Efficient Lossless Compression of
CAN Traffic Logs

Andras Gazdag!, Levente Butty4n', and Zsolt Szalay?

! Laboratory of Cryptography and System Security
Department of Networked Systems and Services
Budapest University of Technology and Economics
Email: {agazdag, buttyan} @crysys.hu

2 Department of Automotive Technologies
Faculty of Transportation Engineering and Vehicle Engineering
Budapest University of Technology and Economics
Email: zsolt.szalay @gjt.bme.hu

Abstract—In this paper, we propose a compression method
that allows for the efficient storage of large amounts of CAN
traffic data, which is needed for the forensic investigations of
accidents caused by cyber attacks on vehicles. Compression
of recorded CAN traffic also reduces the time (or bandwidth)
needed to off-load that data from the vehicle. In addition, our
compression method allows analysts to perform log analysis
on the compressed data, therefore, it contributes to reduced
analysis time and effort. We achieve this by performing semantic
compression on the CAN traffic logs, rather than simple
syntactic compression. Our compression method is lossless, thus
preserving all information for later analysis. Besides all the above
advantages, the compression ratio that we achieve is better than
the compression ratio of state-of-the-art syntactic compression
methods, such as gzip.

I. INTRODUCTION

Modern vehicles have multiple embedded controllers, called
ECUs (Electronic Control Units), connected together by
internal communication networks such as the CAN bus
(Control Area Network). ECUs are programmable devices, and
many of the vehicles’ functions now rely on software running
on them, as well as on protocols for exchanging information
between ECUs via CAN buses. Often, vehicles also have
interfaces, such as the OBD (On-board Diagnostic) port and
various wireless interfaces that make it possible to access
certain parts of the vehicle’s internal network from outside.
Such access may be needed for diagnostic and maintenance
purposes, for connecting mobile consumer devices to the
entertainment unit of the vehicle, or allowing for the transfer
of various sensor data in and out of the vehicle. The concept
of connected cars goes even further by introducing short range
wireless connections between vehicles and to the Internet
infrastructure, enabling new types of safety and infotainment
applications.

All this development means that modern vehicles should
be considered as cyber-physical systems, in which special
purpose computers control physical processes, and those

computers are no longer isolated from the cyber space out
there. This introduces an entirely new domain of problems
for vehicles, and road safety in general: the domain of cyber
security. Indeed, ECUs in vehicles can be compromised in
similar ways as computers are compromised on the Internet
(e.g., exploiting a buffer overflow vulnerability in their
software), and due to the increasing level of connectedness,
such attacks are now possible to be carried out remotely
(i.e., without requiring physical access to the vehicle). The
feasibility of such remote attacks has been demonstrated by
various research groups recently, showing also their potentially
catastrophic consequences [1] [2] [3].

The danger of remote cyber attacks on vehicles generated
a lot of interest in developing protection measures that either
prevent or detect such attacks. One of the proposed approaches
is to perform log analysis on recorded CAN traffic traces and
identify intrusions either in real-time or in an off-line manner.
While real-time intrusion detection seems to be the ultimate
goal, it is not at all obvious if that would be feasible, and it
is not so clear either what should be the real-time response
to a detected attack. Even if these problems were solved,
the off-line analysis of the logged CAN traffic would still be
required for better understanding of how the attack worked and
for forensic purposes in case the attack caused some physical
damage.

Being able to detect and analyze cyber attacks on vehicles
requires continuous collection and recording of the CAN
traffic. This can potentially lead to a large amount of data
that need to be stored in the vehicle. In this paper, we propose
a compression method that allows for the efficient storage of
that large amount of data. Compression of CAN traffic logs
have other notable advantages: The logs may occasionally
be off-loaded from the vehicle, and compression helps to
shorten the time and bandwidth required for the off-load
operation. Moreover, the large amount of data is not only
a problem for storage and communication: it also makes

