
GrAMeFFSI: Graph Analysis Based Message
Format and Field Semantics Inference

For Binary Protocols, Using Recorded Network Traffic

Gergő Ládi, Levente Buttyán, Tamás Holczer
Laboratory of Cryptography and System Security
Department of Networked Systems and Services

Budapest University of Technology and Economics
Budapest, Hungary

{gergo.ladi, buttyan, holczer}@crysys.hu

Abstract—Protocol specifications describe the interaction be-
tween different entities by defining message formats and message
processing rules. Having access to such protocol specifications is
highly desirable for many tasks, including the analysis of botnets,
building honeypots, defining network intrusion detection rules,
and fuzz testing protocol implementations. Unfortunately, many
protocols of interest are proprietary, and their specifications
are not publicly available. Protocol reverse engineering is an
approach to reconstruct the specifications of such closed proto-
cols. Protocol reverse engineering can be tedious work if done
manually, so prior research focused on automating the reverse
engineering process as much as possible. Some approaches rely
on access to the protocol implementation, but in many cases, the
protocol implementation itself is not available or its license does
not permit its use for reverse engineering purposes. Hence, in
this paper, we focus on reverse engineering protocol specifications
relying solely on recorded network traffic. More specifically, we
propose GrAMeFFSI, a method based on graph analysis that can
infer protocol message formats as well as certain field semantics
for binary protocols from network traces. We demonstrate the
usability of our approach by running it on packet captures
of two known protocols, Modbus and MQTT, then comparing
the inferred specifications to the official specifications of these
protocols.

Index Terms—protocol reverse engineering, message format,
field semantics, inference, binary protocols, network traffic,
graph analysis, Modbus, MQTT

I. INTRODUCTION

Protocols describe the formats, types, contents, and se-
quence of messages that are sent and received in order to
exchange data between the communicating parties, as well as
the rules according to which these messages must be pro-
cessed. The protocols themselves are defined in specifications,
which are not always available to the general public. This is
unfortunate, as having access to specifications is required for
the generation of models that serve as the basis of several

The research presented in this paper has been partially supported by the
Hungarian National Research, Development and Innovation Fund (NKFIH,
project no. 2017-1.3.1-VKE-2017-00029), and by the IAEA (CRP-J02008,
contract no. 20629). The first author has also been supported by the
European Union, co-financed by the European Social Fund (EFOP-3.6.2-
16-2017-00013, Thematic Fundamental Research Collaborations Grounding
Innovation in Informatics and Infocommunications).

security-related applications, such as the development of in-
trusion detection systems (IDS) that understand the protocol
and can raise alarms when anomalous protocol messages are
detected [1], the creation of protocol-specific honeypots that
simulate a device running said protocol for attacker behaviour
analysis [2], and fuzz testing protocol implementations for
programming errors or hidden features [3].

Protocol reverse engineering is an area of study that pro-
vides methods which aim to reconstruct the specifications for
protocols where these are not available. Given that manual
reverse engineering of protocols is rather time consuming, and
that new protocols appear frequently, it is generally recom-
mended that an automated approach be used. These aim to
provide at least partial information about protocols in at least
a semi-automated fashion, typically relying on the analysis of
captured network packets or existing protocol implementations
(binaries), or a combination of these [4]. However, protocol
implementations may not always be available, and licensing
restrictions or user agreements may forbid such reverse engi-
neering. For this reason, we focus on methods that only rely
on captured network traffic.

The reverse engineering process is usually comprised of
three main phases [5]. The first phase involves setting up
the environment in which the analysis will be conducted, as
well as performing the necessary preparation steps such as
generating and capturing network traffic. The second phase
focuses on determining the types of the possible messages (i.e.
messages that result in functionally distinct behaviour from
the other party) along with the semantics of the fields (groups
of bytes) within the messages. The third phase focuses on
constructing a state machine for the protocol, which describes
the valid sequences of the previously determined message
types (i.e. the grammar of the protocol), however, we do not
aim to reconstruct the state machine in this paper.

To measure the goodness of the inferred specifications,
typically three metrics are used: correctness, conciseness, and
coverage [4], where correctness measures what percentage of
the inferred messages represent true messages, conciseness
shows how many inferred messages represent one true mes-
sage, and coverage shows what portion of the true message

types were found.
Based on how messages are represented, protocols can

be classified into two groups: plain text and binary. Plain
text protocols such as Hypertext Transfer Protocol (HTTP)
or Simple Mail Transfer Protocol (SMTP) exchange human-
readable messages where the fields are separated by delimiters
such as spaces, colons, or new line characters, and at least
one field contains a keyword that determines how the message
should be interpreted. On the other hand, binary protocols such
as Server Message Block (SMB) or Modbus exchange binary
messages that are not human-readable, lack field separators,
and one or more groups of bytes determine how the message
should be interpreted.

