
Differentially Private Histogram Publishing
through Lossy Compression

Gergely Acs
INRIA
France

gergely.acs@inria.fr

Claude Castelluccia
INRIA
France

claude.castelluccia@inria.fr

Rui Chen∗

Concordia University
Montreal, QC, Canada

ru che@encs.concordia.ca

Abstract—Differential privacy has emerged as one of the
most promising privacy models for private data release. It can
be used to release different types of data, and, in particular,
histograms, which provide useful summaries of a dataset. Several
differentially private histogram releasing schemes have been
proposed recently. However, most of them directly add noise to
the histogram counts, resulting in undesirable accuracy.

In this paper, we propose two sanitization techniques that
exploit the inherent redundancy of real-life datasets in order to
boost the accuracy of histograms. They lossily compress the data
and sanitize the compressed data. Our first scheme is an optimiza-
tion of the Fourier Perturbation Algorithm (FPA) presented in
[13]. It improves the accuracy of the initial FPA by a factor of 10.
The other scheme relies on clustering and exploits the redundancy
between bins. Our extensive experimental evaluation over various
real-life and synthetic datasets demonstrates that our techniques
preserve very accurate distributions and considerably improve
the accuracy of range queries over attributed histograms.

Keywords-Differential privacy, histogram, lossy compression,
Fourier transform, clustering

I. INTRODUCTION

With the general trend of digitalization, data from various
application domains, such as retailing companies, healthcare
departments, public transit agencies and online social net-
works, have been widely generated and collected in recent
years, and have opened the possibility to conduct different
data mining tasks. When aggregated, such data can help un-
derstand complex processes (e.g., the spread of viruses), build
better transportation systems, and prevent traffic congestion,
among others. While the benefits provided by these data are
indisputable, they unfortunately pose a considerable threat
to privacy. This not only negatively impacts people’s daily
lives, but also hinders the advance of research. Privacy is
so important that companies and researchers are reluctant
to publish datasets by fear of being held responsible for
potential privacy breaches. As a result, only very few datasets
are released and available. This limits our ability to analyze
such data to derive information that could benefit the general
public. It is then urgent to develop tools for privately releasing
datasets.

This paper considers the problem of private histogram
releasing. A histograms is typically defined over a specific
domain and a dataset. It summarizes the occurrence counts of
∗ This work was done when the author was on an internship at INRIA

Name Disease

Bob

Ann

Frank

Steven

Lucy

David

Alice

...

Flu

HIV

Flu

Flu

Cancer

Fever

Fever

...

5

3

4

3

4

5

1

3

1

2

4

2 2

1

2

3

4

5

1

3

1

2

4

2 2

0

1

2

3

4

5

1

3

1

2

4

2 2

0

1

2

3

4

5

1

3

1

2

4

2 2

0

1

2

3

4

5

1

3

1

2

4

2 2

0

1

2

3

4

5

(a) Patient table (b) The histogram

Fig. 1. Sample patient table and its corresponding histogram

domain values over the dataset. For example, if the domain
is a set of diseases D (such as cancer, flu, HIV, hepatitis,
etc.), then a histogram over a patient dataset assigns the
number of patients with disease d ∈ D in the dataset to
d. Given the disease information of 15 patients in Figure 1
(a), Figure 1 (b) presents its corresponding histogram on the
attribute Disease. This histogram provides useful statistical
summaries of the disease distribution in a given population.
However, a histogram inevitably leaks sensitive information
about the underlying dataset. For example, if the adversary
knows the diseases of 14 patients, he can easily infer the
disease of the last patient from the released histogram.

To prevent such information leakage, histograms must be
sanitized before release. Although different privacy models
can be used, one of the only models that provide provable
privacy guarantees is differential privacy [3]. The main idea
of differential privacy is to add sufficient noise to each his-
togram count so that an adversary cannot decide whether the
information of a particular record owner was used to generate
the sanitized histogram or not. The variance of the noise
injected must be carefully calibrated to both the sensitivity
of a function (i.e., the maximal change of the function due
to the inclusion/exclusion of a single record in a dataset)
and a desired privacy level ε. For a more stringent privacy
requirement (e.g., ε = 0.01 or ε = 0.1), the added noise often
substantially degrades the accuracy of the sanitized histogram.

In this paper, instead of directly adding noise to histogram
counts, we consider lossy compression techniques that ex-
ploit the lower sensitivity of compressed data to reduce the
magnitude of noise. A lossy compression mechanism first
lossily compresses the data, then adds noise calibrated to the
(lower) sensitivity of the compressed data. In this process,

there are two sources of errors: the error introduced by lossy
compression, called reconstruction error, and the error due
to added noise, called perturbation error. Hence, the final
utility of a released histogram is determined by the trade-off
between reconstruction error and perturbation error. A more
lossy compression increases reconstruction error, but requires
less noise to be injected due to the decreased sensitivity; a
less lossy compression affects the two types of errors in the
opposite way. Since in practice many real-life data are highly-
compressible (e.g., contain many similar counts), the idea of
lossy compression exhibits great promise for achieving better
utility.

Following this idea, we propose two novel algorithms that
significantly outperform the state-of-the-art techniques [3],
[13], [14], [7], [5], [16]. We summarize our contributions as
follows.

1) We propose an enhanced version of the Fourier Perturba-
tion Algorithm (FPA) defined in [13], called EFPA. Our
scheme applies the Fourier transform to a histogram and
compresses it by removing high-frequency components
using the exponential mechanism. We improve the per-
formance of FPA by designing a more accurate score
function for the exponential mechanism and exploiting
the intrinsic correlation among the Fourier coefficients
of real-valued histograms. Experimental results show a
utility improvement by a factor of 10.

2) We propose P-HPartition that uses a divisible hierar-
chical clustering (partitioning) scheme to compress his-
tograms. The intuition is that histogram bins belonging
to the same cluster have similar counts, and hence can be
approximated by their mean value (i.e., cluster center).
It is often sufficient to release only the noisy cluster
centers, which have a smaller sensitivity. P-HPartition
outperforms the existing schemes over different datasets
in terms of both KL-divergence and range count queries.

The rest of the paper is structured as follows: Section II
summarizes the related works. Section III presents the pre-
liminaries. Section IV describes our enhanced Fourier Per-
turbation Algorithm (EFPA). Section V motivates the use of
clustering for accuracy boosting and presents our clustering-
based sanitization algorithm, P-HPartition. Section VI reports
our experimental results. Section VII provides a discussion on
lossy compression. Section VIII concludes the paper.

