the re-identification algorithm from 
Section 6 on the low-passed signals. The results are depicted in Ta-
ble 7. The worst case success probability of the singling out attack 
(calculated by Eq. (1)) is always 100%. Mean accuracy shows the 
average one-vs-all re-identification accuracy over 33 drivers from 
our database (see details in Section 3.1). Interestingly, the mini-
mum re-identification accuracy is even improved with moderate 
low pass filtering producing a reconstruction error of 10%, and 
there is only a slight drop in mean accuracy and sensitivity, and 
no change in mean specificity at the higher reconstruction error 
of 40%. Indeed, low pass filtering is often used as a pre-processing 
step to de-noise the original signal and hence improve classifica-
tion. In fact, some signals are so compact in the frequency domain 
that only a few frequency components are retained after filtering. 
However, this does not always prevent re-identification: even if we 
end up only with the lowest frequency (i.e., a constant transformed 
signal) after filtering, it can still be unique to a single person in 
the whole dataset. For example, a signal which is unique to the 
driver will always re-identify the driver no matter how many of 
its components are dropped. Moreover, the same data peculiari-
ties already described in Section 7.1.1 also hold here. As a result, 
some drivers remain re-identifiable even with the largest recon-
struction error which is also shown in Table 7. The reason we had 
to stop the evaluation at an error rate of 60% is that several sig-
nals could barely (or could not) reach this prescribed error rate 
without dropping all of its components, and hence we dropped all 
such signals completely. However, above the error of 60%, almost 
all signals would be dropped which would yield useless (but per-
fectly anonymized) data with meaningful utility.

Consequently, low-pass filtering, as a general anonymization 
technique, does not provide sufficiently strong privacy guarantees 
for every single driver (Table 8).

Location tracking Fig. 7 shows the result of trajectory reconstruc-
tion without map (i.e., only model-based prediction) after low-pass 
filtering the C1 test case. In comparison with smoothing, low-pass 
filtering with the chosen parameters distorts the original traces 

Table 7
Accuracy of one-vs-all re-identification with low pass filtering for different error 
rates. Note that the first line is the baseline.

Error One-vs-all Accuracy

Mean Std. dev. Min Max

0% 0.97 0.07 0.81 1.00
10% 0.97 0.03 0.88 1.00
40% 0.96 0.06 0.76 1.00

more significantly. The counter-intuitive changes of the turn an-
gles can also be observed here.

Fig. 8 shows that our macrotracking algorithm (i.e., reconstruc-
tion with map correction) is capable of reconstructing the original 
C1 trajectory if the prescribed error rate of low pass filtering is be-
low 40%. Above this value, the algorithm cannot reconstruct the 
vehicle movement in one of the intersections at least. We also ob-
served similar behaviors in the C2 (Figs. 17 vs. 16) and C3 (Figs. 19
vs. 18) test cases, see Appendix C. The accuracy of the reconstruc-
tion for all cases with different amount of low-pass filtering is 
depicted in Table 9. The reconstruction is successfully prevented 
at a low pass filtering error of 40%.

7.3. Aggregation

In the previous two subsections we have seen that “ad-hoc” 
anonymization methods do not provide strong privacy guarantees 
to every single individual, or if they do, the resulting data accuracy 
is often unsatisfactory in practice. Next, we show that releasing 
only aggregated information about CAN datastreams can still result 
in privacy breaches. This will motivate the application of Differen-
tial Privacy, which provides strong, provable privacy guarantees to 
every single individual.

Oftentimes, in order to deduce meaningful statistics from a ve-
hicle, there is no need to publish raw CAN bus signals. Several 
weeks or months of data can occupy even several terabytes, where 
large part of it is unnecessary or redundant. Not to mention that, 
as shown in Section 6 and Section 7.2, it is hard to anonymize 
them in this raw, micro-data form, where separate records (time 
series) are released about each individual. However, such micro-
level data reporting is not required by many applications. For ex-
ample, a fleet management company could be interested in the 
general state of its vehicles, each possibly driven by multiple in-
dividuals, that is, how much some cars have been deteriorated 
during the past year or so. With this aim the data owner does 
not have to publish all the raw data of the vehicles, but can pre-
calculate the needed information, such as the overall milometer, 
how often or how much a vehicle has run over a specified rpm, 
what its average speed was or how much it has run with a speed 
more than 130 km/h. A straightforward solution is to answer only 
aggregated queries over the derived dataset and excluding those 
answers that are true only for a few drivers. However, it is a 
common misconception that aggregation per se (performed over 
several individuals) preserves privacy. In this section we show a 
systematic approach to reconstruct individual-specific information 
from CAN bus data only using aggregate queries.