In this paper, we present GrAMeFFSI, a novel graph
analysis based algorithm for binary protocols which can in-
fer not only the message types, but also a variety of field
semantics, using only network traces of the protocols. We
implement and test the algorithm on real-world captures of
two commonly used binary protocols, Modbus and MQTT,
achieving perfect correctness and completeness scores as well
as decent conciseness scores that surpass those of existing
state-of-the-art methods. In addition, we introduce two metrics,
accuracy and adjusted accuracy, to measure the goodness of
semantics inference. We also show that GrAMeFFSI can infer
field semantics with over 95% accuracy if high quality network
traces are available.

This paper revises, improves, and extends our previous
work, Message Format and Field Semantics Inference for
Binary Protocols Using Recorded Network Traffic [6]. Notable
additions are a model merging phase in the algorithm and
the mathematical formalization of the metrics. The model
merging phase further improves the accuracy of our algorithm
while also providing extra semantical information, and the
formalization aims to make our results possible to reproduce
as well as make it easier to compare it to other works (where
such metrics are used).

The rest of the paper is structured as follows: in Section
II, we discuss related work. In Section III, we present our
algorithm in detail, along with additional possible optimization
steps. Next, in Section IV, we evaluate the previously pre-
sented algorithm on packet captures of two common protocols,
Modbus and MQTT. Then, in Section V, we briefly discuss the
possible limitations of our solution, followed by opportunities
for future work. Finally, Section VI concludes our paper.

II. RELATED WORK

Protocol reverse engineering dates back to the 1950s, where
it typically meant the analysis of finite state machines for
fault detection [7]. The first well-known project that aimed
at restoring the specifications of a computer protocol was the
Protocol Informatics Project by M. A. Beddoe [8] in 2004,
which used bioinformatical algorithms such as the well-known
Needleman-Wunsch sequence alignment algorithm on network
traces to infer the message types of the text-based protocol
HTTP. It was later followed by Discoverer [9], Biprominer

[10], ReverX [11], ProDecoder [12], and AutoReEngine [13]
that all relied only on network traffic. While most algorithms
aimed at reversing both text-based and binary protocols, some
specialized in one or the other, typically achieving better
performance metrics compared to the more general solutions
of their time. Biprominer, as its name suggests, targeted binary
protocols, while ReverX targeted text-based protocols. The
methods employed vary – Discoverer relies on sequence align-
ment, Biprominer and AutoReEngine leverage data mining
approaches, while ProDecoder makes use of natural language
processing algorithms.

Early works typically focused on reverse engineering the
message formats and their syntax, and did not put much
emphasis on inferring field semantics (that is, what each
of the fields means). Even those that tried did not achieve
significant results – Discoverer admits to achieving between
30-40% accuracy [9], and not even Netzob exceeds 50% [14].
FieldHunter [15] from 2015 was the first to achieve over 80%
accuracy on semantics.

Methods relying on reversing implementations appeared
under the names of Polyglot [16], AutoFormat [17], and
ReFormat [18]. These generally work on the principles of
dynamic taint analysis, marking pieces of code in the memory
area of a running executable that are run in response to a given
message, then making assumptions about the message formats
based on what and how was marked. It has been proven
[4] that binary analysis based approaches can achieve better
results, however, purely traffic analysis based approaches are
also important as binaries may not always be at our disposal
and legal agreements may prevent us from analysing or reverse
engineering these.

Solutions to reverse the protocol grammar (the state machine
of the protocol) have also been proposed in the form of
ScriptGen [19], Prospex [20], Veritas [21], and MACE [22].
However, they are not in scope of this paper as we currently
do not aim to reconstruct the state machine of the protocol.

In this paper, we aim to compete with Discoverer,
Biprominer, and ProDecoder, three different approaches for
reversing the message formats of binary protocols; as well
as Netzob and FieldHunter that aim at extracting semantic
information. The performance statistics of these solutions, as
given by their authors (or calculated based on their respective
papers), are shown in Table I.

We believe that no prior protocol message format reversing
method exists that is based on graph operations.

III. OUR APPROACH

Our approach consists of five distinguishable phases. The
first phase is a preparation phase, in which data is gathered
and transformed such that it can be processed in the second
phase. The second phase is the core algorithm that constructs
directed acyclic connected graphs (rooted trees) based on the
input. Next, in the third phase, we merge the trees from phase
two, following a set of rules. In the fourth phase, (optional)
optimizations may be run on the trees. These optimizations
generally improve a certain metric at a possible cost of

TABLE I
PERFORMANCE METRICS OF SIMILAR APPROACHES

Approach Correctness Conciseness Coverage Accuracy Tested on
protocols

Discoverer 0.9 5 0.95 30-40% 3
Biprominer 0.99 Unknown 0.967 N/A 3
ProDecoder 0.975 Unknown 0.975 N/A 2
Netzob 0.775 1.74 Unknown 33.4% 4
FieldHunter Unknown 2.1 Unknown 91.89% 7

Notes: Values for Netzob are only approximately accurate as they were
manually read from a plot. For FieldHunter, only binary protocols were
considered.

impairing a different metric. Finally, the resulting tree is used
to enumerate the inferred message types and field semantics.