II. RELATED WORK

Due to the importance of histograms, there have been
several recent works [3], [1], [14], [7], [9], [15], [13], [16], [10]
studying histogram release under differential privacy. Dwork et
al. [3] propose the Laplace mechanism, which lays the ground
for all subsequent works. As a naive solution, a histogram
can be differentially privately released by adding independent
Laplace noise to each bin. However, the resulting utility of
this solution is usually poor. Barak et al. [1] study how to
release accurate contingency tables under differential privacy.
They apply Laplace mechanism on the Fourier coefficients of
an input database and employ linear programming to create

non-negative contingency tables. Xiao et al. [14] propose
a histogram publishing technique called Privelet, which is
based on wavelet transforms. Privelet first applies a wavelet
transform on the input data and then adds polylogarithmic
noise to the transformed data. Hay et al. [7] point out that
constrained inference, as a post-processing step, is able to
improve the accuracy of histogram queries. Given a set of
consistency constraints, they show that for both unattributed
and universal histograms, it is possible to enforce these con-
straints on the noisy values returned by Laplace mechanism
in order to boost utility. Li et al. [9] propose the matrix
mechanism, which generalizes the techniques in [14] and [7].
Given a workload of queries, the matrix mechanism generates
a different set of queries (known as a query strategy), on which
Laplace noise is added. The answers to the workload queries
are then calculated based on the noisy answers of the query
strategy. This process involves a more complex combination
of linear noise, which allows more accurate query answers.
Xiao et al. [15] first generate a synthetic histogram by adding
Laplace noise to each bin of a histogram, and then conduct a
kd-tree based partitioning strategy to identify partitions that
are close to the uniform distribution in order to minimize
approximation errors. Rastogi and Nath [13] show that, for
n queries over time-series, the magnitude of noise can be
reduced by just retaining the first k Fourier coefficients of the
true query answers. In this case, Laplace noise is only added
to k coefficients, resulting in much smaller Laplace noise at
the cost of small reconstruction error. Xu et al. [16] exploit
the idea of clustering to lower the magnitude of noise in a
released histogram, however, as discussed in Section V-C, their
approaches suffer from several drawbacks. Compared with the
above works [3], [1], [14], [7], [9], [15], [13], [16], the major
contribution of our paper is the significant utility improvement,
as demonstrated in Section VI. Another recent sanitization
technique based on the idea of compression was proposed in
[10]. However, it is only applicable to sparse datasets, and in
general, cannot exploit other types of redundancy in datasets
(e.g., the similarity among non-zero counts).

III. PRELIMINARIES

A. Attributed and Unattributed Histograms

Histograms are commonly used in statistical analysis to
provide a summarized representation of the distribution of an
attribute in a database. Given an attribute X with the value
set V (either numerical or nominal) in a database D, one can
construct a frequency vector of size |V| with the ith element
being the number of tuples t ∈ D with t.X = vi ∈ V . A
histogram H over the attribute X is constructed by partitioning
the frequency vector into a set of bins {H1, · · · , Hn}, where
each Hi specifies a range of values it covers, and assigns each
value a representative count (i.e., the average). The bins are
usually specified as consecutive, non-overlapping intervals of
the attribute and satisfy the condition: |D| =

∑n
i=1Hi, where

|D| is the total number of records in D.
In practice, two types of histograms are widely used, namely

unattributed histogram and attributed histogram [7]. In an

unattributed histogram, the semantic meaning of each bin is
irrelevant to the analysis, and, therefore, the histogram can
be viewed as a multiset of counts. An unattributed histogram
is typically used to study the distribution of a given attribute
and to answer different aggregate queries such as the mean
or variance. In contrast, an attributed histogram retains the
semantic meaning of each bin and can be used to answer
various kinds of queries (e.g., range queries). In this paper,
we propose different algorithms for both types of histograms.

B. Differential Privacy

Differential privacy, in general, requires that the outcome
of any computation be insensitive to the change of a single
record. It follows that any information that can be learned from
the database with a record can also be learned from the one
without this record. Consequently, for a record owner, it means
that any privacy breach will not be a result of participating
in the database with high probability. Formally, differential
privacy [3] is defined below.

Definition 1 (Differential Privacy) A privacy mechanism A
gives ε-differential privacy if for any database D1 and D2

differing on at most one record, and for any possible output
O ∈ Range(A),

Pr[A(D1) = O] ≤ eε × Pr[A(D2) = O]

where the probability is taken over the randomness of A.

Two principal techniques for achieving differential privacy
are Laplace mechanism [3] (also known as Laplace Pertur-
bation Algorithm (LPA)) and exponential mechanism [12].
A fundamental concept of both techniques is the global
sensitivity of a function [3] that maps underlying databases
to (vectors of) reals.

Definition 2 (Global Sensitivity) For any function f : D →
Rd, the sensitivity of f is ∆f = maxD1,D2 ||f(D1)−f(D2)||1
for all D1,D2 differing in at most one record.

The global sensitivity is also called as L1-sensitivity due to
the L1-norm used in its definition and is denoted by ∆1f .
Similarly, the L2-sensitivity ∆2f of a function f , which is
used later in this paper, is defined by the L2-norm || · ||2.

Laplace mechanism (LPA). For the analysis whose outputs
are real, a standard mechanism to achieve differential privacy
is to add Laplace noise to the true output of a function. Dwork
et al. [3] propose the Laplace mechanism which takes as inputs
a database D, a function f , and the privacy parameter ε. The
noise is generated according to a Laplace distribution with the
probability density function p(x|λ) = 1

2λe
−|x|/λ, where λ is

determined by both ∆f and the desired privacy parameter ε.

Theorem 1 For any function f : D → Rd, the mechanism A

A(D) = f(D) + 〈L1(∆f/ε), . . . ,Ld(∆f/ε)〉

gives ε-differential privacy, where Li(∆f/ε) are i.i.d Laplace
variables with scale parameter ∆f/ε.

Exponential mechanism. For the analysis whose outputs are
not real or make no sense after adding noise, McSherry
and Talwar [12] propose the exponential mechanism that
selects an output from the output domain, r ∈ R, by taking
into consideration its score of a given utility function u in
a differentially private manner. The exponential mechanism
assigns exponentially greater probabilities of being selected
to outputs of higher scores so that the final output would be
close to the optimum with respect to u. The chosen utility
function u should be insensitive to changes of any particular
record, that is, has a low sensitivity. Let the sensitivity of u
be ∆u = max∀r,D1,D2

|u(D1, r)− u(D2, r)|.

Theorem 2 Given a utility function u : (D ×R) → R for a
database D, the mechanism A,

A(D, u) =

{
return r with probability ∝ exp

(
εu(D, r)

2∆u

)}
gives ε-differential privacy.

The definition of differential privacy enjoys two composition
properties [11]: sequential composition and parallel composi-
tion, which specify the privacy guarantees in a sequence of
computation.

C. Utility Metrics
In this paper, we measure the utility of a released histogram

in terms of mean squared error (MSE) and Kullback-Leibler
divergence (KL-divergence).