Data reconstruction from aggregates Let D be a dataset with n
records, and a record has a private attribute denoted by xi , such 
that the vector of all private attributes is X = (x1, x2 . . . xn). The 

Fig. 7. C1 test case macrotracking results on low pass filtered data without map.
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Fig. 8. C1 test case macrotracking results on low pass filtered data with map.

database owner wishes to preserve privacy by only answering ag-
gregate queries concerning the private attribute without revealing 
any xi ∈ X . Formally, an aggregate query q(D) specifies a subset 
of the records Q ⊆ {1, . . . , n} satisfying a certain predicate, and an 
aggregate function f such as sum. Each record is endowed with 
some demographic information such as age, sex or driving expe-
rience. For example, if xi denotes the average speed of a driver, 
Q consists of all male drivers with age 32, and f denotes func-
tion SUM, then q(D) = ∑

i∈Q xi , which can be specified using an 
SQL-like syntax as:

SELECT SUM(avg_velocity) WHERE AGE = 32 AND SEX = ’Male’;

In general, q(D) is the result of f applied on subset {xi |i ∈ Q } ⊆
X .

Our aim is to avoid the disclosure of any single private attribute 
value xi from a set {q1(D), . . . , qn(D)} of query results:

Definition 7.1. (Full Disclosure [43]) A private attribute value xi ∈
X is fully disclosed by queries {q1, . . . , qn}, if xi can be uniquely 
determined, i.e., in all possible data sets D with private attribute 
values X consistent with the answers {q1(D), . . . , qn(D)}, xi is the 
same.

For example, if the query set consists of a single query asking 
for the sum of the average velocity of all the male drivers in the 
dataset, but Bob is the only male driver in the fleet, then the an-
swer to this query reveals Bob’s average speed. A naive defense 
would be denying such queries, where the output contains only 
a single record, however this does not help much. Consider two 
queries where the first returns the sum of average speeds over all 
n drivers, and the second returns the sum of average speeds over 
all n −1 female drivers. Even if n >> 1, the difference of these two 
queries uniquely determines Bob’s speed. In other words, the lin-
ear combination of multiple different queries can potentially reveal 
a private attribute value xi .

To make this attack more concrete, suppose that each record is 
defined as ni = (idi, xi) where idi is some identifying information 
also known to the adversary (such as the combination of age, sex 
and experience in our case), and xi ∈ R is the private attribute 
(i.e., average speed). If W is the set of all possible identifiers, and 
Q is specified by the function φ : W → {0, 1}, then a query can be 
defined as

qi(D) = ∑n
j=1 φi(id j) · x j

where φi(id j) = 1 if the ith query covers record j and 0 other-
wise, i.e. each query is represented by a binary vector indexing the 

Table 8
Sensitivity, Specificity, and worst-case success probability of singling out attack (by Equation (1)) of re-identification with low pass filtering for different error rates (One-vs-all 
re-identification). Note that the first line is the baseline.

Error Singling out 
Success

Sensitivity Specificity

Mean Std. dev. Min Max Mean Std. dev. Min Max

0% 1.00 0.99 0.02 0.91 1.00 0.96 0.15 0.71 1.00
10% 1.00 0.97 0.03 0.84 1.00 0.96 0.05 0.74 1.00
40% 1.00 0.93 0.13 0.51 1.00 0.96 0.03 0.88 1.00

Table 9
Effects of low pass filtering on our location tracking algorithm.

Test case Allowed 
reconstruction 
error

Average trajectory 
reconstruction 
error (meter)

Std. deviation of 
error (meter)

Endpoint 
reconstruction 
error (meter)

C1 (Fig. 8a) 10% 8.63 9.07 8.45
C1 (Fig. 8b) 20% 8.25 7.33 12.9
C1 (Fig. 8c) 40% 47.71 74.23 602.64
C2 (Fig. 17a) 10% 8.71 8.94 11.43
C2 (Fig. 17b) 20% 10.98 11.9 13.37
C2 (Fig. 17c) 40% 175.08 159.73 589.17
C3 (Fig. 19a) 10% 7.01 5.92 9.36
C3 (Fig. 19a) 20% 7.58 5.93 8.16
C3 (Fig. 19a) 40% 207.08 151.12 124.05
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records that are covered by the sum query. Therefore, the answers 
to a set of queries q1, . . . , qk is given by the following matrix-
vector product Q W · x:⎡
⎢⎣

q1(D)
...

qk(D)

⎤
⎥⎦ =

⎡
⎢⎣

φ1(id1) . . . φ1(idn)
...