A. Preparations

In the preparation phase, the environment needs to be
planned and set up. In order to observe and record protocol
traffic, at least one client and at least one server application
instance (or in the case of peer-to-peer applications, two
instances) should be running. These instances may or may not
be running on the same device, and if multiple devices are
used, these need not be of the same type (e.g. one can be an
ordinary computer, while the other an industrial programmable
logic controller (PLC)). This approach needs no access to the
source code or the compiled application binaries, nor does
it need access to the memory of the devices where these
are running. The only requirement is that there has to be a
way to monitor and capture network traffic flowing between
the application instances. This is typically done by running
tcpdump or Wireshark on one of the devices or connecting
them via a hub (or a switch with port mirroring configured),
and then capturing traffic from a third device that is also
connected to the hub.

Once the environment is set up and the capture is running,
traffic should be generated by invoking as many features of the
client with as many different options and in as many different
combinations as possible, all repeated a number of times. This
ensures that most of the message space is covered, which
is essential for near-complete and accurate recovery of the
protocol specification.

It is highly preferable to repeat the traffic generation pro-
cedure a couple of times, disconnecting and reconnecting the
client and the server (or the peers) in between. This ensures
that multiple flows (sessions, connections) are recorded. Since
certain values such as session identifiers never change during
a single session, recording multiples of them is necessary in
order to achieve more accurate results. Similarly, if multiple
clients and servers (or peers) are available, it is also imperative
to record at least one full session in each possible valid com-
bination thereof. This ensures that fields containing identifiers
that are unique and never change for each client (e.g. factory-
set device IDs) can still be detected as such.

B. Tree Construction
In the second phase, the recorded traffic is processed and a

tree is constructed for each flow based on the messages that
appear in that given flow. These trees represent the suspected
message types and field semantics as deduced from the data
seen, and will be further processed in later steps.

Each captured packet is read into the memory. For each
packet, a pointer is assigned that initially points to the first byte
of the packet. This pointer is later used to keep track of how
many bytes have already been processed in that specific packet.
A separate pointer is needed for each packet as some steps of
the algorithm increment this pointer by different amounts for
different packets.

The algorithm maintains and builds a graph that initially
consists of one node, the root node (which also is a leaf
at this point). In each step, new nodes of different colours
are appended to one of previous leaves. The colours are used
to indicate the inferred field semantics, and are based on the
following decisions:

1) Constants - Check the next byte of each packet. If this
is the same for all packets, consider this byte a constant.
Append a green leaf to the current branch, advance all
pointers by one, then continue processing at 1).

2) Length-prefixed strings - Interpret the next byte as an
integer, then test whether this value is followed by this
many printable characters. If this test succeeds, a length-
prefixed string was found. Append a cyan leaf to the
current branch, advance all pointers by one plus the
length of the string, then continue processing at 1).

3) Null-terminated strings - Starting from the next byte
in each packet, test whether the following bytes can
be interpreted as a sequence of printable characters
followed by a null byte. If this test succeeds, a null-
terminated string was found. Append a cyan leaf to the
current branch, advance all pointers past the next null
byte, then continue processing at 1).

4) Length fields - Interpret the next four bytes in each
packet as a single integer. Test whether this value
matches the length of packet (optionally with a given
offset). If the test succeeds, these four bytes indicate the
length of the packet. Append a blue leaf to the current
branch, advance all pointers by four, then continue pro-
cessing at 1). If the test fails, repeat the same procedure

Figure 1. Output of the tree builder algorithm showing the results of a run on a capture of responses of the Modbus protocol.

but with the next two bytes only instead of four. If that
fails as well, repeat the procedure, this time just with
the next single byte.

5) Counters - Interpret the next four bytes in each packet
as a single integer. Test whether this value increases by
the same amount between packets. If the test succeeds,
these four bytes form a counter. Append a purple leaf
to the current branch, advance all pointers by four, then
continue processing at 1). If the test fails, repeat the
same procedure but with the next two bytes only instead
of four. If that fails as well, repeat the procedure, this
time just with the next single byte.

6) Enumerated types - Check the next byte of each packet.
Calculate how many distinct values occur. If this amount
is lower than a threshold, we have found an enumerated
type. For each distinct value that was seen, append an
orange leaf to the current branch, and tag it with one
of the previously unused distinct values. Split the list of
packets such that each packet is assigned to the branch
that is tagged with the value of the packet’s next byte.
From this point on, only process messages that were
assigned to the branch that is currently being processed.
Advance all pointers by one. Continue processing at 1)
for each of the newly created branches. Since branches
are not interdependent, if multiple CPU cores are avail-
able, processing may continue in parallel. As for the
threshold, based on empirical evidence, values between
8 and 20 seem to be ideal, or if the number of distinct
message types is suspected, that number should be used
instead.