forensic analysis hard, resource intensive, and time consuming.
In effect, this may be the most problematic issue with large
amounts of log data that cannot easily be solved by advances
in storage and communication technologies and by the ever
decreasing cost of those. Our compression method allows
analysts to perform log analysis on the compressed data,
therefore, it contributes to reduced analysis time and effort.
We achieve this by performing semantic compression on the
CAN traffic traces, rather than simple syntactic compression.
Syntactic compression methods operate on the low level byte
stream representation of the data. In contrast to this, semantic
compression methods interpret the data being compressed
and take advantage of its semantic understanding. Just like
syntactic compression methods, semantic compression can
be lossless or lossy; in this paper, we propose a lossless
compression method, thus preserving all information for the
analysis. In addition, the compression ratio that we achieve is
better than the compression ratio of state-of-the-art syntactic
compression methods, such as gzip.

The rest of the paper is organized as follows: In Section
I, we give an overview of existing data recording solutions
in road vehicles and prior work on semantic compression.
In Section III, we provide background information on the
CAN technology. We describe our new semantic compression
algorithm in Section IV, and we evaluate its performance in
Section V where we also describe our CAN traffic collection
campaign. Finally, in Section VI, we conclude the paper and
sketch some possible future work.

II. RELATED WORK
A. Data recording in road vehicles

Data recording devices that can capture information
continuously or triggered by an event have existed in the
transportation industry for decades. The best known such
devices are probably the “black boxes” used in aviation to
record data that can be used by investigators to reconstruct
some of the circumstances of an airplane crash. Such recording
devices now also exist in road vehicles: since September 2014,
a so called Event Data Recorder (EDR) is mandatory for every
new passenger car and new light commercial vehicle (LCV)
in the US.

The purpose of EDR devices is to collect data about
the vehicle dynamics and the vehicle status that enable
better accident reconstruction. It helps in validating insurance
claims, encourages safer driving behavior, and extends the
scientific knowledge about real accidents. The importance of
an EDR-like “black box” increases with the deployment of
highly automated functions in road vehicles, as there must
be some objective evidence proving who was in charge of
control in the vehicle in a critical situation. It is, however,
not clear what would be the minimum set of data that needs
to be collected in case of automated or highly automated
vehicles; accident researchers and automated vehicle experts
are currently working together on new regulations in this field.

While EDR devices collect data from the CAN bus, the
recording of that data is not continuous in time, but triggered

only by certain events that may indicate a forthcoming accident
(e.g., events that trigger the airbag). In addition, the data
recorded by EDR devices is limited to a short interval in time
(typically a few seconds) surrounding the point in time of the
accident. Unfortunately, a cyber attack that ultimately leads
to an accident may happen long before the accident itself (at
least, well beyond a few seconds interval around the time of
the accident), and therefore, the data recorded by an EDR
device will likely contain no useful information about the
cyber attack causing the accident. For detecting cyber attacks
and for being able to analyze after an incident how the attack
was executed, one needs to collect and record a continuous
flow of CAN traffic for an extended period of time.

There exist data recording devices, such as tachographs, that
perform continuous data collection in vehicles. Tachographs
are mainly used on heavy trucks, buses, and emergency
vehicles to continuously record certain parameters of the
vehicle such as its speed, its engine RPM, and odometer
values. Yet, the main purpose of tachographs is to monitor
the duty status of the drivers of commercial vehicles, and
they are not designed to record raw CAN traffic. They usually
record only a few vehicle parameters with a certain recording
frequency, and they are not available on all kinds of road
vehicles. Hence, similar to EDRs, tachographs in their current
form cannot really be used in investigations of cyber incidents
affecting vehicles.

Hence, we can conclude that, although they have seemingly
similar goals, existing data recording devices in road vehicles
actually address a problem different from the one that we
address in this paper, and they are not appropriate for cyber
incident investigations.