. . .
...

φk(id1) . . . φk(idn)

⎤
⎥⎦

⎡
⎢⎣

x1
...

xn

⎤
⎥⎦ (2)

where Q W is a binary matrix. In order to check whether any xi is 
revealed by the query results q1(D), . . . , qk(D), the adversary tries 
to solve Equation (2) for any xi . Since this is a system of linear 
equations and xi ∈ R, this can be done in polynomial time using 
any LP solver.15 In case idi is not unique to record i, i.e. there exists 
j such that idi = id j , then matrix Q w becomes singular and Equa-
tion (1) cannot be solved uniquely but only approximated (e.g., 
with ordinary least square). Similarly, in case f is a non-linear 
function (e.g., MIN, MAX, MEDIAN) or xi ∈ Z, then query audit-
ing is not guaranteed to run in polynomial time but can only be 
approximated with some heuristics [44].

Results We implemented the above reconstruction attack and 
tested on our dataset with 33 drivers. After dropping out records 
with identical identifiers, we obtained 28 drivers each with a 
unique combination of age, sex, and experience. Then, we gen-
erated random queries (i.e., each query covered a random subset 
of records), and attempted to solve the obtained system of equa-
tions given in Equation (2). Only 100 random queries allowed the 
complete reconstruction of the private attributes values (average 
speed) of all the 28 drivers.16

A possible defense against the above reconstruction attack is 
query auditing [45]. Here, the data controller keeps track of all 
answered queries and allows/denies a new query by checking if 
answering the new query allowed to solve Equation (2) for any 
xi . However, query auditing has a few drawbacks. First, even if it 
runs in polynomial time, it is often not scalable to many queries. 
Second, non-linear aggregation function, or aggregation on integer-
valued private attributes cannot always be audited efficiently but 
only approximated, as discussed above, without strong guarantees. 
Finally, query auditing cannot take into account all possible adver-
sarial auxiliary knowledge. For example, the adversary may be able 
to squeeze the possible ranges of private attribute values which in-
troduces extra (convex) constraints in Equation (2) providing more 
accurate solutions (e.g., it knows that Bob never drives faster than 
60 km/h, or the solution space x is sparse). A more promising ap-
proach is to add random noise to the query results and return 
these noisy results to the querier. Assuming that all adversarial 
auxiliary knowledge is known to the data controller, such approach 
can still be audited by solving a system of inequalities [46], which 
provides a lower bound on the variance of the added noise that 
are necessary to avoid full disclosure. This approach initiated the 
development of Differential Privacy.

7.4. Differential privacy

Differential privacy [47] (DP) ensures that the outcome of any 
computation on a database is insensitive to the change of a single 

15 Gauss elimination solves a system of linear equations in O(n3) steps, or LU
decomposition with Strassen multiplication in O(n2.8) steps. However, in order to 
unambiguously solve the system, the Q W matrix has to be non-singular, i.e. each 
query (row) must be linearly independent. Finding a maximal set of linearly in-
dependent query vectors requires O(n2k) time, thus the private x vector can be 
reconstructed in polynomial time.
16 Note that we generate queries only with semantically meaningful predicates, 

and hence not all queries may be linearly independent. This means that we are 
likely to generate more than 28 queries for complete reconstruction.

record. It follows that any information that can be learned from 
the database with a record can also be learned from the one with-
out that particular record. In our case, DP guarantees that a query 
is not affected by any single record (driver) beyond the privacy 
budget measured by ε and δ, which can be computed as follows.

Definition 7.2 ((ε, δ)-Differential Privacy [48]). A privacy mecha-
nism M gives (ε, δ)-Differential Privacy if for any database D1 and 
D2 differing on at most one record and for any subset of outputs 
S ⊆ Range(M):

Pr[M(D1) ∈ S] ≤ eε Pr[M(D2) ∈ S] + δ

Intuitively, a privacy mechanism M satisfying Definition 7.2
does not release any information that is specific to any single 
record in dataset D up to ε and δ, where δ is preferably smaller 
than 1/|D| [48]. Importantly, unlike earlier anonymization tech-
niques, this DP provides a worst-case guarantee independently of 
what the adversary knows; (ε, δ) holds for any individual both in-
side and outside dataset D , no matter what auxiliary knowledge 
the adversary has.