7) Highly variable - If none of the previous classifiers
classified this byte as something else, then it takes on
many different values that follow no discernible pattern.
Append a black leaf to the current branch, advance all
pointers by one, then continue processing at 1).

When no packet on any of the branches has unprocessed
bytes left, no more nodes can be added to the tree, and the
algorithm ends, outputting the tree. An example of a result can

be seen on Figure 1. Note that the colours of the nodes may
be arbitrarily chosen as long as each field type is coloured
differently.

C. Model Merging

If we just considered each flow individually, it would not be
possible to find mutually exclusive message types (as at least
one of these would be missing in each flow), and it would
also not be possible to find fields containing session identifiers
(as these would appear constant within each flow). However,
merging the trees and correlating data from the previous step
solves such issues, greatly improving the resulting inferred
specification if the right network traces are available.

The merging process is as follows: starting from the root
node, compare the next child node of each tree using the
following rules:

1) If all are of type counter, flag, length, string or variable,
continue merging the direct descendants.

2) If all are of type enumerated, continue merging each
subtree where the value of the enumerated node is the
same (this may be parallelized). If a value only appears
once, add it with all of its children to the resulting
tree. Alternatively, if this step results in too many (exact
value varies on a case-by-case basis) branches, this may
be the case where a variable type gets detected as
an enumerated type due to the inputs being poor – in
this case, the enumerated type may be replaced with a
variable type, and all subtrees may be merged into one.

3) If all are of type constant, check the value of the nodes.
If the value is always the same, it’s a generic constant.
If the value is always the same for the same client (or
server) and is different for other clients (or servers), it’s a
source or destination host identifier. If the value is only
the same within each flow, then it must be a session
identifier.

4) If some are of type constant and all others are of the
same (non-constant) type, proceed as if everything was
of that other non-constant type.

Figure 2. Message types of Modbus requests, as read from a graph. Each line represents a unique (detected) message type, with each block denoting a group
of bytes (coloured as per the legend). For constants and enumerated types, their values are displayed in the blocks. For length and counter types, their widths
and seen value ranges are shown. For everything else, the type of the node is displayed.

For example, suppose we have five trees. The next
element is a length field according to three of these,
and it’s a constant according to the other two. The field
should be treated as if it was a length field in all five
trees.

5) Any other combinations are rare and typically indicate a
problem with the recorded traffic or the implementations
themselves. In such cases, the field should be treated as
if it was of type variable in all of the trees.
For example, an implementation might generate request
identifiers sequentially, while others might choose them
randomly. In this case, the field containing the request
identifier will be recognized as a counter for the former
implementations, while it will be recognized as variable
for the latter ones.

D. Optimizations

Assuming that the protocol being analysed only consists
of messages that only contain fields of the previously listed
detectable properties, and that the input is of high enough
quality (i.e. there are enough messages to analyse on each
branch), the tree construction algorithm yields a correct but not
necessarily concise result. The resulting tree may be further
optimized for one or more metrics, usually at a cost of others.

• Variable length messages - Certain message types, such
as write requests with payloads of varying length or
responses to read requests will get inferred multiple
times: once for each different message length. This
phenomenon may be detected by looking for branches
that end in a number of highly variable fields that are
preceded (not necessarily directly) by a length byte, and
are otherwise identical. Message types detected this way
may be merged to improve the conciseness score.

• Falsely detected enumerated types - Protocols may con-
tain bytes that contain fields that have a limited range
of values (e.g. flags) but don’t change the rest of the
message structure. These will be inferred as enumerated
types, possibly resulting in the same message type(s)
getting recognized multiple times. This phenomenon may

be detected by looking for identical branches that are
preceded by the enumerated type in question. In this case,
the branches may be merged and the enumerated type
node may be replaced by a brown coloured (Flag) node.
This may improve the conciseness score, but may also
incorrectly merge truly different message types, resulting
in loss of correctness.

E. Interpreting the Results

Once the tree construction is done, and the optional opti-
mization steps are run, the distinct message types may be read
from the graph by considering the walks from the root to each
leaf node. An example of results can be seen on Figure 2:

IV. EVALUATION

The goodness of message type inference was measured by
the three standard metrics, correctness (1), conciseness (2),
and coverage (3):

Correctness =
|I ∩ T |
|I|

(1)

Conciseness =
|I| − |I \ T |
|T | − |T \ I|

(2)

Coverage =
|T ∩ I|
|T |

(3)

where T is the set of true messages and I is the set of inferred
messages.

To calculate these three metrics, we need the true and the
inferred models of the message types, as well as a network
capture that contains each true message type at least once.
Then, the following algorithm can be used:

1) Initialization: Begin with an empty list of mappings,
MTI , which will contain mappings from true message
types to inferred message types.