B. Compression

Semantic compression has generated considerable interest in
the recent years. It has been successfully applied in different
fields such as general database compression [4] [5] [6], video
compression [7], virtual machine memory compression [8],
and network traffic compression [9]. To the best of our
knowledge, it has not been applied yet for forensic evidence
handling in the automotive domain. Hence, what we propose
in this paper is a new application area for it.

Many of the previously proposed semantic compression
algorithms perform lossy compression. However, lossy
compression is not appropriate for forensic purposes, as for
forensic investigation, one needs to collect and retain accurate
information that can potentially be used as evidence in front of
court. Hence, in the sequel, we focus on semantic compression
algorithms that provide a lossless service. In particular, we
compare our work to [9], which was proposed to compress
IP traffic captures, and [6], which is a recent semantic
compression algorithm for large data tables that outperforms
some earlier proposals, such as [4] and [5].

IPzip [9] is an algorithm for compressing IP network
packet headers and payloads. One of the motivations for
developing IPzip was to support forensic investigations and
to help ISPs to comply with data retention laws. Hence, [Pzip

performs lossless compression on full network traffic captures.
In addition, IPzip is a semantic compression algorithm that
exploits the correlations exhibited by packets that belong to the
same upper layer protocol session or have the same destination
port (inter-packet correlation) and correlations of header fields
within individual packets (intra-packet correlation). The basic
idea of IPzip is to reorder the packets in the network log
such that related packets are grouped together, and to separate
the structured header part of packets from their unstructured
payload. In this respect, our method is similar, as we also
rearrange CAN packets based on their CAN IDs and separate
the unstructured CAN payload from the CAN header and
other meta-information, such as timestamps. We cannot exploit
however correlations of header fields, because the CAN header
contains a single ID field, and we cannot either exploit
redundancy in upper layer flows, because we cannot interpret
the proprietary, manufacturer specific upper layer protocols.
Yet, we achieve a better compression ratio than IPzip: in [9],
the authors report that IPzip achieves a compression ratio
between 30% and 40%, while our compression ratio is around
10-12% (in our binary format). The difference may stem from
the highly periodic nature of CAN traffic, which is not a
characteristic feature in IP traffic.

Squish [6] is a semantic compression algorithm that
leverages the relational structure of large data tables in
databases. It uses a combination of Bayesian Networks and
Arithmetic Coding to capture multiple kinds of dependencies
among attributes and to achieve near-entropy compression
rate. More specifically, it learns a Bayesian network structure
from the dataset, which captures the dependencies between
attributes in the structure graph, and models the conditional
probability distribution of each attribute conditioned on all
the parent attributes. Then, it applies arithmetic coding
to compress the dataset using the Bayesian network as
the probabilistic model. Finally, it concatenates the model
description file (describing the Bayesian network model)
and compressed dataset file. Squish achieves a reduction in
storage on real datasets of over 50% compared to its nearest
competitors, including ItCompress [5] and SPARTAN [4]. It is
difficult to compare it to our algorithm, because it was not used
to compress network traffic logs. On tables containing discrete
numbers, which are similar to a series of timestamps in our
setting, it achives a compression ratio of around 32%. Our
10-12% compression ratio is better, because we can exploit
the periodic nature of the timestamps.

Finally, we must mention the compression algorithms
BFC and SRA proposed in [10], which were specifically
developed for lossless compression of CAN packets. However,
their motivation is different: they address the problem of
overload on the CAN bus. BFC and SRA can compress
CAN packets in real-time, which results in reduction of the
bus load. They achieve a compression ratio of around 80%,
and they require special hardware or software in ECUs to
perform compression and de-compression. Our algorithm is
not intended to be used in real-time, it does not require any
modification to existing ECUs in the vehicle, and it achieves

a much better compression ratio of around 10-12%. However,
this comparison is not entirely fair due to the different goals
of BFC/SRA and our algorithm.

III. BACKGROUND - THE CAN PROTOCOL

It is the responsibility of ECUs to measure the surrounding
environment with various sensors and perform physical
operations based on this information. The ECUs communicate
with one another by sending and receiving CAN packets. The
latest vehicles usually have multiple CAN buses with different
speeds.