It follows immediately from Definition 7.2 that (ε, 0)-differen-
tial privacy composes in a straightforward way: the composition 
of k (ε, 0)-differentially private mechanisms is (kε, 0)-differentially 
private. For any δ > 0, the k-fold adaptive composition satisfies 
(ε′, δ′)-DP, where ε′ = 2ε

√
2k log(1/δ′) [49]. Moreover, any pro-

cessing of the output of a differentially private mechanism M does 
not degrade its privacy guarantee, which is often referred to as the 
post-processing property of DP [47].

A fundamental concept for achieving differential privacy is the 
global sensitivity of a function [47]:

Definition 7.3 (Global Lp -sensitivity [49]). For any function f : D →
Rd , the Lp-sensitivity of f is 	 f = maxD1,D2 || f (D1) − f (D2)||p

for all D1, D2 differing in at most one record, where || · ||p denotes 
the Lp-norm.

There are several techniques to achieve (ε, δ)-DP. For simplic-
ity, we focus on the stronger privacy-preserving case when δ = 0
and use the Laplace Mechanism [49], which adds Laplacian noise 
to the true output of a function. In particular, for any function 
f : D → Rn , the Laplace mechanism is defined as adding i.i.d. 
Laplacian noise with variance 	1 f /ε and zero mean to each co-
ordinate value of f (D). Specifically, if M(D) = f (D) + [z1, . . . , zn], 
where zi ∼ L(λ) and pdfL(x) = (1/2λ) exp(−|x|/λ), then mecha-
nism M provably satisfies (ε, 0)-DP [49].

Although the Laplace mechanism suggests that DP can only be 
used to release aggregate data about a dataset without degrad-
ing utility too much, we can apply the same (attack) technique 
described in Section 7.3 on the noisy aggregates in order to ap-
proximate the individual private attribute values and release this 
approximation as “synthetic” dataset. As this reconstruction step is 
applied on the already differentially private aggregates as a post-
processing step, it does not degrade the privacy guarantee.

7.4.1. Evaluation
We continue the example from Section 7.3 and attempt to an-

swer counting queries over our dataset while providing the guar-
antee of Differential Privacy. Counting queries return the number 
of drivers satisfying a specified predicate over all possible at-
tributes of the dataset. For instance,

SELECT COUNT(*) WHERE AGE < 32 AND AGE > 20 AND SEX = ’Male’
AND EXPERIENCE = 1 and AVG_SPEED < 50 AND AVG_SPEED > 30
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Fig. 9. Utility metrics for random range queries as a function of ε and the number of queries k.

Fig. 10. Utility metrics for attribute reconstruction as a function of ε and the number of queries k.

is a valid counting (range) query over all attributes. It easy to see 
that counting queries are universal, i.e. they can be used to answer 
any other aggregate queries (such as SUM over any attribute).

Before, we have seen a general recipe to release any query re-
sult, that is, adding properly calibrated noise to the answer to be 
released, also referred to as the Laplace Mechanism (LM): q′

i(D) :=
qi(D) + zi , where zi ∼L(	( f )/ε), 	( f ) is the sensitivity of the ag-
gregation function f , and ε is the privacy parameter (δ = 0). The 
sensitivity of any counting query is 1 in any dataset, since chang-
ing a single driver’s data changes any query result with a value at 
most 1. For k queries that need to be answered independently in 
an interactive (on-line) manner, this technique guarantees (k · ε)-
DP due to the composition property of DP. In the non-interactive 
(off-line) case, when queries are answered in batches and hence 
are known in advance, a tighter upper bound of the sensitivity of 
all query answers can be computed by calculating the largest num-
ber of queries of the batch that cover the same record.