Mean squared error. The utility of a set of range count
queries Q = {Q1, Q2, · · · , Qn} over a sanitized histogram
Ĥ is commonly measured by the mean squared error
(MSE). The MSE of Q is formalized as MSE(H, Ĥ,Q) =∑n

i=1 (Qi(Ĥ)−Qi(H))2

n , where Qi(H) (or Qi(Ĥ)) returns the
answer of Qi on H (or Ĥ).

KL-divergence. For many applications, it is of importance
to make sure that the sanitized histogram Ĥ has a similar
probability distribution as that of H . The difference of the
two probability distributions of H and Ĥ could be measured
by KL-divergence: DKL(H||Ĥ) =

∑n
i=1Hi log Hi

Ĥi
, where n

is the number of bins in H . If H = Ĥ , then DKL(H||Ĥ) = 0.
We follow the standard convention that 0 log 0 = 0.

IV. FOURIER TRANSFORM BASED SANITIZATION

Consider a histogram H with bins {H1, H2, . . . ,Hn}. One
naive solution to our problem is using LPA to add independent
Laplace noise to each bin’s count and to release the results:
Ĥ = {H1 +L(1/ε), . . . ,Hn +L(1/ε)}, where the sensitivity
of a count query is 1 (because each bin is independent of
others). Yet this simple approach usually leads to excessive
noise, rendering the released histogram useless.

Rastogi and Nath [13] indicate that Fourier perturbation
could be an effective tool for reducing noise in time-series un-
der differential privacy. In this paper, we consider a histogram
as a time-series and develop an enhanced Fourier Perturbation
Algorithm (EFPA), which substantially reduces the magnitude
of added noise.

A. Background: Perturbation via Fourier Transform

1) Discrete Fourier Transform: The discrete Fourier trans-
form (DFT) is an invertible, linear transformation that de-
composes a function in the time domain into its constituent
frequencies. It has been widely used in image processing
and signal processing. Given an n-dimensional vector of real
or complex numbers X = 〈X0, . . . , Xn−1〉, DFT transforms
X into another n-dimensional vector of complex numbers
F = 〈F0, . . . , Fn−1〉 according to the formula given below:

Fi =
1√
n

n−1∑
j=0

Xj · e−
2π
n ji
√
−1.

X can be losslessly recovered by applying the inverse
discrete Fourier transform (IDFT) from F as follow:

Xi =
1√
n

n−1∑
j=0

Fj · e+
2π
n ji
√
−1.

If X is real-valued (as it is in our case),

Fi = F ∗n−i, for i =

{
1, . . . , (n− 1)/2 if n is odd
1, . . . , n/2− 1 if n is even

where F ∗n−i denotes the complex conjugate of Fn−i. There-
fore, the output of DFT is half-redundant, and the vector
DFTreal(X) = 〈F0, . . . , Fm〉 is sufficient to recover X =
IDFTreal(DFTreal(X)), where m = (n + 1)/2 if n is odd, or
m = n/2 + 1 otherwise. In practice, DFTreal and IDFTreal can
be efficiently computed using a fast Fourier transform (FFT)
algorithm in O(n log n).

2) Basic Fourier Perturbation Algorithm (FPA): The basic
Fourier Perturbation Algorithm (FPA) [13] works as follows:

1) Compute the DFT coefficients F = DFT(H) of a
given histogram H with length n by discrete Fourier
transform. The length of F is also n.

2) Remove the last n−k coefficients from F, which corre-
spond to the high-frequency components in H , whereas
the first k elements of F, denoted by Fk, preserve the low
frequencies in H , and therefore represent the high-level
trends of H . Note that k is an input to the algorithm.

3) Generate the noisy version of Fk, denoted by F̂
k
, by

Laplace mechanism: add i.i.d Laplace noise L(
√
k/ε)

to each coefficient in Fk.
4) Pad F̂

k
to be a n-dimensional vector by appending n−

k zeros, which is denoted by PADn(F̂
k
). Finally, the

inverse DFT is applied to PADn(F̂
k
) to obtain a noisy

version of H .
The noise injection in Step 3 is justified by the following

theorem.

Theorem 3 ([13]) Let ∆2(H) denote the L2-sensitivity of a
histogram H , and let ∆1(Fk) denote the L1-sensitivity of its
first k DFT coefficients Fk. Then, ∆1(Fk) ≤

√
k∆2(H).

FPA provably satisfies ε-differential privacy [13]. We denote
the absolute error of a single bin Hi in H by E|Hi− Ĥi| and

Algorithm 1 Sampling Perturbation (SPA)
Input: Raw histogram H with length n, where n is odd
Input: Privacy budget ε
Output: Noisy histogram Ĥ with length n

1: F := DFT(H)

2: ∀1 ≤ k ≤ n, compute U(H, k) =
√∑n

i=k+1 |Fi−1|2 + k
√
n

ε

3: Select k with probability ∝ exp
(
− ε·U(H,k)√

2

)
4: g := G(ε2/2, (k + 1)/2)

5: F̂
k
:= Fk + 〈N (0,

√
g)〉k

6: return Ĥ = IDFT(PADn(F̂
k
))

the reconstruction error due to ignoring n− k coefficients by
REki (Hi). Theorem 4 quantifies the absolute error of Ĥi.

Theorem 4 ([13]) ∀1 ≤ i ≤ n, E|Hi − Ĥi| ≤ REki (Hi) +
k
nε .

3) Sampling Perturbation Algorithm (SPA): In FPA, the
number of coefficients to retain, k, in Step 2 is given as an
input. However, the choice of a good value of k is critical
to the utility of FPA. Theorem 4 shows that the total error is
composed of two parts: the perturbation error k

nε due to adding
Laplace noise to Fk and the reconstruction error REki (Hi) due
to ignoring n − k DFT coefficients. There is a fundamental
trade-off between the perturbation error and the reconstruction
error: when k is larger, perturbation error increases while
reconstruction error decreases; when k is smaller, these two
types of errors behave oppositely. This fact suggests that k
has to be carefully selected so that the total error can be
minimized.

Rastogi and Nath [13] also propose an extension to FPA,
called Sampling Perturbation Algorithm (SPA), to select k
adaptively depending on a dataset. SPA (given in Algorithm 1)
uses exponential mechanism to select a value of k by the utility
function −U(H, k), where

U(H, k) =

(
n∑

i=k+1

|Fi−1|2
) 1

2

+
k
√
n

ε
. (1)

SPA samples both k and the perturbed F̂
k

using exponential
mechanism. The sampling of F̂

k
from a multidimensional

hyperbolic distribution is done by first sampling g from a
gamma distribution G(ε2/2, (k + 1)/2), and then perturbing
Fk with i.i.d Gaussian noise N (0,

√
g).

B. Our Proposal: Enhanced Fourier Perturbation Algorithm

SPA is sub-optimal due to at least two reasons: 1) the utility
function −U(H, k) overestimates the perturbation error; 2)
SPA disregards the fact that the coefficients of a real-valued
histogram are correlated. In the rest of this section, we discuss
these two issues in more details and design a more effective
perturbation scheme.