The CAN protocol was designed to be simple, causing
only a small overhead in the communication. None of the
messages contain any authentication information. This nature
of the protocol makes it very easy to spoof CAN messages,
which, in turn, can lead to numerous other attacks based
on the injection of arbitrary messages into the CAN traffic.
Understanding CAN messages, however, is a more complex
problem, because it requires a priory knowledge of the network
and the communicating parties.

The CAN protocol describes the message format. Each
message has a ID field that can be either 11 or 29 bits
long. After the identifier a message contains the length
information followed by the message data varying from O to 8
bytes. The message data may differ among car manufacturers.
Additional knowledge is required for its analysis. The ID is
also considered as a priority field: the lower the value the
higher the priority. All messages are sent as broadcast therefore
the IDs are also used by the ECUs to determine whether a
message is relevant for them or not.

In vehicles, the ECUs communicate with each other mostly
periodically. While the communication is event based, regular
repetition times enable a quite accurate prediction of the
upcoming pattern of messages. Another main property of the
traffic is that the content of messages are often repeating.
Numerous instances of the exact same message or message
type can be observed throughout traffic captures.

We confirmed these properties via capturing traffic in
real vehicles. Our test vehicles, however, were not premium
category vehicles. In premium category vehicles, there are
more ECUs, which results in a higher variety of the CAN
message types and message contents. Also, the same high
variety is expected in autonomous vehicles. Yet, we believe
that even in those cases, CAN traffic is rather regular
and exhibits features that can be exploited for its efficient
compression.

1V. TRAFFIC LOG COMPRESSION ALGORITHM
A. Compression strategy

The usage of semantic compression and syntactic
compression helps to achieve different goals. A clever
combination of the two approaches could benefit from the
advantages of both: semantic compression reduces the file size
while maintaining accessibility to the data. whereas syntactic
compression achieves the smallest possible file size.

To exploit the benefit of both approaches we propose to
apply both methods at different operational phases. During
data collection an on-the-fly semantic compression could
reduce file sizes while keeping data available for immediate
processing. The compressed files could be an input for IDS
or other anomaly detection appliance. The compressed data
format allows a fast analysis of data flows because they are
stored in blocks after one another whereas investigation of
causality relations is more computing-intensive.

An optional long term storage or cloud transfer of network
logs requires a smallest minimum file sizes while the
importance of immediate data accessibility is reduced. This
implies the use of syntactic compression at this phase. It has
been proven before [11] that performing semantic compression
before syntactic compression still pays off.

B. Semantic compression

We propose a compression algorithm that takes advantage
of the largely periodic nature of the CAN traffic. The high
level approach of our algorithm is to separate the traffic
into message flows, containing only messages that have the
same ID, and then, compressing each message flow separately
leveraging the previously identified properties. Algorithm 1.
shows the pseudo code of the compression.

Algorithm 1 Semantic compression

messages < read CAN traffic log
flows + separate Messages into message groups
for all flow in flows do
calculate_average_inter_arrival_time(flow)
group_messages_with_identical_data(flow)
for all message in flow.messages do
compress_timestamp(message)
end for
end for
for all flow in flows do
write_compressed_flow_to_output(flow)
end for

After reading the log file, the first step is to filter the
messages based on the ID field of the protocol. This step
generates separate lists of messages (a flow) where the
only remaining information for each message to be stored
is its timestamp in the log and the data content of the
message. In many cases, the content shows only very low
variations, allowing the compression to be even more efficient
by grouping together identical messages.

Storing a complete and separate timestamp for each message
in a flow would be a waste of storage. Our more efficient
approach takes advantage of the periodicity of messages.
Theoretically, a new message with the same ID should come
at an exactly predictable time point based on the inter-arrival
time of this message type. However, this behavior can be
changed by a higher priority message on the CAN bus. If
two messages are sent at the same time, then only the one
with the higher priority will be sent, shifting the inter-arrival

time of the messages with the lower priority. From this point
on, the arrival times of this complete message flow will be
shifted.