2) Mapping creation: For each protocol message that exists
in the network capture: find out which message type it
corresponds to in the sets of true and inferred message
types. If it matched something in both sets, say, Tx

Figure 3. A model of Modbus requests, built based on the true specification. To be interpreted in the same way as Figure 2.

among the true message types and Iy among the inferred
message types, then add a Tx 7→ Iy mapping to MTI . (If
the exact same mapping is already on the list, it should
not be added a second time.)

3) Correctness: count the number of distinct Tis that appear
on the left-hand side in mappings in MTI – this is
the number of correctly inferred message types. Count
the number of Ijs that never appear on the right-hand
side in mappings in MTI – this is the number of
bogus (inferred but nonexistent) messages types. Finally,
to get the correctness, divide the number of correctly
inferred types by the sum of correctly inferred and bogus
message types.

4) Conciseness: subtract the number of bogus message
types from the total number of inferred message types.
Divide this number by the number of true message types
minus the number of message types that were not found.
The number of message types that were not found can
be calculated by counting the number of Tis that never
appear on the left-hand side in mappings in MTI .

5) Coverage: Divide the number of correctly inferred mes-
sage types by the number of elements in T .

To measure the accuracy of semantics inference, we defined
two metrics: accuracy and adjusted accuracy. Accuracy mea-
sures what percentage of field semantics were inferred cor-
rectly, while adjusted accuracy accepts miscategorized bytes
as correct where the miscategorization was a result of the
input not being rich enough. For example, consider a two-byte
counter that was classified as a one-byte constant followed by a
one-byte counter. The accuracy metric considers this incorrect,
since this does not strictly match the specification. However,
it is considered correct for the adjusted accuracy metric, since
this miscategorization was the result of the upper byte never
changing values (thus the input not being rich enough).

To compute the accuracy and adjusted accuracy scores, we
use a Tree Edit Distance (TED) algorithm. The TED is a
measure of how similar two trees are. It is generally defined as
the minimum cost sequence of edit operations that transforms
one tree into the other (4) [23].

TED(t1, t2) = min
(e1,...,ek)∈P(t1,t2)

k∑
i=1

c(ei) (4)

We have chosen APTED [24, 25], one of the state-of-the-
art TED algorithms. It supports three types of edit costs
(weights): node insertion, node deletion, and node renaming
(relabeling). It has a Java-based implementation available1 on
Github, which we ported to C# and published2 on Github.
Running APTED on the graphs of the true and the inferred
specifications with the weights (0, 0, 1) for insertion, dele-
tion, and relabeling respectively, we get the number of bytes
that were incorrectly inferred semantically. Subtracting this
number from the total number of bytes in the graph, then
dividing the result by the total yields the accuracy. Using 0
as weights for insertion and deletion ensures that bogus and
duplicate messages, as well as ones that were not found are
not considered when calculating the accuracy of semantics
inference. Adjusted accuracy is calculated similarly, by using
(0, 0, f(n1, n2)) as weights, where f returns 0 not just when
the labels of n1 and n2 are equal, but also when the inferred
node is constant; in any other cases, f returns 1.

GrAMeFFSI was evaluated on two commonly used binary
protocols, Modbus and MQTT.

A. Evaluation with Modbus Traffic

Modbus is a communication protocol originally designed
in 1979 for use with PLCs. Today, it is still frequently used
with industrial control systems (ICS). Modbus’ specification
is openly available. Although the specification [26] defines 21
functions (pairs of requests and responses), some of these are
only to be implemented for use over serial lines, and a typical
implementation only contains 8 of these: 4 kinds of reads and
4 kinds of writes.

For the evaluation, we have recorded approximately 20 000
Modbus request-response pairs on an ICS testbed. This in-
cludes Modbus traffic from normal operation as well as several
thousands of repeated manual read and write requests with a
wide variety of legal parameter values. The source ports of
the requests and the destination ports of the responses were
edited to be the same with editcap, one of the tools from
the Wireshark package. This editing was needed to make sure
that the packets are recognized to belong to the same message

1 https://github.com/DatabaseGroup/apted
2 https://github.com/GergoLadi/APTEDSharp/

TABLE II
PERFORMANCE METRICS OF THE ALGORITHM ON THE MODBUS PROTOCOL

Algorithm Message Type Correctness Conciseness Coverage Accuracy Adjusted Accuracy
Tree construction with no optimizations Request 1 2.375 1 0.8 0.99
Tree construction with optimization #1 Request 1 1.125 1 0.8 0.99
Tree construction with optimizations #1 and #2 Request 1 1 1 0.81 1
Tree construction with no optimizations Response 1 4.875 1 0.8409 0.9886
Tree construction with optimization #1 Response 1 1.125 1 0.8409 0.9886
Tree construction with optimizations #1 and #2 Response 1 1 1 0.8523 1
Tree construction with no optimizations Average 1 3.625 1 0.8205 0.9893
Tree construction with optimization #1 Average 1 1.125 1 0.8205 0.9893
Tree construction with optimizations #1 and #2 Average 1 1 1 0.8312 1

flow. The Modbus payloads were not altered in any manner,
nor were the IP addresses that are used to determine which
device is which for host identifier inference.