Utility function design. We reconsider the problem of select-
ing the first k coefficients from the perspective of denoising

in statistical signal processing [2]. We first precisely quantify
the sum of squared error (SSE) of FPA.

Lemma 1 Given Ĥ = FPA(H, ε), E||H − Ĥ||22 =∑n
i=k+1 |Fi−1|2 + 2k2

ε2 .

Proof: Since DFT is an orthonormal transformation, it
preserves the L2-norm. Hence, ||H − Ĥ||2 = ||F − F̂||2, and
therefore the sum of squared error of Ĥ is E||H − Ĥ||22 =
E||F − F̂||22. For the first k coefficients in F̂, we have F̂i =
Fi+L(

√
k/ε) (i ≤ k). Since L(

√
k/ε) is independently added

to both the real and imaginary part of Fi, the squared error is 2·
E[L(

√
k/ε)2] = 4k/ε2. For the rest n−k coefficients, the error

is |Fi−1|2 (i > k) due to the removal of these coefficients.
Therefore, the SSE of Ĥ is

E||H − Ĥ||22 = E||F− F̂||22 =

k∑
i=1

4k

ε2
+

n∑
i=k+1

|Fi−1|2

=

n∑
i=k+1

|Fi−1|2 +
4k2

ε2
(2)

Again, Lemma 1 indicates that the total error consists of the
perturbation error 4k2

ε2 due to adding Laplace noise to k DFT
coefficients and the reconstruction error

∑n
i=k+1 |Fi−1|2 due

to ignoring n−k DFT coefficients. Intuitively, we can observe
that the utility function −U(H, k) used by SPA overestimates
the perturbation error. If LPA is used to add noise to the first
k coefficients, the perturbation error can be much less than
k
√
n/ε.

Next, under this observation, we design a better utility func-
tion than −U(H, k), which more precisely estimates the true
root-sum-squared error (RSSE), if we perturb the coefficients
by LPA.

Theorem 5 For FPA,
E||H − Ĥ||2 ≤

√∑n
i=k+1 |Fi−1|2 + 2k

ε .

Proof:

E||H − Ĥ||2 = E
(√
||H − Ĥ||22

)
≤

√
E||H − Ĥ||22 (by Jensens’ inequality)

=

√√√√ n∑
i=k+1

|Fi−1|2 +
4k2

ε2
(by Lemma 1)

≤

√√√√ n∑
i=k+1

|Fi−1|2 +

√
4k2

ε2

where the last inequality is due to
√
a+ b ≤

√
a +
√
b. This

concludes the theorem.
Based on Theorem 5, we design our new utility function as

−u(H, k), where

u(H, k) =

√√√√ n∑
i=k+1

|Fi−1|2 +
2k

ε
. (3)

Algorithm 2 Enhanced Fourier Perturbation (EFPA)
Input: Raw histogram H with length n, where n is odd
Input: Privacy budget ε
Output: Noisy histogram Ĥ with length n

1: F := DFTreal(H)
2: m := |F| = (n+ 1)/2

3: Compute u(H, k) =
√∑m

i=k+1 2|Fi−1|2 + 2z
ε

for all 1 ≤ k ≤
m, where z = 2k + 1

4: Select k with probability ∝ exp
(
− ε·u(H,k)

4

)
5: z := 2k + 1
6: F̂

k
:= Fk + 〈L(2

√
z/ε)〉k

7: return Ĥ = IDFTreal(PADm(F̂
k
))

Using −u(H, k), exponential mechanism will favor a k value
that results in less RSSE. Theorem 5 shows that using
−u(H, k) to select k and perturbing the first k retained
coefficients by LPA (instead of using exponential mechanism
as SPA does) are expected to result in lower E||H−Ĥ||2 than
SPA.

The choice of using RSSE in −u(H, k) and −U(H, k)
deserves more explanation: although we could directly use
SSE,

∑n
i=k+1 |Fi−1|2 + 4k2

ε2 , as the utility function to select
k, the sensitivity of

∑n
i=k+1 |Fi−1|2 can be much larger than

that of RSSE. The sensitivity of
∑n
i=k+1 |Fi−1|2 is actually

data-dependent, since it is determined by max |Fi|. This can
result in very poor results if maxHi is large. By contrast, the
sensitivity of

√∑n
i=k+1 |Fi−1|2 is bounded by 1.

Theorem 6 ∆1u(H, k) = 1

Proof: ∆1u(H, k) = ∆1

(√∑n
i=k+1 |Fi−1|2

)
≤

∆1(||F||2). Consider two neighboring histograms H and H ′,
where DFT(H) = F and DFT(H ′) = F′. Since the L2-norm
(i.e., RSSE) is invariant under DFT, we obtain ||H||2 = ||F||2
and ||H ′||2 = ||F′||2. Hence,

∣∣ ||F||2 − ||F′||2 ∣∣ = | ||H||2 −
||H ′||2 | ≤ ||H −H ′||2 ≤ ||H −H ′||1 ≤ 1 due to the reverse
triangle inequality and the standard inequality between norms.

Figure 2 illustrates the utility improvement of EFPA over
SPA. since SPA consistently overestimates the perturbation
error, it always retains and perturbs fewer DFT coefficients,
leading to larger reconstruction error, whereas EFPA finds
a better trade-off between these errors, and therefore more
faithfully preserves the general shape of the original histogram.

Real DFT vs. Complex DFT. Both basic FPA and SPA con-
sider all DFT coefficients. However, the coefficients of real-
valued histograms are correlated as they are half-redundant
(i.e., F̂i = F̂ ∗n−i, for 1 ≤ i ≤ (n−1)/2). SPA does not exploit
this correlation and defines −U(H, k) over all coefficients.
This not only results in a complex-valued histogram, but also
accumulates the Laplace noise added to each coefficient on the
bins, making the scheme less effective. As a result, we apply
real DFT (i.e., DFTreal described in Section IV-A1) on the real-
valued input histogram, and perturb the resulted coefficients

Fig. 2. SPA vs. EFPA (ε = 0.1) on a location map (Location dataset in
Section VI) consisting of a grid with 88 × 87 cells. Each cell represents a
bin and is colored based on its (noisy) count.

with LPA, where the coefficients are selected by exponential
mechanism using the score function −u(H, k).

Our new algorithm, called enhanced FPA (EFPA), is sum-
marized in Algorithm 2. To ease presentation, we assume n
to be odd. As EFPA applies DFTreal on H , it operates on m
instead of n coefficients. k is selected in Line 4 by exponential
mechanism with budget ε/2. Then, EFPA perturbs each F ki
(0 ≤ i ≤ k − 1) with L(2

√
z/ε) in Line 6 (the real-valued

noise is only added to the magnitude of coefficients). Note
that the number of retained coefficients is z = 2k+ 1 because
except F k0 the complex conjugate of all other coefficients also
appears in the complete Fourier transform of H (see Section
IV-A1). Finally, F̂

k
is padded to a m-dimensional vector by

appending m−k zeros, denoted by PADm(F̂
k
), and the inverse

DFTreal is applied to obtain Ĥ . The total budget ε is uniformly
divided between LPA (Line 6) and exponential mechanism
(Line 4), therefore, EFPA is ε-differentially private due to the
sequential composition property [11].