An efficient way to store the timestamp of a message
is to store the number of periods (specific for that flow)
passed since the last message of the same type and an
additional offset value that is induced by either priority causes
or measurement distortions. This approach also allows for
an efficient description of message flows, where the same
message data appears repeatedly from time to time.

For each message flow, there are some additional metadata
to be stored: the message ID, the first appearance of the flow in
the log and the characteristic period length of the flow. These
flow specific metadata should be followed by the message
data and then the compressed timestamp for each message. An
example of this compressed format can be seen in Example 2.,
where the # sign separates the period number and the offset
value in each compressed timestamp.

1481492674.734327 0x260 8 000000000000006a
1481492674.736055 0x2c4 8 05c8000£0000923c
1481492674.738092 0x2cl 8 080335016ad9004f
1481492674.754306 0x260 8 000000000000006a
1481492674.759605 0x2c4 8 05c8000£0000923c
1481492674.769823 0x2cl 8 0803390170d90059
1481492674.774302 0x260 8 000000000000006a
1481492674.783129 0x2c4 8 05c2000£00009236
1481492674.794246 0x260 8 000000000000006a
1481492674.801541 0Ox2cl 8 08033b0174d9005f
1481492674.806689 0x2c4 8 05c2000£00009236
1481492674.814227 0x260 8 000000000000006a
1481492674.83034 0x2c4 8 05c5000£00009239
1481492674.833283 0x2cl 8 08033b0174d9005f
1481492674.834316 0x260 8 000000000000006a
1481492674.853767 0x2c4 8 05¢c8000£0000923c
1481492674.854213 0x260 8 000000000000006a
1481492674.865006 0Ox2cl 8 0803380172d9005a
1481492674.874181 0x260 8 000000000000006a
1481492674.877285 0x2c4 8 05¢8000£0000923c

Example 1: Simplified CAN traffic log

1) A compression example: The operation of our semantic
compression can be effectively demonstrated on Example 1.
that shows a simplified CAN traffic log. It has been truncated
and reduced to only contain messages from three different ID
types. Other than that it is a real life traffic log.

In the first step the algorithm reads the messages separating
them into groups with the same ID. In this case it would result
in 3 groups: 0x260, 0x2c4 and 0x2c1. The following step is the
same for each group, that is to compressing messages inside
a group.

An efficient way to find repeated messages is to build a
hash map of the messages using the message data as a key.
At this level, the only remaining information to be stored is
the arrival time of the message.

For a more efficient compression the timestamps are stored
in a coded way taking advantage of the CAN traffic properties.
The inter-arrival times of the messages can be calculated,
based on the stamps, requiring only to store the small

difference between the predicted and the actual arrival times.

It is possible, that a message data appears in the traffic from
time to time. This also has an impact on the compression, i.e.
we need to store the elapsed number of periods in each and
every case too. This number usually has the value of 1 but for
a recurring data this may vary.

The final result of the compression of this log can be seen in
Example 2. For storing the compressed timestamp the number
of cycles and the arrival shifts are separated with a # sign.

C. Output formats

We defined two output formats for our algorithm. One is
a text base (ASCII) representation of the traffic log, while
the other is a binary format. Both formats contain the same
lossless information.

It is worth having both of this options because various
further usage may prefer one over the other. The binary format
stores the compressed data in a more efficient way that can
be seen in Section V in Table L.