Next, we built models of the Modbus requests and responses
based on the true specification. An example of a model is
shown on Figure 3). These were then used to calculate the
performance metrics for the algorithm (see Table II for results).
It can be seen that the algorithm reached maximum correctness
and coverage, no matter what optimizations were enabled.
Enabling both optimizations also maximized conciseness. The
differences between accuracy and adjusted accuracy can be
explained by the top bytes of length fields and highly variable
fields getting detected as constants due to the input packet
dump not being of high enough quality.

B. Evaluation with MQTT Traffic

MQTT, or Message Queueing Telemetry Transport is a
standard messaging protocol that follows the publish-subscribe
pattern. MQTT is fully open, and is typically used in Internet-
of-Things (IoT) solutions. The specification defines a total of
14 message types, 5 of which may only be sent by the client,
4 of which may only be sent by the server, and 5 of which
may be sent by either party [27].

For the evaluation, we set up an environment with Eclipse
Mosquitto3, an open source MQTT server, then used the
HiveMQ Websocket Client4 to perform as many operations and
with as many different parameter combinations as possible.
Traffic was captured on the server using Wireshark, resulting
in approximately 1 200 packets. The packets did not need to
be altered in any way before analysis.

As with Modbus, we built models based on the true specifi-
cation, to which we then compared our inferred specification.
Results are shown in Table III. Perfect correctness and cov-
erage are achieved in addition to decent conciseness. In the
majority of cases, the low (unadjusted) accuracy scores can be
attributed to the fact that several messages of the protocol are
of fixed length, which results in GrAMeFFSI misclassifying
length fields as constants.

3 https://projects.eclipse.org/projects/technology.mosquitto
4 http://www.hivemq.com/demos/websocket-client/

V. LIMITATIONS AND FUTURE WORK

During evaluation, we have found that the solution presented
herein has two limitations that may not be possible to over-
come:
• Handling encrypted traffic - Like any other approach that

relies on nothing else but network traces, reconstruction
fails if the protocol messages are encrypted or are oth-
erwise obfuscated. If the encryption is weak or badly
implemented, it may be cracked, or a man-in-the-middle
attack may be used against the communicating parties.
Failing that, a binary analysis based (or hybrid) approach
may still work.

• Poor results for poor inputs - If certain message types
were not seen during the capture process, those will be
missing from the reconstructed specification, resulting in
suboptimal coverage metrics. In addition, if messages for
a given type were low in count or variance, then field
semantics inference may fail, resulting in low accuracy
scores.

We have also identified areas where GrAMeFFSI could be
further improved:
• Detection of unicode strings - Currently, only ASCII

strings can be detected, but newer protocols may contain
messages having unicode strings. We expect that it is pos-
sible to detect these strings, however, extensive testing is
needed to ensure that this functionality does not introduce
false detections.

• Split-byte fields - Some protocols, including MQTT, don’t
always use whole bytes to store information (e.g. the
upper four bits of a byte might be flags, while the
lower four could be a counter). The algorithm could be
reworked to try to detect and handle these cases.

• Leaving room for error - It is currently assumed that
no packets are lost, duplicated or corrupted during trans-
mission and capture. One of these events occurring may
result in most types not being detected correctly. This
issue could be worked around by allowing a small amount
of corrupted or out-of-sequence packets. However, this
could also result in false detections, thus should be a
subject of further research.

With these improvements done, it would be possible to gen-
erate protocol specifications that are accurate enough to be
used directly as a basis of fuzz testing, honeypots or firewall

TABLE III
PERFORMANCE METRICS OF THE ALGORITHM ON THE MQTT PROTOCOL

Algorithm Message Type Correctness Conciseness Coverage Accuracy Adjusted Accuracy
Tree construction (any optimization settings) Client 1 1.2 1 0.5483 0.9677
Tree construction without optimization #2 Server 1 1 1 0.7333 1
Tree construction with optimization #2 Server 1 1 1 0.8 1
Tree construction without optimization #2 Shared 1 2 1 0.7391 0.9565
Tree construction with optimization #2 Shared 1 1 1 0.7391 0.9565
Tree construction without optimization #2 Average 1 1.4 1 0.6735 0.9747
Tree construction with optimization #2 Average 1 1.06 1 0.6958 0.9747

rules, among others. Furthermore, we plan to investigate how
the results of the tree building algorithm could be used as
inputs to other algorithms that aim to infer protocol grammar
or otherwise try to find correlations between fields in requests
and responses.

VI. CONCLUSION

In this paper, we have presented GrAMeFFSI, a novel
method to infer message types and field semantics for binary
protocols. Our method relies exclusively on network traces,
and works by constructing, merging, and optimizing acyclic
graphs based on the contents of the packets in the trace. We
have presented a methodology to evaluate the performance of
the algorithm, then performed evaluations against the known
specifications of two commonly used protocols. Based on
the results, we conclude that the approach surpasses existing
similar solutions in terms of correctness, conciseness and
coverage, while also providing more accurate field semantics
in most of the cases.