V. CLUSTERING-BASED SANITIZATION

We start by giving the intuition why clustering can be used
for boosting accuracy. Consider a simple strategy: we first
cluster bins in H that have close values, and then replace the
count of each bin by the mean value of the cluster to which
it belongs (i.e., the cluster center) plus properly calibrated
Laplace noise. This strategy results in a smaller sensitivity
and therefore less perturbation error. If the counts within
each cluster are close enough (hence small reconstruction
error), this technique can lower the total error in the released
histogram (see Theorem 7 for a formal statement).

In particular, given k clusters C = {C1, . . . , Ck} over H’s
bins. We call C a cluster configuration of bins. Ideally, one
wants to form clusters such that the average distance between
each count and its cluster center, i.e.,

∑k
i=1

∑
Hj∈Ci |Hj−Ci|

is minimized, where Ci =
∑
Hj∈Ci Hj/|Ci|. Then, we can

obtain an approximation of H , denoted by HC, by replacing
each Hi in H with its cluster center. Now, let us assume for
the moment that we can form these clusters without violating
privacy. Having the approximated histogram HC, we add i.i.d
Laplace noise to each cluster center {C1 + L(1/ε)

|C1| , . . . , Ck +
L(1/ε)
|Ck| }, and finally release the noisy approximation ĤC of H ,

which is obtained by replacing each Hi in H with its noisy
cluster center. This idea is formalized in Algorithm 3.

We show that if a cluster configuration C is properly
selected (i.e., the bins within each Ci have close counts),
we can obtain better utility than LPA. Let err(Ĥi) denote

Algorithm 3 ReleaseHistogram
Input: Raw histogram H
Input: Privacy budget ε
Input: Cluster configuration C = {C1, . . . , Ck} of H
Output: Noisy histogram ĤC

1: Ci :=
∑

Hj∈Ci Hj/|Ci|
2: U := {C1 +

L(1/ε)
|C1|

, . . . , Ck + L(1/ε)
|Ck|

}

3: ĤC = {
n︷ ︸︸ ︷

U1, . . . , U1︸ ︷︷ ︸
|C1|

, U2, . . . , U2︸ ︷︷ ︸
|C2|

, . . . , Uk, . . . , Uk︸ ︷︷ ︸
|Ck|

}

4: return ĤC

the absolute error of the noisy count Ĥi of bin i in ĤC:
err(Ĥi) = E|Hi − Ĥi|, and err(ĤC) =

∑n
i=1 err(Ĥi).

Similarly, we denote the histogram generated by LPA by H̃ .

Theorem 7 Let ĤC denote a noisy approximation of H as
detailed above. Then, err(ĤC) ≤ REHC

+ k/ε, in contrast
to err(H̃) = n/ε.

Proof: The error of H̃ is E
(∑n

i=1 |Hi − H̃i|
)

= n/ε.

The error of ĤC can be calculated as follow:

E

(
n∑

i=1

|Hi − Ĥi|

)
=

k∑
i=1

∑
Hj∈Ci

E
∣∣∣∣Hj − Ci −

L(1/ε)
|Ci|

∣∣∣∣
≤

k∑
i=1

∑
Hj∈Ci

E|Hj − Ci|+

k∑
i=1

∑
Hj∈Ci

E|L(1/ε)|
|Ci|

=

k∑
i=1

∑
Hj∈Ci

|Hj − Ci|+ k/ε

The reconstruction error REHC
=
∑k
i=1

∑
Hj∈Ci |Hj − Ci|.

In the extreme case, where all counts in a cluster Ci have the
same value, err(Ĥj) = 1

|Ci|err(H̃j). For the entire histogram
H , our intuition is that if the number of clusters k � n and
the reconstruction error REHC

is small, ĤC will be much
closer to H than H̃ .

Slightly abusing the notation, let err(ĤC) denote REHC
+

k/ε in the sequel, and to simplify the notation we denote
err(ĤC) by err(C, ε) if it is unambiguous in the context.
Note that err(ĤC) has two parts: 1) the reconstruction error
REHC

due to the approximation of each bin count with its
cluster center, and (2) the perturbation error k/ε due to the
injected Laplace noise. There is a trade-off between them:
creating more clusters decreases the reconstruction error at
the cost of larger perturbation error. Clearly, there exists an
optimal clustering configuration such that the sum of the two
errors is minimal among all possible configurations for a given
H and ε.

Finding the optimal configuration is NP-hard. Instead, our
goal is to find a sub-optimal configuration without vio-

21 4 4 32 30 8

21 4 4 32 30 8

21 4 4 32 30 8

21 4 4 32 30 8

21 4 4 32 30 8

C4 = {{21}, {4, 4}, {32, 30}, {8}}

C5 = {{21}, {4, 4}, {32}, {30}, {8}}

C1 = {21, 4, 4, 32, 30, 8}

C2 = {{21, 4, 4}, {32, 30, 8}}

C3 = {{21, 4, 4}, {32, 30}, {8}}

Fig. 3. Operation of HPartition.

lating differential privacy. Indeed, we have omitted so far
the fact that clustering must also be differentially private.
Therefore, given the total privacy budget ε, we design a
ε
2 -differentially private clustering algorithm to compute a
configuration C, which minimizes err(C, ε2), the error of
ĤC = ReleaseHistogram(C, ε2).

A. HPartition: Hierarchical Partitioning of Histogram Bins

Our private clustering scheme is based on an incremental
partitioning algorithm called HPartition. HPartition finds the
sub-optimal partitions (clusters) by taking into consideration
two types of costs (i.e., errors) incurred in the partition process.
The first cost corresponds to the reconstruction error as defined
previously. It decreases as the number of partitions increases.
The second cost is quantified by perturbation error: creating
a new partition implies more Laplace noise to be added. We
assume for now that this cost is fixed and equals λ for each
new partition.