0x260
start_time:1481492674.734327
period:19984

00 00 00 00 00 OO 00 6a: O#0,1#-5,1#12,1#-40,
1#-3,1#105,1#-87,
1#-16

0x2c4
start_time:1481492674736055
period:23540

05 ¢c8 00 0f 00 00 92 3c: 0#0,1#10

05 c2 00 0Of 00 00 92 36: 1#-16, 1#20
05 ¢c5 00 0f 00 00 92 39: 1#111

05 ¢c8 00 0Of 00 00 92 3c: 1#-113, 1#-22
Ox2cl

start_time:1481492674738092
period:31728

08 03 35 01 6a d9 00 4f: 0#0

08 03 39 01 70 d9 00 59: 1#3

08 03 3b 01 74 d9 00 5f: 1#440, 1414
08 03 38 01 72 d9 00 5a: 1#-5

Example 2: Compressed CAN traffic log

V. EVALUATION

We evaluated our algorithm in terms of run-time
performance and efficiency. As the most important
performance metric, we calculated the compression ratio
and as for efficiency, we also measured the speed of our
implementation. We performed our measurements multiple
times with different datasets originating from different
vehicles. We used vehicles of three different brands all
belonging to the low mid-level category built between 2005
and 2010.

We captured traffic with a Raspberry Pi based CAN
interpreter'. It allowed us to access the raw information on
the CAN bus and we saved every CAN message with a

Thttp://skpang.co.uk/catalog/images/raspberrypi/pi_2/PICAN2DSB.pdf

timestamp. We performed traffic captures through the OBD
interface where the design of the vehicle allowed for an
uninterrupted access to the powertrain CAN bus traffic through
this connection. We were able to gather traffic logs of multiple
hours in all three types of vehicles that we used in the
evaluation.

A. Run-time complexity

The time complexity of our semantic compression algorithm
is O(n) where n is the number of messages in the traffic log.
To compress a complete traffic log, the algorithm iterates over
the messages 6 times. Every iteration is linear therefore its
complexity is O(n). For the python implementation of the
compression we also only used data structures with either
O(n) or O(1) speeds.

The algorithm was capable of efficiently compressing data
gathered during the test scenarios in every case at least a
magnitude faster that the incoming speed as shown in Table I.
This speed overall makes our algorithm a good candidate for
on-board data compression for local usage of the information
or as a preparation for a remote transmission.

B. Compression ratio

The measured compression ratios show significant progress
in the data sizes (Table I. and Table II.). We were able to
achieve compression ratios of less than 20% using an ASCII
representation of the output of our algorithm. The binary
representation shows and even more efficient compression with
the results being around 10% of the original file size.

If we applied the additional syntactic compression to our
semantic compression it resulted in the smallest file sizes we
were able to achieve. In the ASCII representation scenario the
combined result shows an approximate 6% compression ratio
while the binary case show an approximate 5% compression
ratio.

This result can be considered as another proof that it
is worth applying semantic compression before syntactic
compression because with this combination additional
efficiency can be gained.

C. Correctness

We also implemented a de-compression algorithm. It
allowed us to restore the data in an identical form then
the original files before the compression. We performed a
bit-by-bit and a SHA-256 based comparison of the original
and the de-compressed files to check the correctness of our
algorithm. In every case we were able to restore the original
data without any loss.

VI. CONCLUSION

In this paper, we presented an efficient way to perform
lossless compression of CAN traffic logs. Based on our
observations of the periodic properties of CAN traffic,
we designed a semantic compression algorithm for CAN
traffic. With the use of our algorithm, storage efficiency and
communication costs can be significantly improved, while

TABLE I: Semantic compression

ratio comparisons

Original trace Compression Text format Binary format
Test case file size Test duration duration file size compression file size compression
(bytes) Text Binary (bytes) ratio (bytes) ratio
1 10 095 971 5 min 52 sec 1.319 sec 1.428 sec 1 710 920 16,94% 1 090 757 10,80%
2 7 040 165 4 min 5 sec 0.965 sec 1.021 sec 1 334 902 18,96% 835 539 11,86%
3 19 143 383 11 min 6 sec 2.217 sec 2.478 sec 3 747 229 19,57% 2 307 146 12,05%
4 21 936 245 12 min 45 sec 2.554 sec 2.712 sec 4233 994 19,30% 2 601 354 11,85%
TABLE II: Semantic and Syntactic compression ratio comparisons
Original trace Semantic and Syntactic compression combined
Test case file size zip compressed Text format Binary format
(bytes) file size (bytes) file size (bytes) compression ratio file size (bytes) compression ratio

1 10 095 971 1291 315 546 725 5,41% 499 998 4,95%

2 7 040 165 937 319 429 234 6,09% 390 467 5,54%

3 19 143 383 2 569 118 1 194 758 6,24% 1092 183 5,70%

4 21 936 245 2 895 039 1 332 585 6,07% 1223 677 5,57%

keeping the possibility to perform analysis on the compressed
data.