LM often provides quite inaccurate noisy results if we have 
too many queries to answer. There are several more sophisticated 
approaches in the literature [49], here we utilize a standard ap-
proach, called MWEM [50]. MWEM only works in the off-line 
setting, while LM can be applied both in the on-line and off-
line cases. MWEM optimizes the answers to all the given queries 
at once, while LM can answer each query independently and 
hence consecutively. MWEM creates a synthetic multi-dimensional 
noisy histogram (data cube) where each bin is assigned to a 
combination of attribute values and stores the number of occur-
rences of that combination in the whole dataset.17 Starting from 
a rough estimation of this data cube, MWEM iteratively refines 
that to improve the answers to the given set of queries with-
out violating (ε, δ)-DP. The worst absolute error of LM over all 
queries scales with O(n−1k log(k))/ε), while MWEM has an er-
ror of O(n2/3(log(h) log(k)/ε)1/3) with k queries, n records, and 
a histogram (data cube) with size h [49,50]. In other words, 

17 In our case, the four attributes, i.e. age, sex, experience, average velocity, each 
discretized into 2, 50, 3, 64 value ranges, respectively, results in a histogram with a 
size of 19 200.

MWEM overcomes LM if k >> n (i.e., there are significantly more 
queries than records), or ε is small (i.e., the privacy guarantee is 
stronger).

We also approximate the private attribute values xi from the 
set of noisy aggregates answered by the above two mechanisms. To 
this end, the following constrained convex optimization problem is 
solved when LM is used: x′ = arg minx |QW ·x −q′|, where 0 ≤ xi ≤
60 for all i, q′ = [q′

1(D), . . . , q′
k(D)] denote the noisy query results, 

and x′ are the approximated (“synthetic”) private attribute values 
which correspond to the maximum likelihood estimation (MLE) of 
xi when the additive noise is Laplacian. Since MWEM maintains 
a (noisy) synthetic dataset (or synopsis) that is used to answer a 
specified set of input queries, the explicit reconstruction of x is 
unnecessary and can be retrieved directly from this synopsis.

Utility metrics: Recall that k denotes the number of all queries to 
be answered. The utility of the released differentially private ag-
gregate and reconstructed “synthetic” data x′ is measured with the 
following metrics:

• Average absolute query error: the average of all absolute distances 
between the original and the noisy query results; 

∑k
i=1 |qi − q′

i |• Average relative query error: the average of all absolute distances 
between the original and the noisy query result relative to the 
original query result; 

∑k
i=1

|qi−q′
i |

qi• Average absolute reconstruction error: the average of all absolute 
distances between the original private attribute value and its 
reconstructed counterpart; 

∑n
i=1 |xi − x′

i |• Average relative reconstruction error: the average of all rela-
tive distances between the original private attribute value and 
its reconstructed counterpart relative to the original value; ∑n

i=1
|xi−x′

i |
xi

Results: We generated k random counting range queries for this 
experiment (i.e., a query predicate includes a random range of 
every attribute), where k can be 28 or 112, and calculated the 
four utility metrics as a function of ε. The results are shown in 
Fig. 9 and 10. The overall tendency is conspicuous, the higher 
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the ε the lower the error gets. Indeed, lower ε implies stronger 
privacy guarantee which in turn requires larger amount of noise. 
This is especially true for queries with low support typically with 
small datasets. Nonetheless, a large vehicle management company 
is likely to work with several magnitude larger number of drivers 
entailing potentially better utility and making Differential Privacy 
a more appealing solution. MWEM is clearly superior to LM if the 
privacy guarantee is stronger (i.e., ε is small) or the number of 
queries is large. The empirical results are perfectly in line with the 
theoretical accuracy bounds described above; the difference be-
tween the accuracy of MWEM and LM gets larger as the number 
of queries increases, but smaller if ε increases.

The accuracy of the reconstructed average velocity value per 
driver is shown in Fig. 10. In general, the reconstruction is inac-
curate for both mechanisms due to the small size of the dataset, 
but MWEM is again more accurate than LM for more stringent pri-
vacy guarantees (ε < 2) and has the best relative accuracy of 0.75, 
whereas LM only falls below 1.0 when the number of queries is 
relatively smaller. Therefore, even if the accuracy of reconstruction 
is expected to increase when the number of linearly indepen-
dent queries also increases, the larger number of queries also have 
larger sensitivity and therefore require to add a larger amount of 
noise to the query results in order to satisfy DP.