HPartition splits a histogram H = {H1, H2, . . . ,Hn}
into k partitions, Ck = {Ck1 , Ck2 , . . . , Ckk}, such that
err(Ck) = RECk + kλ is minimized, where RECk =∑k
i=1

∑
Hj∈Ci |Hj − Ci|. At the beginning, HPartition con-

siders the configuration with a single partition containing
all n bins, that is, C1 = {C1

1 = {H1, H2, . . . ,Hn}}.
For each of n − 1 possible bisections Bi(C

1
1) =

{{H1, . . . ,Hi}, {Hi+1, . . . ,Hn}}, which divides C1
1 into two

sub-partitions, it computes its error e2 = err(Bi(C
1
1)) (i.e.,

the cost of conducting Bi). It then selects the bisection Bk(C1
1)

with the minimum error e2 among all n−1 possible bisections.
If this error is smaller than e1 = err(C1), the algorithm
continues and sets C2 = {C2

1 = {H1, . . . ,Hk}, C2
2 =

{Hk+1, . . . ,Hn}} (otherwise, it stops and returns C1). In
the next iteration, HPartition considers all possible bisections
on C2

1 and C2
2 and computes their resultant errors, e3 =

err({Bi(C2
1), C2

2}) and e3 = err({C2
1 , Bi(C

2
2)}), respec-

tively. It picks the minimal e3 and compares it with err(C2).
If e3 is smaller than err(C2), the algorithm continues, else
it stops and returns C2. The algorithm terminates when the
partition process cannot decrease the total error any more.
HPartition is a greedy heuristic: in each step, it always selects
the bisection that results in the greatest error improvement.

Example 1 Figure 3 illustrates the operation of HPartition on
H = {21, 4, 4, 32, 30, 8}. Suppose that λ = 1. For C4, there
are two partitions to bisect which are C4

2 = {4, 4} and C4
3 =

{32, 30}. Bisecting C4
3 lowers REC4

by 2, and decreases the
total cost by 1. By contrast, bisecting C4

2 does not decrease

Algorithm 4 P-HPartition
Input: Raw histogram H = {H1, H2, . . . , Hn}
Input: Privacy budget ε
Output: Noisy approximated histogram ĤC

1: Create a queue C with a single partition {H1, H2, . . . , Hn}
2: Mark the partition in C as non-leaf
3: C := {C}
4: while there exists a non-leaf partition in C do
5: C := the first non-leaf partition in C
6: //Bisect the selected cluster at all positions
7: Pi := Bi(C) for all 0 ≤ i ≤ |C| − 1
8: Ci := (C\C) ∪ Pi

9: Select Pk with probability ∝ exp(− ε·err(Ck,ε/2)
16·blog2 nc)

10: if k = 0 then //if no bisection is chosen
11: Mark C as leaf
12: //Consider all resultant sub-partitions
13: for all c ∈ Pk do
14: if |c| = 1 or c has been bisected blog2 nc times
15: Mark c as leaf
16: end for
17: Remove C from C
18: Append C’s children Pk to C
19: C := C ∪C //save the new configuration
20: end while
21: Select Cfinal ∈ C with prob. ∝ exp(− ε·err(Cfinal ,ε/2)

16
)

22: return ReleaseHistogram(Cfinal , ε/2)

REC4
, but increases the total cost by 1 due to the introduction

of a new partition. Hence, HPartition bisects C4
3 and releases

C5. However, if λ = 3, bisecting C4
3 would increase the total

error, and therefore HPartition releases C4 and stops.

B. P-HPartition: Private Partitioning of Histogram Bins

We make HPartition differentially private by using expo-
nential mechanism. The new algorithm, called P-HPartition, is
described in Algorithm 4. HPartition has two data-dependent
parts: 1) the selection of the best bisection in each iteration;
2) the decision whether there exists a bisection in a single
iteration that leads to smaller error.

The first part would become private by using exponential
mechanism to select from all possible bisections, where the
score (utility) function is inversely proportional to the error of
the configuration produced by a bisection. However, in that
case, the privacy budget has to be divided among all possible
bisections, whose number can be as large as n (i.e., the number
of bins), since in the worst case a single record difference
influences all bisections. If a histogram has a large number of
bins, this approach would quickly become unusable because
the small privacy parameter makes the selection of a bisection
almost random.

To tackle this challenge, we leverage on a tree structure of
the clustering hierarchy. The initial partition containing all n
bins forms the root of the tree; each bisection splits a partition
(represented as a node in the tree) into two child nodes. Each
bisection consists of two steps: 1) select a partition who has
not been bisected for more than d times before, which is made
data-independent and therefore does not violate differential
privacy; 2) bisect the selected partition using exponential

mechanism. Since the clustering tree structure is a binary
tree, we heuristically set d = blog2 nc, which performs stably
well in all experiments. This approach results in better utility,
because the privacy budget will be divided among blog2 nc
bisections as opposed to n.

We have to make sure that the selection of a partition
to bisect is data-independent (i.e., we do not prioritize any
partition). For this purpose, we maintain a queue of all
partitions, and always pick up the first partition in the queue
to bisect. After each bisection, the resultant sub-partitions are
appended to the end of the queue, and the new configuration
(i.e., all partitions in the queue) is saved. The partition process
terminates, if no partition can be bisected any more because 1)
they are singletons or, (2) they have already been bisected for
d times or, (3) the bisection would result in larger error (note
that the exponential mechanism we design can select not to
bisect). When the partition process ends, the final configuration
is selected among the saved ones using a second exponential
mechanism. The utility (score) function of both exponential
mechanisms is −err(ĤC), which is inversely proportional to
the error of the configuration C.

Lemma 2 ∆err ≤ 2.

Proof: Since err(ĤC) = REHC
+ k/ε, the sensitiv-

ity of err is determined by the sensitivity of REHC
=∑k

i=1

∑
Hj∈Ci |Hj −Ci|. Consider a partition C with counts

{c1, c2, . . . , cn} and let C ′ differ from C only in a single bin
by 1. Then,

∑
i |c′i −

∑
i c

′
i

n | ≤
∑
i |ci −

∑
i ci
n |+ 2.

Theorem 8 (Privacy) P-HPartition satisfies ε-differential
privacy.

Proof: Following from Lemma 2 and Theorem 2, a single
bisection is ε/4d-differentially private. Since a single record
difference in H affects at most d bisections, the entire partition
process is ε/4-differentially private. Similarly, the selection of
the best configuration (Line 21) is also ε/4 private. More-
over, since ReleaseHistogram is ε/2-differentially private, the
whole scheme is ε-differentially private due to the sequential
composition property of differential privacy [11].

Recall that the cost of adding a new cluster is λ = 2/ε.

C. Design Choices of P-HPartition

Another private clustering scheme has been recently pro-
posed in [16]. It proposes a differentially private version
of the optimal partitioning scheme in [8] to create clusters.
Two strategies are introduced: StructureFirst uses exponen-
tial mechanism to randomize the partitioning process and
then adds noise, whereas NoiseFirst first adds Laplace noise
and then performs clustering based on noisy counts. These
schemes suffer from at least three drawbacks: 1) they use
a simple heuristic to compute the number of clusters (i.e.,
k = |H|/10), which disregards the essential trade-off between
the reconstruction and perturbation errors. In contrast, our P-
HPartition scheme adaptively decides whether to create a new
cluster by taking into consideration both injected Laplace noise
and reconstruction error, leading to better performance. 2) the

TABLE I
EXPERIMENTAL DATASET CHARACTERISTICS.