As part of our future work, we plan to further optimize the
file formats. Our current byte level approach could still be
refined if we could represent the number of cycles and offset
information in a more condensed way.

Another possible follow up is to design a lossy compression
algorithm for CAN traffic logs. While lossy compression
would not allow for using the compressed log as evidence
in a forensic analysis, it could still be used in incident
investigations if the compressed file preserved all information
related to attacks and discarded only information irrelevant
from a security point of view. This approach could result in a
dramatic improvement in compression ratio.

REFERENCES

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Snachm, and S. Savage,
Experimental security analysis of a modern automobile, 2010, pp.
447-462.

S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, and T. Kohno,
“Comprehensive experimental analyses of automotive attack surfaces,”
in Proceedings of the 20th USENIX Conference on Security, ser.
SEC’11. Berkeley, CA, USA: USENIX Association, 2011, pp. 6-6.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2028067.2028073
A. Greenberg. (2015) Hackers remotely kill a jeep on the highway
- with me in it, wired magazin. [Online]. Available: https:
/Iwww.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

S. Babu, M. Garofalakis, and R. Rastogi, “SPARTAN: a model-based
semantic compression system for massive data tables,” in Proceedings
of the 2001 ACM SIGMOD International Conference on Management
of Data, ser. SIGMOD °01. New York, NY, USA: ACM, 2001,
pp. 283-294. [Online]. Available: http://doi.acm.org/10.1145/375663.
375693

H. V. Jagadish, R. T. Ng, B. C. Ooi, and A. K. H. Tung, “ItCompress:
an iterative semantic compression algorithm,” in Proceedings. 20th
International Conference on Data Engineering, March 2004, pp.
646-657.

Y. Gao and A. Parameswaran, “Squish: near-optimal compression for
archival of relational datasets,” in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: ACM, 2016, pp. 1575-1584.

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

T. Mei, L.-X. Tang, J. Tang, and X.-S. Hua, “Near-lossless semantic
video summarization and its applications to video analysis,” ACM Trans.
Multimedia Comput. Commun. Appl., vol. 9, no. 3, pp. 16:1-16:23, Jul.
2013. [Online]. Available: http://doi.acm.org/10.1145/2487268.2487269
A. Rai, R. Ramjee, A. Anand, V. N. Padmanabhan, and G. Varghese,
“Mig: Efficient migration of desktop vms using semantic compression,”
in Presented as part of the 2013 USENIX Annual Technical
Conference (USENIX ATC 13). San Jose, CA: USENIX, 2013, pp.
25-36. [Online]. Available: https://www.usenix.org/conference/atc13/
technical-sessions/presentation/rai

S. Chen, S. Ranjan, and A. Nucci, “IPzip: a stream-aware ip compression
algorithm,” in Proceedings of the 2008 Data Compression Conference,
March 2008, pp. 182-191.

Y.-j. Wu and J.-G. Chung, “Efficient controller area network data
compression for automobile applications,” Frontiers of Information
Technology & Electronic Engineering, vol. 16, no. 1, pp. 70-78, Jan
2015.

H. V. Jagadish, J. Madar, and R. T. Ng, “Semantic compression
and pattern extraction with fascicles,” in Proceedings of the 25th
International Conference on Very Large Data Bases, ser. VLDB ’99.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp.
186-198. [Online]. Available: http://dl.acm.org/citation.cfm?id=645925.
671667