8. Conclusion

We showed that CAN logs carry personal and sensitive in-
formation and are therefore subject to privacy regulations. We 
first reconstructed the potentially sensitive trajectory of the vehi-
cle from different sensor measurements other than the exact GPS 
coordinates. Our attack does not rely on any special background 
knowledge for trajectory reconstruction besides the speed, steering 
wheel position, and the starting location of the vehicle. In addi-
tion, our reconstruction technique is simple and efficient, and can 
also serve as a useful forensics tool, e.g., in case of accident recon-
struction. Our second attack re-identifies the driver among several 
others with an average accuracy of more than 0.97 utilizing a ma-
chine learning model trained on some already available raw CAN 
data of the driver. As these attacks are feasible under mild assump-
tions, even unprocessed raw CAN logs are undoubtedly regarded as 
personal data according to most privacy regulations.

Our attacks exploit the subtle dependencies among different 
sensor measurements which makes their anonymization, as well 
as consent control, challenging. Indeed, we also showed that naive 
de-identification approaches, such as suppression, aggregation, 
smoothing or low-pass filtering, either do not provide a strong 
worst-case privacy guarantee to every single individual or they 
yield very inaccurate data. Therefore, we advocate the applica-
tion of more principled approaches, such as Differential Privacy, 
to anonymize aggregated CAN logs, and provide identical privacy 
guarantees to every single driver irrespective of any background 
knowledge of the adversary. On the other hand, Differential Pri-
vacy generally provides meaningful utility only with a sufficiently 
large number of drivers, and can be used for synthetic data gen-
eration indirectly through the post-processing of already noisy 
aggregates. Therefore, further research is needed to improve the 
accuracy of the differentially private release of CAN data with suf-
ficiently strong privacy guarantees.

Finally, instead of data anonymization, data controllers may 
rather ask for the consent of drivers in order to process or share 
their vehicular data, and still remain compliant with privacy reg-
ulations. Even if fine-grained controls to review and grant permis-
sions to certain signals are provided to drivers with the description 
of how data will be shared and used, there is usually less explana-
tion on how much data they can share without revealing sensitive 
information due to the interdependency of different signals or at-

tributes. However, in the spirit of the GDPR, providing informed
consent should also entail the comprehension of such potential 
privacy implications.

Our solutions have some limitations. First, our trajectory recon-
struction needs to access the exact initial location and heading of 
the vehicle as well as the steering wheel angle and speed signals 
extracted from the CAN data. It is an open question how to relax 
these assumptions without significantly degrading reconstruction 
accuracy. Second, our driver re-identification technique assumes 
the availability of some training data about the drivers to be re-
identified. Prior works [13] have relaxed this assumption only at 
the cost of accuracy degradation. Finally, releasing CAN data with 
Differential Privacy guarantees entails significant utility loss unless 
the data to be released are adequately large. Further research is 
needed to provide better privacy-utility trade-off with meaningful 
privacy guarantees.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

We plan to release our source codes and datasets upon accep-
tance of our manuscript.

Acknowledgements

Project no. 138903 has been implemented with the support 
provided by the Ministry of Innovation and Technology from the 
NRDI Fund, financed under the FK_21 funding scheme. The re-
search was supported by the Ministry of Innovation and Technol-
ogy NRDI Office within the framework of the Artificial Intelligence 
National Laboratory Program.

Appendix A. Table of substantial notations

General
D Dataset
R Region

Microtracking
β Wheel position (angle)
L Length of vehicle
R Radius

Macrotracking
ω Weight
γ Distance threshold to the nearest intersection
Ci Test case identifier

Re-identification
K Number of all time series
T Time series
si i-th segment of a time series
hi i-th hidden state of the LSTM

T P True positive
T N True negative
F P False positive
F N False negative

P Number of all positives
N Number of all negatives

Defense
xi i-th private attribute

q(D) Query on dataset
f Aggregate function

idi i-th identifying information
W Set of all possible identifiers

(ε, δ) Parameters of differential privacy
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Appendix B. Mixture model

Fig. 11. Mixture model.

Appendix C. Effect of smoothing and low-pass filtering on macrotracking

Fig. 12. C2 test case macrotracking results on smoothed data without map.

Fig. 13. C2 test case macrotracking results on smoothed data with map.
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Fig. 14. C3 test case macrotracking results on smoothed data without map.

Fig. 15. C3 test case macrotracking results on smoothed data with map.

Fig. 16. C2 test case macrotracking results on low pass filtered data without map.

Fig. 17. C2 test case macrotracking results on low pass filtered data with map.

Fig. 18. C3 test case macrotracking results on low pass filtered data without map.
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Fig. 19. C3 test case macrotracking results on low pass filtered data with map.
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