Dataset |H| Number of Mean Variance Count
zero count Range

Location 7,725 4,720 24.13 4,764.57 [0, 467]
Rochdale 256 165 2.60 52.12 [0, 57]
Search Log 32,768 17,082 10.25 577.31 [0, 496]
NetTrace 65,536 63,318 0.39 91.01 [0, 1,423]

reconstruction error is measured by the sum of squared error
(SSE) in [16] (as opposed to the sum of absolute error used in
this paper), whose sensitivity is upper bounded by the greatest
count in a histogram. Such a data-dependent upper bound can
result in very inaccurate perturbation in case of large counts.
In contrast, as shown in Lemma 2, ∆err is upper bounded
by 2, independent of the underlying counts. 3) the schemes in
[16] are inefficient for large histograms as the complexity of
their clustering schemes are O(kn2), where k is the number
of clusters. By contrast, HPartition (or P-HPartition) has a
worst case complexity of O(n2) 1. This divisible technique
also ensures that the error only increases as a logarithmic
function of n.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the utility of the
two solutions we propose, namely P-HPartition (P-HP) and
EFPA. As a reference point, we compare our solutions with
six state-of-the-art methods: LPA [3], SPA [13], Privelet [14],
Boost [7], MWEM [5] and the clustering schemes from [16].
We examine the utility of different approaches under both
unattributed and attributed histograms. Our implementation
was done in Python, and all experiments were performed on
an Intel Xeon 2.27GHz PC with 8GB RAM. The source code
and the datasets used are available at http://planete.inrialpes.
fr/projects/p-publication/.

A. Datasets

Four datasets (both real-life and synthetic) with different
characteristics are used in our experiments. Location is a half-
synthetic dataset generated from the 2006 Census Meshblock
Dataset2 of New Zealand. We randomly selected an admin-
istrative region of New Zealand, called Waitakere, with a
total population of 186,471 distributed in 1,340 meshblocks 3.
We produced the dataset by randomly placing the residents
into each meshblock and then dividing the whole area into
7,725 non-overlapping rectangles (of size 154 × 113 m2),
each being a bin in the histogram. The bin count is the
number of residents covered by its rectangle. Rochdale [4]
is a 2-dimensional histogram having 16 × 16 bins. It relates
to women’s economic activity and husbands’ unemployment
from a household survey in Rochdale, Lancashire, UK. Search
Log [7] is a synthetic dataset of search query logs for the

1It compares at most n− 1 bisections in each step, and there are at most
n steps. Since the error computation in each iteration takes O(n), the total
complexity is O(n+ 2n2) = O(n2).

2http://www.stats.govt.nz/Census/2006CensusHomePage/
MeshblockDataset.aspx

3A meshblock is the smallest data unit, each of which covers an
area of around 30-60 dwellings.

0.00 0.02 0.04 0.06 0.08 0.10
Rochdale

10-1

100

101

kl
_d
iv

EFPA

P-HP

BoostMM

MWEM

PrivH-Struct

PrivH-Noise

0.00 0.02 0.04 0.06 0.08 0.10
Location

10-2

10-1

100

101
EFPA

P-HP

BoostMM

MWEM

SPA

0.00 0.02 0.04 0.06 0.08 0.10
Search Log

10-2

10-1

100

101

kl
_d
iv

EFPA

P-HP

BoostMM

MWEM

SPA

0.00 0.02 0.04 0.06 0.08 0.10
NetTrace

100

101
EFPA

P-HP

BoostMM

MWEM

SPA

Fig. 4. Unattributed histograms: KL-divergence under varying ε values. y-
axis is in log-scale.

keyword “Obama” issued from Jan. 1, 2004 to Aug. 9, 2009.
It contains 32,768 bins, each giving the number of queries
issued within a 90-minutes interval. NetTrace [7] describes
the IP-level network traces collected at a university. There are
65,536 bins, each giving the number of external hosts that
are connected to an internal host. The detailed characteristics
are summarized in Table I. Note that since Location and
Rochdale are 2-dimensional histograms, we converted them
into 1-dimensional histograms by concatenating consecutive
rows.

B. Unattributed Histograms

The main purpose of publishing an unattributed histogram is
to study its probability distribution and to answer different ag-
gregate queries, which do not require the associations between
bins and counts. In particular, we examine the usefulness of
released unattributed histograms in terms of KL-divergence.

Besides SPA [13], we compare our solutions to the follow-
ing schemes: BoostMM [7], [6], which is a post-processing
mechanism based on least squares regression over ordered
histograms, MWEM [5], which is based on an iterative con-
structive mechanism using the multiplicative weight approach
and, to the best of our knowledge, has the best worst case error
bound, and the clustering-based algorithms in [16], which have
been described in Section V-C. NoiseFirst and StructureFirst
are denoted by PrivH-Noise and PrivH-Struct, respectively,
in the sequel. Since PrivH-Noise and PrivH-Struct are less
scalable to large histograms 4, we report their performance
only on the Rochdale dataset. In all following figures, the
reported results are the average of 100 runs.

Figure 4 reports the KL-divergence of different datasets
under varying ε values (from 0.01 to 0.1). We observe that, for
unattributed histograms, P-HPartition outperforms the other

4A single experiment with PrivH-Noise or PrivH-Struct on any
of our datasets, except Rochdale, takes several days to complete
on our machine. We used the code available on the authors’ site:
http://faculty.neu.edu.cn/ise/xujia/home/
DP-Introduction.html

TABLE II
KL-DIVERGENCE OF ATTRIBUTED HISTOGRAMS (ε = 0.01)

Dataset EFPA P-HP SPA LPA MWEM
Location 0.57 1.01 1.17 1.40 1.98

Search Log 0.18 0.27 0.49 2.30 1.35
NetTrace 2.49 1.78 4.96 5.09 5.11

TABLE III
KL-DIVERGENCE OF ATTRIBUTED HISTOGRAMS (ε = 0.01)

Dataset EFPA P-HP MWEM PrivH-Struct PrivH-Noise
Rochdale 1.76 2.23 3.02 4.47 3.14

approaches for all datasets. We also observe that EFPA sig-
nificantly outperforms SPA, which justifies our optimization.
It can be seen that P-HPartition achieves the largest utility
gain on large histograms (Location, SearchLog and NetTrace).
This is because many counts in these histograms have similar
values, which favours clustering (see Theorem 7).

C. Attributed Histograms

We first examine the usefulness of sanitized attributed
histograms in terms of KL-divergence in Table II and III.
Since the histograms are unordered, we omit BoostMM and
add LPA to our evaluation. Similarly, PrivH-Struct and PrivH-
Noise are not scalable to large datasets. Due to the space
limit, we only report the results for ε = 0.01. Similar trends
can be observed when ε = 0.1. We observe that EFPA and
P-HPartition achieve smaller divergence. In particular EFPA
performs the best, except when the dataset is sparse (e.g.,
NetTrace). In this case, P-HPartition is the best scheme.