REFERENCES

[1] H. J. Wang, C. Guo, D. R. Simon, and A. Zugen-
maier, “Shield: Vulnerability-driven network filters for
preventing known vulnerability exploits,” Proceedings
of the ACM SIGCOMM 2004 Conference on Appli-
cations, Technologies, Architectures, and Protocols for
Computer Communication, pp. 193–204, 2004. DOI:
10.1145/1015467.1015489

[2] T. Krueger, H. Gascon, N. Krämer, and K. Rieck,
“Learning stateful models for network honeypots,”
Proceedings of the 5th ACM Workshop on Artifi-
cial Intelligence and Security, pp. 37–48, 2012. DOI:
10.1145/2381896.2381904

[3] J. Antunes, N. Neves, M. Correia, P. Verissimo, and
R. Neves, “Vulnerability discovery with attack injection,”
IEEE Transactions on Software Engineering, vol. 36,
no. 3, pp. 357–370, 2010. DOI: 10.1109/TSE.2009.91

[4] J. Narayan, S. K. Shukla, and T. C. Clancy, “A sur-
vey of automatic protocol reverse engineering tools,”
ACM Computing Surveys, vol. 48, no. 3, 2016. DOI:
10.1145/2840724

[5] J. Duchêne, C. L. Guernic, E. Alata, V. Nicomette,
and M. Kaâniche, “State of the art of network protocol
reverse engineering tools,” Journal of Computer Virology

and Hacking Techniques, vol. 14, no. 1, pp. 53–68, 2018.
DOI: 10.1007/s11416-016-0289-8

[6] G. Ládi, L. Buttyán, and T. Holczer, “Message format
and field semantics inference for binary protocols using
recorded network traffic,” 26th International Conference
on Software, Telecommunications and Computer Net-
works, 2018. DOI: 10.23919/SOFTCOM.2018.8555813

[7] D. Lee and M. Yannakakis, “Principles and methods of
testing finite state machines – A survey,” Proceedings
of the IEEE, vol. 84, no. 8, pp. 1090–1123, 1996. DOI:
10.1109/5.533956

[8] M. A. Beddoe, “Network protocol analysis using bioin-
formatics algorithms,”
http://www.4tphi.net/∼awalters/PI/PI.html, 2004.

[9] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Auto-
matic protocol reverse engineering from network traces,”
SS’07 Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, 2007.

[10] Y. Wang, X. Li, J. Meng, Y. Zhao, Z. Zhang, and
L. Guo, “Biprominer: Automatic mining of binary proto-
col features,” 12th International Conference on Parallel
and Distributed Computing, Applications and Technolo-
gies (PDCAT), pp. 179–184, 2011. DOI: 10.1109/PD-
CAT.2011.25

[11] J. Antunes, N. Ferreira, and P. Verissimo, “ReverX:
Reverse engineering of protocols,” 12th International
Conference on Parallel and Distributed Computing, Ap-
plications and Technologies (PDCAT), 2011.

[12] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu et al.,
“A semantics aware approach to automated reverse en-
gineering unknown protocols,” 20th IEEE International
Conference on Network Protocols (ICNP), pp. 1–10,
2012. DOI: 10.1109/ICNP.2012.6459963

[13] J.-Z. Luo and S.-Z. Yu, “Position-based automatic reverse
engineering of network protocols,” Journal of Network
and Computer Applications, vol. 36, no. 3, pp. 1070–
1077, 2013. DOI: 10.1016/j.jnca.2013.01.013

[14] G. Bossert, F. Guihéry, and G. Hiet, “Towards auto-
mated protocol reverse engineering using semantic in-
formation,” Proceedings of the 9th ACM symposium on
Information, computer and communications security, pp.
51–62, 2014. DOI: 10.1145/2590296.2590346

[15] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia,
and M. M. Munafò, “Towards automatic protocol field
inference,” Computer Communications, vol. 84, pp. 40–

http://www.4tphi.net/~awalters/PI/PI.html

51, 2016. DOI: 10.1016/j.comcom.2016.02.015
[16] J. Caballero, H. Yin, Z. Liang, and D. Song, “Poly-

glot: Automatic extraction of protocol message for-
mat using dynamic binary analysis,” CCS ’07 Pro-
ceedings of the 14th ACM conference on Computer
and communications security, pp. 317–329, 2007. DOI:
10.1145/1315245.1315286

[17] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic pro-
tocol format reverse engineering through context-aware
monitored execution,” 15th Symposium on Network and
Distributed System Security (NDSS), 2008.