One of the most common data analysis task conducted on at-
tributed histograms is range count queries [14], [7]. We follow
the convention to evaluate the utility of sanitized histograms
in terms of mean squared error (MSE) (see Section III-C).
Similar to [7], the range sizes are 2i for i = 1, . . . , blog nc,
where n is the number of bins in each dataset. We compute all
queries for a given size, and report their average error over 100
runs. We compare our approaches with all previous schemes as
well as Privelet [14] and BoostTree [7], where the last one is
a linear unbiased estimator of range queries using their noisy
values on universal (unordered) histograms.

Figure 5 studies how MSE varies under different range sizes.
It can be observed that our approaches outperform the other
schemes in most cases, and in some datasets the improvement
is up to a factor of 10. For the reason mentioned before, on
NetTrace, P-HPartition performs better than EFPA. As ε be-
comes smaller (i.e., privacy increases), the difference between
our schemes and the other schemes increases. Another major
trend observed in Figure 5 is that in general MSE increases
with the increment of range size, because normally larger
ranges accumulate more noise. It is interesting to note that
SPA and EFPA perform similarly on NetTrace. This is because
NetTrace is almost ordered, and hence the signal (“histogram”)
energy is concentrated on low-frequency components based on
Parseval’s theorem. Since SPA overestimates the perturbation
error, it always keeps the low-frequency components, which
is coincidentally the correct approach on NetTrace. However,
when a histogram is not ordered, which is the usual case,

100 101

Rochdale

101

102

103

104

105

M
S

E

EFPA

P-HP

SPA

MWEM

PrivH-Struct

PrivH-Noise

100 101 102 103

Location

102

103

104

105

106

107

108

109

1010

EFPA

P-HP

SPA

BoostTree

LPA

Privelet

100 101 102 103

Search Log

101
102
103
104
105
106
107
108
109

1010
1011
1012

M
S

E

EFPA

P-HP

SPA

BoostTree

LPA

Privelet

100 101 102 103 104

NetTrace

100
101
102
103
104
105
106
107
108
109

1010
1011
1012
1013

EFPA

P-HP

SPA

BoostTree

LPA

Privelet

100 101

Rochdale

101

102

103

104

105

106

107

M
S

E

EFPA

P-HP

SPA

MWEM

PrivH-Struct

PrivH-Noise

100 101 102 103

Location

103

104

105

106

107

108

109

1010

1011

1012

EFPA

P-HP

SPA

BoostTree

LPA

Privelet

100 101 102 103

Search Log

102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014

M
S

E

EFPA

P-HP

SPA

BoostTree

LPA

Privelet

100 101 102 103 104

NetTrace

101
102
103
104
105
106
107
108
109

1010
1011
1012
1013
1014
1015

EFPA

P-HP

SPA

BoostTree

LPA

Privelet

Fig. 5. Attributed histograms: MSE on different datasets under varying range sizes. y-axis is in log-scale. Left: ε = 0.1 Right: ε = 0.01

EFPA significantly outperforms SPA as demonstrated by the
results on other datasets.

VII. DISCUSSION

As suggested by the experimental results, our schemes find
a better trade-off between the reconstruction and perturbation
errors under the idea of lossy compression. While our schemes
outperform the existing solutions, the improvement depends
on the compressibility of a histogram. Generally, histograms
that have more similar counts provide higher compressibility,
and favour our schemes. For this reason, our techniques are
especially well-suited to unattributed histograms, whose com-
pressibility can be significantly increased by ordering (similar
counts are then in neighboring positions). This property makes
EFPA and P-HPartition very accurate sanitization techniques
for unattributed histograms: for EFPA, ordering shifts the sig-
nal energy from high-frequency to low-frequency components
based on Parseval’s theorem, and therefore allows the low-
pass filter used by EFPA to select the best trade-off between
the reconstruction and perturbation errors; for P-HPartition,
ordering allows to form larger clusters with similar counts,
and therefore reduces the noise. Nevertheless, many real-life
datasets (e.g., location datasets) are already partially ordered
and sparse. Hence, their compressibility, even without explicit
ordering, is high enough for our schemes to achieve good
utility.

VIII. CONCLUSION

We have presented two novel sanitization algorithms for
generating differentially private histograms. Our schemes are
based on the general idea of lossy compression. The first
scheme optimizes the Fourier Perturbation Algorithm by more
rigorous utility analysis while the second scheme makes use of
a divisible hierarchical clustering algorithm. Since many real-
life datasets are inherently highly-compressible, our schemes
exhibit great promise for outperforming the state-of-the-art

solutions. This is further confirmed by our extensive exper-
imental results for different data analysis tasks over both real-
life and synthetic datasets.

REFERENCES

[1] B. Barak, K. Chaudhuri, C. Dwork, S. Kale, F. McSherry, and K. Talwar.
Privacy, accuracy, and consistency too: A holistic solution to contingency
table release. In PODS, 2007.

[2] D. L. Donoho and I. M. Johnstone. Ideal denoising in an orthonormal
basis chosen from a library of bases. Comptes Rendus Acad. Sci., Ser.
I, 319:1317–1322, 1994.

[3] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, 2006.

[4] S. Fienberg, A. Rinaldo, and X. Yang. Differential privacy and the
risk-utility tradeoff for multi-dimensional contingency tables. In PSD,
2010.

[5] M. Hardt, K. Ligett, and F. McSherry. A simple and practical al-
gorithm for differentially private data release. In Technical Report,
arXiv:1012.4763, 2012.

[6] M. Hay, C. Li, G. Miklau, and D. Jensen. Accurate estimation of the
degree distribution of private networks. ICDM, 2009.

[7] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially private histograms through consistency. PVLDB, 2010.

[8] H. V. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. C. Sevick,
and T. Suel. Optimal histograms with quality guarantees. In VLDB,
1998.

[9] C. Li, M. Hay, V. Rastogi, G. Miklau, and A. McGregor. Optimizing
linear counting queries under differential privacy. In PODS, 2010.

[10] Y. D. Li, Z. Zhang, M. Winslett, and Y. Yang. Compressive mechanism:
Utilizing sparse representation in differential privacy. In WPES, 2011.

[11] F. McSherry. Privacy integrated queries: An extensible platform for
privacy-preserving data analysis. In SIGMOD, 2009.

[12] F. McSherry and K. Talwar. Mechanism design via differential privacy.
In FOCS, 2007.

[13] V. Rastogi and S. Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. In SIGMOD, 2010.

[14] X. Xiao, G. Wang, and J. Gehrke. Differential privacy via wavelet
transforms. In ICDE, 2010.

[15] Y. Xiao, L. Xiong, and C. Yuan. Differentially private data release
through multidimensional partitioning. In VLDB workshop on SDM,
2010.

[16] J. Xu, Z. Zhang, X. Xiao, Y. Yang, and G. Yu. Differentially private
histogram publication. In ICDE, 2012.