[18] Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace,
“ReFormat: Automatic reverse engineering of encrypted
messages,” Proceedings of the 14th European Symposium
on Research in Computer Security (ESORICS), pp. 200–
215, 2009. DOI: 10.1007/978-3-642-04444-1 13

[19] C. Leita, K. Mermoud, and M. Dacier, “ScriptGen:
an automated script generation tool for Honeyd,” 21st
Annual Computer Security Applications Conference, pp.
203–214, 2005. DOI: 10.1109/CSAC.2005.49

[20] P. M. Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda, “Prospex: Protocol specification extraction,”
30th IEEE Symposium on Security and Privacy, pp. 110–
125, 2009. DOI: 10.1109/SP.2009.14

[21] Y. Wang, Z. Zhang, D. Yao, B. Qu, and L. Guo,
“Inferring protocol state machine from network traces:
A probabilistic approach,” ACNS 2011: Applied Cryp-
tography and Network Security, pp. 1–18, 2011. DOI:
10.1007/978-3-642-21554-4 1

[22] C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X.
Wu, and D. Song, “MACE: Model-inference-assisted
concolic exploration for protocol and vulnerability dis-
covery,” SEC’11 Proceedings of the 20th USENIX con-
ference on Security, 2011.

[23] X. Gao, B. Xiao, D. Tao, and X. Li, “A survey of graph
edit distance,” Pattern Analysis and Applications, vol. 13,
no. 1, pp. 113–129, 2010. DOI: 10.1007/s10044-008-
0141-y

[24] M. Pawlik and N. Augsten, “Efficient computation
of the tree edit distance,” ACM Transactions on
Database Systems (TODS), vol. 40, no. 1, 2015. DOI:
10.1145/2699485

[25] ——, “Tree edit distance: Robust and memory-efficient,”
Information Systems, vol. 56, pp. 157–173, 2016. DOI:
10.1016/j.is.2015.08.004

[26] Modbus Organization, Inc., “Modbus application
protocol specification v1.1b3,”
http://www.modbus.org/docs/Modbus Application
Protocol V1 1b3.pdf, 2012.

[27] A. Banks and R. Gupta, “MQTT Version 3.1.1 (OASIS
Standard),”
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-
v3.1.1.html, 2014.

Gergő Ládi was born in Hungary in 1990. He
received his Master’s degree in Computer Science
Engineering in 2018 from Budapest University of
Technology and Economics, Hungary, where he is
currently pursuing his Ph.D. degree with the Lab-
oratory of Cryptography and System Security. His
main areas of research are protocol reverse engineer-
ing automation, cloud security, and the security of
operating systems.

Levente Buttyán received the M.Sc. degree in
Computer Science from the Budapest University of
Technology and Economics (BME) in 1995, and
earned the Ph.D. degree from the Swiss Federal
Institute of Technology – Lausanne (EPFL) in 2002.
In 2003, he joined the Department of Networked
Systems and Services at BME, where he currently
holds a position as an Associate Professor and
leads the Laboratory of Cryptography and Systems
Security (CrySyS Lab). He has done research on the
design and analysis of secure protocols and privacy

enhancing mechanisms for wireless networked embedded systems (including
wireless sensor networks, mesh networks, vehicular communications, and
RFID systems). He was also involved in the analysis of some high profile
targeted malware, such as Duqu, Flame, MiniDuke, and TeamSpy. His current
research interest is in security of cyber-physical systems (including industrial
automation and control systems, modern vehicles, cooperative intelligent
transport systems, and the Internet of Things in general). Levente Buttyán
played instrumental roles in various national and international research
projects, published 150+ refereed journal articles and conference/workshop
papers, and co-authored multiple books and patents. Besides research, he
teaches courses on applied cryptography and IT security at BME and at
the Aquincum Institute of Technology (AIT Budapest), and he leads a talent
management program in IT security in the CrySyS Lab. He also co-founded
multiple spin-off companies, notably Tresorit, Ukatemi Technologies, and
Avatao.

Tamás Holczer was born in 1981 in Budapest.
He received the Ph.D. degree in Computer Science
from the Budapest University of Technology and
Economics (BME) in 2013. Since 2013 he has been
working as an assistant professor in the Laboratory
of Cryptography and System Security (CrySyS),
Department of Telecommunications, Budapest Uni-
versity of Technology and Economics. Fields of in-
terest: In the past his research interests and his Ph.D.
dissertation were focused on the privacy problems
of wireless sensor networks and ad hoc networks.

Lately he is working on the security aspects of cybe physical systems. The
research topics include: security of industrial control networks, honeypot tech-
nologies in embedded systems, network monitoring and intrusion detection in
industrial networks, and security aspects of intra-vehicular networks.

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

	Introduction
	Related Work
	Our Approach
	Preparations
	Tree Construction
	Model Merging
	Optimizations
	Interpreting the Results

	Evaluation
	Evaluation with Modbus Traffic
	Evaluation with MQTT Traffic

	Limitations and Future Work
	Conclusion
	Biographies
	Gergo Ládi
	Levente Buttyán
	Tamás Holczer

